
Introduction to Python

Robot Operating System

Autonomous Robotics Labs

Labs 01 (19.2./21.2. 2019)

Outline

I Intro to ARO labs

I Python
I Basics
I Built-in types
I Flow-control statements
I Functions
I Classes
I Packages
I Example

I ROS
I Basic concepts
I Components & command line commands
I Workspace

ARO Labs

I For details and contacts � please see the course web page

I Main assignment:
I Develop a program for a real turtlebot

I Explore a simple maze (∼ 5× 5 meters)
I Find and retrieve an object
I Bring it back to the start

I The �rst 7 labs should give you the basic knowledge needed to do
this

Python

Python

I What is Python?
I (very) high-level programming language

I Why Python?
I loads of code for many problems, especially scienti�c & engineering

(direct open-source/free Matlab competition)
I ROS support

I Which Python?
I Two major versions:

I 2.7
I 3.x (currently 3.7)

I Trap for young players � in Python 2.7:

print (7 / 2) # 3

I Integer divided by integer will result in an

integer!

print (7 / 2.0) # 3.5

I Unfortunately, ROS supports only Python 2.7

How to install on your machine and where to code?

I Python is installed by default on many Linux distros, otherwise:
https://www.python.org/downloads/

I Packages are installed via pip (e.g., $ pip install numpy)

I Optional package manager � Anaconda
https://www.anaconda.com/distribution/

I Always remember that you need Python 2.7

I Coding environments:
I PyCharm � preinstalled on faculty machines
I VS Code � free, very lightweight IDE with support for many

languages and community developed extensions; support for GIT
I Spyder � free Python IDE with interactive (IPython) console � �free

Matlab�
I Jupyter notebook � IPython in your browser
I Vim � for the hardcore Linux fans
I many other environments exists...

https://www.python.org/downloads/
https://www.anaconda.com/distribution/

Python programs

I Code organized into �script� �les with �.py� extension
I a script can be run either from an IDE or via command line:

python my_script.py

I Larger code organized into packages and modules
I packages -> basically directories containing script �les (∼modules)

Import a module (or a package...):

import <module_name >

Import a components from a module:

from <module_name > import <component_or_class >

Import a module under a di�erent name:

import <module_name > as <my_name >

And everything together:

from <module_name > import <component > as <my_component_name >

Import everything from a module:

from <module_name> import * # <- NEVER DO THIS!!!

Basic Syntax

I The usual basic stu�:

2 + 3

a = 2

b = 3

c = a + b

...and so on.
I Again:

x = 2 / 3

print(x) # 0

y = 2 / 3.

print(y) # 0.6666666667

I Be careful about it!

I
Python variables are not typed:

a = 1

a = "hello" # no error!

Basic Syntax

I Comments:

single line comment

""" Multiline

comment

"""

′ ′ ′

Single quotes work as well
′ ′ ′

(although, the multiline comment is just a multiline string that is not
stored or printed out)
I Output:

print "Hello" # works in 2.7 only

recommended:

print("Hello") # works in both 2.7 & 3.x

Strings

I Can be speci�ed using either single or double quotes (always
matching)

I Adding variables:

temp = 37

humid = 70

print("The temperature is {} degrees \

with {}% humidity.".format(temp , humid))

Prints: The temperature is 37 degrees

with 70% humidity.

I There are many was to format a string, search for �python string
formatting�

Lists I

I �arrays� or as Python calls them � �lists�:

l = [1, 2, 3, 4, 5]

print(l) # [1, 2, 3, 4, 5]

print(l[0]) # 1

l.append (6) # append 6 at the end of the list

a = l.pop() # simple "stack" - LIFO

print(a) # 6

l[2] = 11 # assign 11 to the 3rd element

print(l) # [1, 2, 11, 4, 5]

I multidimensional or �nested� list:

l2D = [[1, 2, 3], [4, 5, 6]]

print(l2D [1][2]) # 6

I lists from ranges and how to convert other objects to lists:

lrange = list(range (10)) # 2.7 does not need list()

Lists II

I The blessing & the curse � Python variables are not typed:

mixedList = ["a", 2, myObject]

I Length of an array (or any other iterable):

print(len(lrange)) # 10

I Check if a list contains a value:

print (3 in lrange) # True

I Lists are good (especially because of list comprehensions, shown
later) but for more complex operations use numpy arrays (also
shown later)

Sets

I �lists� with unique elements � i.e. math-like sets

mySet = set(["a", "b"])

mySet = {"a", "b"}

print(mySet) # {'a', 'b'}

print("a" in mySet) # True

mySet.add("c")

print(mySet) # {'a', 'b', 'c'}

mySet.add("a")

print(mySet) # {'a', 'b', 'c'}

I Usual mathematical set operations are possible (union,
intersection,...)

I Immutable version:

myFrozenSet = frozenset(mySet)

Tuples

I ordered immutable lists

I Why?
I functions can return multiple values (more on that later)
I slightly faster
I the usual immutable stu� (e.g., comparison of two variables)

myTuple = tuple([1, 2])

myTuple = (1, 2)

singleTuple = (1,) # note the comma!

I Indexing works the same way as it does with lists:

print(myTuple [0]) # 1

I Immutable?

myTuple [0] = 5 # error!

Dictionaries

I Unordered �hash tables�

d = {"key1": "value1", "key2": 2}

print(d["key1"]) # "value1"

print(d["key2"]) # 2

d["newKey"] = "newValue"

print(d) # {'key2 ': 2, 'key1 ': 'value1 ', 'newKey ': 'newValue '}

I Ordered dictionary:

from collections import OrderedDict

orderedDictionary = OrderedDict ()

I remembers order of insertion

collections & more

I The Python package collections contains more useful classes
I Queue (FIFO):

from Queue import Queue

q = Queue()

q.put(1)

q.get()

� this is in contrast to the previously shown �stack-like� (LIFO) behavior of normal lists

I Double sided list (faster left-append or prepend, if you will)

from Queue import deque

dq = deque ()

dq.append (1)

dq.appendleft (2)

print(dq) # deque ([2, 1])

dq.popleft () # 2

dq.pop() # 1

Conditions

if <condtion >:

pass # "pass" does nothing , not even an error

elif <another_condtion >:

pass

else:

pass

I Mind the "tab" space � important part of code structure (unfortunately)
I consecutive lines with the same amount of whitespace before them exist in the

same scope
I use spaces instead of tabs (most good Python IDEs insert spaces when tab key is

pressed)

I No "select-case" statements � can only be implemented with if-elif
I Ternary operator (i.e. in-line condition):

w = 5

v = "a" if w > 5 else "b"

print(v) # b

While Loops

I Loop that will continue until the condition is met:

while <condition >:

<do_stuff >

I Example:

a = 1

while a < 10:

a += 2

print(a) # 3, 5, 7, 9, 11

I More complex example:

a = 1

while a < 10:

a += 2

if a == 5:

continue # skips the rest of the current loop

print(a)

if a > 8:

break # breaks out of the loop

Prints: 3, 7, 9 (5 is skipped and breaks before 11)

For loops

I Classic loop iterating through a sequence of numbers:

for i in range (10):

print(i)

Prints numbers from 0 to 9 (10 is not included !)

I For loop actually iterates ("goes through") any iterable:

for elem in [4, 6, 8, 12]:

print(elem)

Prints 4 6 8 12

d = {"a": 1, "b": 2, "c": 3}

for key , value in d.items ():

print(key , value)

Prints: ('a', 1) ('c', 3) ('b', 2)

I enumerate keyword can be used to "attach" ordering number to the loop variable:

for i, (key , value) in enumerate(d.items ()):

print(i, key , value)

Prints: (0, 'a', 1) (1, 'c', 3) (2, 'b', 2)

note that "items ()" returns a tuple

Loops - list comprehensions

I Special Python construct

I A more elegant and sometimes faster way of creating lists

expList = [x**2 for x in range (10)]

print(expList)

Prints: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

I Can contain conditions:

print ([x**2 if x < 5 else 2 * x for x in range (10)])

Prints: [0, 1, 4, 9, 16, 10, 12, 14, 16, 18]

I You can get very crazy with list comprehensions, just be careful

s imp l e 2DL i s t = [[a + b f o r a i n range (5)] f o r b i n range (1 0)]

complex2DLi s t = [[a + b f o r a i n range (5)] i f b % 2 == 0
e l s e [a ∗ b f o r a i n range (3)] f o r b i n range (1 0)]

...and so on.

Functions I

I Speci�ed with keyword "def "

I No di�erence between functions and procedures

def <function_name >(<args >):

<do_stuff >

I May or may not return a value

def example(msg , randomNumbers , report=True):

a = []

for num in randomNumbers:

a.append(msg + str(num))

if report:

print(a[-1])

return a

q = example("Hello", [3, 5, 4])

Functions II

I If no value is explicitly returned, the function returns a special
�None� type:

def void ():

print("I shan't return anything!")

ret = void()

outputs: "I shan't return anything !"

print(ret) # None

print(ret is None) # check if None was returned

I As promised: tuple return value:

def tupler(value):

oneLower , oneHigher = value - 1, value + 1

return oneLower , oneHigher

print(tupler (3)) # (2, 4)

Functions III � arguments

def fun (a lpha , beta=" va l u e " , ∗ args , ∗∗ kwargs) :
p r i n t ("Alpha : " , a lpha , " Beta : " , beta)
f o r argument i n a r g s :

p r i n t (argument)
f o r key , v a l u e i n kwargs . i t ems () :

p r i n t (key , " : " , v a l u e)

fun ("a")
fun ("a" , " o th e r ")
fun ("a" , " o th e r " , 1 , 2 , 3)
fun ("a" , " o th e r " , 1 , 2 , 3 , custom=4, myoption=" someth ing ")
fun ("a" , custom=4, myoption=" someth ing ")
l = [1 , 2 , 3]
fun ("a" , " o th e r " , ∗ l)
d = {" beta " : "myvalue " , " custom" : 4 , "myoption " : " someth ing "}
fun ("a" , ∗∗d)

I In function call:
I �*� unpacks a list into the function arguments
I �**� unpacks a dictionary into the function arguments

I In function de�nition:
I �*� consumes any number of �simple� arguments
I �**� consumes any number of keyword arguments

Classes

I Speci�ed with a keyword "class"

class MyClass ():

def __init__(self , value =5):

self.value = value

def do(self , num):

print(self.value + num)

mc = MyClass (3)

mc.do(4) # 7

I Checkout magic functions to do some magic with classes:
https://rszalski.github.io/magicmethods/

de f __getitem__(s e l f , v a l u e) :
r e t u r n "You wanted to r e t u r n someht ing \

at i nd ex {}" . fo rmat (v a l u e)

mc = MyClass ()
p r i n t (mc [7]) # 'You wanted to r e t u r n someht ing at i nd ex 7 '

https://rszalski.github.io/magicmethods/

More packages

os Functions related to the OS, e.g., os.path to manipulate
paths

sys System functions (e.g. PATH variable)

numpy Huge set of math related functions and arrays

scipy Whatever was not in numpy

matplotlib Set of plotting functions

__future__ Set of Python 2.7→3.x compatibility modules

print_function Enforces the use of print() as a function
division enables �true division� (instead of integer

division)

from __future__ import print_function , division

Numpy

I Extensive Python-enhancing library

import numpy as np

I The convention is to use alias �np� � it gets used a lot so you want it
to be short

I Perhaps most important contribution: arrays

arr = np.zeros((4, 6), dtype=np.int16)

arr[:, 2] = 7 # every row of the 2nd column

arr[1, 1:4] += 3 # first row in column 1 to 3

arr *= 2

print(arr.shape) # (4, 6)

I Extensive indexing and array manipulation capabilities

I Contains also matrix class for matrix and vector manipulation. In
most cases, however, arrays are the more suitable approach.

Example

import numpy as np # import the numpy package

from matplotlib import pyplot as plt # plotting library

points = np.random.randint (20, 40, (2, 10)) # random 2D points

augment points with ones -> homogeneous coordinates

points = np.vstack ((points , np.ones(points.shape [1])))

create translation

tf_translate = np.matrix ([[1, 0, 10], [0, 1, 3], [0, 0, 1]])

create skew

tf_skew = np.matrix ([[1, 2, 0], [0, 1, 0], [0, 0, 1]])

transform points

tf_points = np.array(tf_translate * tf_skew * points)

""" Alternative without np.matrix:

tf_points = tf_translate.dot(tf_skew.dot(points))

"""

plot the original and transformed points

plt.scatter(points[0, :], points[1, :], c="b")

plt.scatter(tf_points[0, :], tf_points[1, :], c="r")

Example

I (Possible) result:

ROS

Very Fast & Furious ROS overview

I What is ROS?
I Robot Operating System
I asynchronous data processing (but can also operate in synchronous

mode)
I distributed system (but has a central �node�)
I contains a lot of �stu�� useful for developing SW for robotic

applications:
various tools (packages) & libraries for many robotics-related
problems, SW management tools, visualization & debugging tools

ROS components

The simplest ROS topology:

ROS Master

I Communication �server� (ROS actually uses P2P model): mediates
communication between nodes
I every new node registers with the master (address where other nodes can

reach it)
I tracks topic and service publishers and subscribers
I data is then sent directly between nodes

I Provides parameter server
I Always needs to be executed before doing anything else with ROS

I $ roscore
I launch �les start master if not running already (I'll explain later...)
I run it & forget about it (until you get to more advanced stu�)

I reasons for restarting: new logging session, cleaning up (crashed nodes �
$ rosnode cleanup, renew parameter server)

I cost of restarting: no new connections can be established -> whole
system restart likely required

I Can be run on another machine on the network
I $ echo $ROS_MASTER_URI

http://localhost:11311
I $ export ROS_MASTER_URI=http://<other_machine>:11311/

I Starts /rosout node � mostly for debugging

ROS Node

I Basic building block of ROS

I Executable programs and scripts (Python)
I write a script
I make it executable: $ chmod u+x <filename>.py or $ chmod +700

<filename>.py
I run it: $ rosrun <package_name> <node_name>.py

I simply executes an executable program or script

I A node is an instance of a ROS program
I multiple instances of the same program can run simultaneously (with

di�erent names)
I names separated into namespaces (/)

I Nodes can do anything you want them to (or anything you can
program them to do)

I Communicate with other nodes via topics and services
I can be all on one machine or distributed across the Universe, as long

as they can all reach the master and each other

I Each node can be written in any language with ROS support: C++,
Python, MATLAB, Java, Lisp

ROS Node: console commands

$ rosnode

list lists currently active nodes;
hint: <command> | grep <expression> outputs only lines
containing the expression and highlights the occurrences

info <node_name> shows info about a speci�c node � topics where the node publishes
and to which it is subscribed to and services & node address

ping <node_name> tests node reachability and response time

machine [machine_uri] lists machines with nodes connected to the master or nodes
running on a speci�c machine

kill <node_name> does what it says on the cover...

Help will always be given to those who ask for it:

I $ rosnode help
I $ rosnode <command> -h

Or in general:

I $ ros<whatever> help
I $ ros<whatever> <some_sub_command> -h

And use TAB key!

I Trivia: Every time someone does not use command completion a cute bunny eats a
�u�y unicorn! And bunnies have a lethal allergy to unicorn fur!

ROS Topic

I Communication channels used by the nodes to send and share
information

I Publisher & Subscriber model
I every node can publish or subscribe/listen to a topic

I Each topic has a speci�c data type that can be sent over it

ROS Topic: console commands

$ rostopic

list creates tear in space-time fabric...nope, just lists existing topics; existing topic =
any topic that was registered with the master, i.e. existing does not mean active
(useful to know when debugging); use grep...

info <topic_name> yup, prints info about a speci�c topic: nodes publishing in the topic, subscribed
nodes and type of message that can be transferred via the topic (data type)

hz <topic_name> shows publishing rate of a topic (better than echo if you just want to see whether
something is being published over a topic)

echo <topic_name> writes out messages transmitted over a topic (useful for debugging of topics with
low rate and small messages); speci�c parts of the message can be printed by
appending �/<msg_part>/...�
�noarr �ag will suppress printing of arrays

type <topic_name> prints the type of the messages transmitted via the topic

bw <topic_name> bandwidth used by the topic, i.e. the amount of data transmitted over it per second
(on average) � useful to check when sending a lot of data

pub <topic_name> can be used to publish a message over a topic when debugging � obviously, only
usable for topics with simple messages<message_type> <msg>

find <message_type> lists all topics that use the speci�ed message type

ROS Message

I Data structures used to send data over topics
I simple: bool, int<N>, uint<N>, �oat<N>, string, time, duration
I complex: composed of simple types, can contain other message types and a

header

I Message header

seq sequence number � unique ever-increasing ID
stamp message timestamp � epoch seconds & nanoseconds

frame_id frame ID � frame associated with the message

I $ rostopic echo /<some_interesting_topic>/header � will display just
the headers of the messages

I Messages are de�ned in �message �les�

ROS Message: console commands

$ rosmsg

show <message_name> shows message �elds (msg de�nition �le)

list lists all available message types

package <package_name> lists all message types de�neadditional args to provide
package author, description, ...d in a speci�c package

packages lists all packages containing (de�nitions of) any
messages

Workspace

Workspace

I Collection of folders with related ROS �les

I Source �les, de�nitions, con�guration �les, scripts, and other �les
are organized into packages

I Compilation done only via the ROS build system

ROS Build system

I catkin
I a.k.a. catkin command line tools

https://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html
I Extension of CMake � can build libraries, executables,... (C++)

I collection of CMake macros and Python scripts

I Auto-generates message/service/action related functions based on their de�nitions

init initializes a workspace in the current folder

config show current WS con�guration (additional
args to change the current con�g)

create pkg <package_name> creates a new package (in the current folder);
additional args to provide package
dependencies, author, description, ...

build [package_name] builds the current WS/package

clean [package_name] cleans catkin products (build, devel, logs)

I Building a WS with catkin creates these folders in the WS:

build build targets
devel (as in �development�) � contains setup script
logs build logs

https://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html

ROS Packages

I ROS �les are organized into packages

I Structure of a package:

<some_package>

[src]/package_name/ source code � scripts; normal �Pythonic�
code structure

[scripts] usually (non-Python/non-C++) scripts or
(standalone) executables

[launch] launch �les
[config] con�guration �les, yaml param �les for param server
[include] additional libraries; include headers for C++

[msg] message de�nitions
[srv] service de�nitions

[action] action de�nitions
CMakeLists.txt CMake con�g �le (used by catkin)
package.xml package manifest � catkin/ROS package con�g

�lelogs build logs

ROS Packages: console commands

$ rospack

list lists all currently available packages

find <message_name> prints path to a speci�c package

$ roscd <package_name> � cd into a package
$ rosls <package_name> � ls a package directory content
$ rosed <package_name>/<some_file> � launch a text editor and open the
speci�ed �le in it (a quick way to adjust small details in a �le while debugging)

Creating a workspace

I Create folder and cd into it
$ mkdir example_ws && cd example_ws

I Create src folder
$ mkdir src

I Init the workspace
$ catkin init

I Build the WS (builds just the catkin tools)
$ catkin build

I Look at it (just to make you feel happy)
$ ll or $ ls -la (if the �rst command does not work

I Go into the src folder
$ cd src

Creating a package

I Create a package
$ catkin create pkg incredible_package --catkin-deps

rospy

I CD into the package
$ cd incredible_package

I Check and modify the manifest
$ vim package.xml (or just use GUI based editor)

I Check the CMakeLists.txt (just look at it for now)

I Create a src folder (if it does not exist)
$ mkdir src/

Creating a node

I Fire up your favorite editor and create publisher.py:

#!/usr/bin/env python2

import rospy

from std_msgs.msg import Float32

from numpy.random import rand

if __name__ == '__main__ ':

rospy.init_node('publisher ')

rate = rospy.Rate (2)

publisher = rospy.Publisher('random ',

Float32 , queue_size =10)

while not rospy.is_shutdown ():

publisher.publish(rand ())

rate.sleep()

I Make executable
chmod u+x publisher.py

I Build & source
$ catkin build

$ source ∼/example_ws/devel/setup.bash

Creating another node

I listener.py

#!/usr/bin/env python2

import rospy

from std_msgs.msg import Float32

def callback(msg):

print('Received a message: {}'.format(msg))

rospy.loginfo('Received a message :\

{}'. format(msg))

if __name__ == '__main__ ':

rospy.init_node('listener ')

publisher = rospy.Subscriber('random ',

Float32 , callback)

rospy.spin()

You �rst ROS package

I Run the nodes and observe the beauty of messages being
transmitted:

$ roscore

$ rosrun my_package publisher.py

$ rosrun my_package listener.py

Received a message: data: 0.312089651823

Received a message: data: 0.984019577503

Received a message: data: 0.142692148685

Received a message: data: 0.230828240514

Received a message: data: 0.27526524663

Thank you for your attention

	Python
	ROS
	ROS Components
	Workspace

