
Exploration and path planning

Autonomous Robotics Labs

Labs 04



Outline

I Path planning

I OccupancyGrid

I Exploration
I Frontier-based exploration
I WFD
I Frontier �ltering
I Frontier selection



Path planning � quick refresh

Path an ordered set of points ∼ locations in either joint or
operational space � that the robot should follow

Trajectory is path plus velocities and accelerations at each point

I We will be concerned only with path

I Planning on a 2D grid (oocupancy grid �
nav_msgs/OccupancyGrid)

I Graph based algorithms (other types exist)
I Breadth-�rst search (BFS) � �Grass �re�
I Depth-�rst search (DFS)

I A very simplistic explanations of some well-known algorithms:
I Dijkstra � explore the node that has the least cost so far
I A* � explore the node with the lowest expected distance

I uses a heuristic to estimate the distance to target

expected cost(node) = cost so far (node) + heuristic (node)

I Performance depends on the space (e.g., complexity of obstacles)
and the speci�c task (single vs. multi-target search)

I There are many search algorithms and modi�cations of the most
popular ones (A*, Dijkstra)



Grid and Graph



Path planning

I Note: Even the most simplistic approach will (probably) work, the
di�erence is execution time and overall e�ciency (...memory)

I Obstacles:
I path planning with su�cient �safety� margin
I easiest approach (only possible with a rigid robot or maybe

holonomic):
I in�ate obstacles
I in case of occupancy grid � morphological dilation can be used, e.g.:

from scipy.ndimage import morphology

inflated_grid = morphology.binary_dilation(grid)

OR

inflated_grid = morphology.grey_dilation(grid)

Parameters:

size=(n, m) # kernel size

structure=np.ones((n, m)) # the kernel itself

iteration =1 # number of iterations



OccupancyGrid

nav_msgs/OccupancyGrid

data (int8[]) the occupancy grid itself (�attened)

I 0 == empty cell
I 1 . . . 100 == (probably) occupied cell
I −1 == unknown (unseen) cell

info (nav_msgs/MapMetaData) additional information about
the grid

resolution (�oat23) �size� of cell in meters
width width of the grid (in cells)
height height of the grid (in cells)
origin (geometry_msgs/Pose) the relation of the

origin [0, 0] of the grid to the �real world�
(e.g. map tf)

position (Point) translation of the
origin w.r.t. real world

orientation (Quaternion) rotation of the
XY-axes w.r.t. real world



OccupancyGrid

I Remember:
I robot position needs to be transformed to �t into the grid

coordinates
I translation and rotation � origin
I scaling � resolution

I thresholding and/or recalculation of the values of the grid might be
necessary depending on the operation (e.g. dilation, probability
threshold, ...)

I make sure you know where the origin is and which is the X-direction
and which is the Y-direction (might be confusing when plotting)

I It's a good idea to optimize the code � operations on a large grid will
be costly



Exploration

I Goal:
I explore the existing world (e.g., the maze)
I map currently unknown locations → where to focus the search?
∼ explore the �frontier�

Frontier a cell that separates known and unknown regions, possibly
hiding new parts of the �maze�

I Cells in the grid:

Open space p(occupied) < threshold
Occupied space p(occupied) > threshold
Known_region cell value ≥ 0
Unknown region cell value = −1

I Frontier-based exploration (in as few words as possible):

1. Find frontiers
2. Select and go to a frontier
3. Repeat until there are no more frontiers (or some other goal is

reached)



Frontier-based exploration

[1] YAMAUCHI, Brian, et al. Frontier-based exploration using multiple
robots. In: Agents. 1998. p. 47-53.

[2] TOPIWALA, Anirudh; INANI, Pranav; KATHPAL, Abhishek.
Frontier Based Exploration for Autonomous Robot. arXiv preprint
arXiv:1806.03581, 2018.

[3] USLU, Erkan, et al. Implementation of frontier-based exploration
algorithm for an autonomous robot. In: 2015 International
Symposium on Innovations in Intelligent SysTems and Applications
(INISTA). IEEE, 2015. p. 1-7.

Slightly more indepth article & more e�cient implementations:

[4] KEIDAR, Matan; KAMINKA, Gal A. E�cient frontier detection for
robot exploration. The International Journal of Robotics Research,
2014, 33.2: 215-236.



Wave-front detection (WFD)

I A BFS algorithm to search for frontiers

outer BFS search for frontier points connected to the robot
position

inner BFS �frontier assembly� � search for contiguous frontier
points

I De�nitions:

pose the robot position in the occupancy grid

Map-Open-List list of points enqueued (selected for processing) by the
outer BFS

Map-Close-List list of points dequeued (already processed) by the outer
BFS

Frontier-Open-List list of points enqueued by the inner BFS

Frontier-Close-list of points dequeued by the inner BFS

queuem a queue for the map points (points for the outer BFS)

queuef a queue for the frontier points (points for the inner BFS)



Wave-front detection [4]

queuem ← φ
ENQUEUE(queuem , pose)

mark pose as "Map -Open -List"

while queuem is not empty:

p ← DEQUEUE(queuem)

if p is marked as "Map -Close -List":

continue

if p is a frontier point:

queue f ← φ
NewFrontier ← φ
ENQUEUE(queue f , p)

mark p as "Frontier -Open -List"

while queue f is not empty:

q ← DEQUEUE(queue f )

if q is marked as {"Map -Close -List","Frontier -Close -List"}:

continue

if q is a frontier point:

NewFrontier ← q

for all w ∈ neighbors(q):

if w not marked as {"Frontier -Open -List",

"Frontier -Close -List","Map -Close -List"}:

ENQUEUE(queue f , w)

mark w as "Frontier -Open -List"

mark q as "Frontier -Close -List"

save data of NewFrontier

mark all points of NewFrontier as "Map -Close -List"

for all v ∈ neighbors(p):

if v not marked as {"Map -Open -List","Map -Close -List"}

and v has at least one "Map -Open -Space" neighbor:

ENQUEUE(queuem, v)

mark v as "Map -Open -List"

mark p as "Map -Close -List"



Wave-front detection

queuem ← φ
ENQUEUE(queuem , pose)

mark pose as "Map -Open -List"

I The algorithm receives some pose (in our case the robot's pose)

I A queue (FIFO) is initialized for the outer BFS � �map queue� called
queuem

I The input pose is added to the queue and marked as Map-Open-List,
i.e. as a point opened by the outer BFS for processing



Wave-front detection � outer BFS

while queuem is not empty:

p ← DEQUEUE(queuem)

if p is marked as "Map -Close -List":

continue

if p is a frontier point:

.

.

.

for all v ∈ neighbors(p):

if v not marked as {"Map -Open -List","Map -Close -List"}

and v has at least one "Map -Open -Space" neighbor:

ENQUEUE(queuem, v)

mark v as "Map -Open -List"

mark p as "Map -Close -List"

I This while loop implements the outer BFS
I At the beginning of each loop, the outer BFS dequeues a point from the

queuem if there is any
I If the point is marked as closed/processed by the outer BFS, it ignores it
I If the point is a frontier point, that is, if it has value of −1 and has an

open space next to it, the inner BFS is started for that point (inside the
if p is a frontier point condition, explained on the next slide)

I At the end of each loop, neighbors of the current point are added to the
queuem if the are not yet processed or enqueued for processing and have
at least one open space neighbor

I Lastly, the current point is marked as processed by the outer BFS



Wave-front detection � inner BFS

...

if p is a frontier point:

queue f ← φ
NewFrontier ← φ
ENQUEUE(queue f , p)

mark p as "Frontier -Open -List"

...

I Once a point is identi�ed as a frontier point, the inner BFS is
initialized

I A secondary queue, called queuef (frontier queue) is created

I New frontier (e.g. instance of a frontier class or an array) is created

I The current point from the outer BFS is added to the queuef and
marked as opened for processing by the inner BFS



Wave-front detection � inner BFS

...

while queue f is not empty:

q ← DEQUEUE(queue f )

if q is marked as {"Map -Close -List","Frontier -Close -List"}:

continue

if q is a frontier point:

NewFrontier ← q

for all w ∈ neighbors(q):

if w not marked as {"Frontier -Open -List",

"Frontier -Close -List","Map -Close -List"}:

ENQUEUE(queue f , w)

mark w as "Frontier -Open -List"

mark q as "Frontier -Close -List"

save data of NewFrontier

mark all points of NewFrontier as "Map -Close -List"

...

I This while loop implements the inner BFS
I While there are points in the queuef they are dequeued and processed
I If the where already processed either by the outer or inner BFS, they are

ignored
I If the point is a frontier point, the point is added to the NewFrontier

and its neighbors are added to the queuef if they are not marked as
processed or already enqueued in the queuef

I The current point is marked as processed
I At the end of the inner BFS while loop, the NewFrontier is saved and

it's points are marked as processed by the outer BFS (so these frontier
points are not picked up again by the outer BFS)



Frontier �ltering

I Make sure the frontier is reachable
I test path planning
I run WFD on grid with in�ated obstacles

I remember connectivity
I keep occupancy information (-1/0/>0)

I Discard useless frontiers
I too small
I possibly does not conceal explorable areas



Frontier selection

I Simple approach:
Random frontier

I Better approach:
Closest frontier
I direct distance (Euclidean, Manhattan)
I path distance � costly but more accurate & includes reachability test

Most promising frontier
I e.g., expected distance to a goal



Thank you for your attention


	Outline
	Path planning
	Occupancy Grid
	Exploration
	Wave-front detection


