Motion learning in robotics

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems https://cyber.felk.cvut.cz/vras/

Center for Machine Perception https://cmp.felk.cvut.cz

Department for Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Tasks often formalised as MDP

States: $\mathbf{x} \in \mathbb{R}^n$

States: $\mathbf{x} \in \mathbb{R}^n$

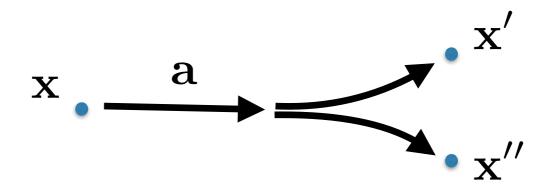
 $x \longrightarrow a$

Actions: $\mathbf{a} \in \mathcal{R}^m$

States: $\mathbf{x} \in \mathcal{R}^n$

Actions: $\mathbf{a} \in \mathcal{R}^m$

Model: $p(\mathbf{x}'|\mathbf{x}, \mathbf{a})$

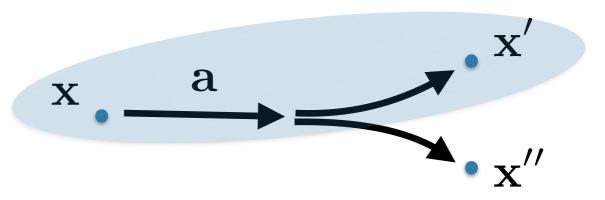


States: $\mathbf{x} \in \mathcal{R}^n$

Actions: $\mathbf{a} \in \mathcal{R}^m$

Model: $p(\mathbf{x}'|\mathbf{x}, \mathbf{a})$

Rewards: $r(\mathbf{x}, \mathbf{a}, \mathbf{x}') \in \mathcal{R}$



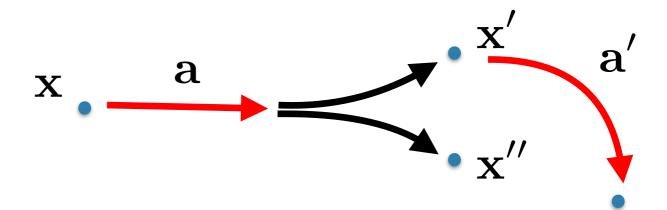
States: $\mathbf{x} \in \mathcal{R}^n$

Actions: $\mathbf{a} \in \mathcal{R}^m$

Model: $p(\mathbf{x}'|\mathbf{x}, \mathbf{a})$

Rewards: $r(\mathbf{x}, \mathbf{a}, \mathbf{x}') \in \mathcal{R}$

Policy: $\pi(\mathbf{a}|\mathbf{x})$



 \mathbf{X}

 \mathbf{a}'

States: $\mathbf{x} \in \mathcal{R}^n$

Actions: $\mathbf{a} \in \mathcal{R}^m$

Model: $p(\mathbf{x}'|\mathbf{x}, \mathbf{a})$

Rewards: $r(\mathbf{x}, \mathbf{a}, \mathbf{x}') \in \mathcal{R}$

Policy: $\pi(\mathbf{a}|\mathbf{x})$

Goal: $\pi^* = rg \max_{\pi} J_{\pi}$ (e.g. $J_{\pi} = \mathtt{E} \left[\sum_{t=0}^{T} r_t \right]$)

Challenges in real tasks

States: $\mathbf{x} \in \mathcal{R}^n$ incomplete, noisy

Actions: $\mathbf{a} \in \mathcal{R}^m$ continuous high-dimensional

Model: $p(\mathbf{x}'|\mathbf{x}, \mathbf{a})$ inaccurate model

Rewards: $r(\mathbf{x}, \mathbf{a}, \mathbf{x}') \in \mathcal{R}$ hard to engineer

Policy: $\pi(\mathbf{a}|\mathbf{x})$ execution endanger the robot

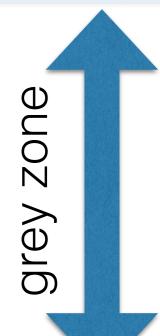
Goal: $\pi^* = rg \max_{\pi} J_{\pi}$ (e.g. $J_{\pi} = \mathtt{E} \left[\sum_{t=0}^{T} r_t \right]$)

Challenges in real tasks

• Can I learn something without the model $p(\mathbf{x}'|\mathbf{x}, \mathbf{a})$ just from interactions?

Taxonomy of policy search methods

• Direct policy search (primal task) e.g. gradient ascent for $\pi^* = \arg\max_{\pi} J_{\pi}$



Episodic REPS [Peters, 2010]

PILCO [Deisenroth, ICML 2011]

Actor-critic (e.g. DPG [Silver,JMLR 2014])

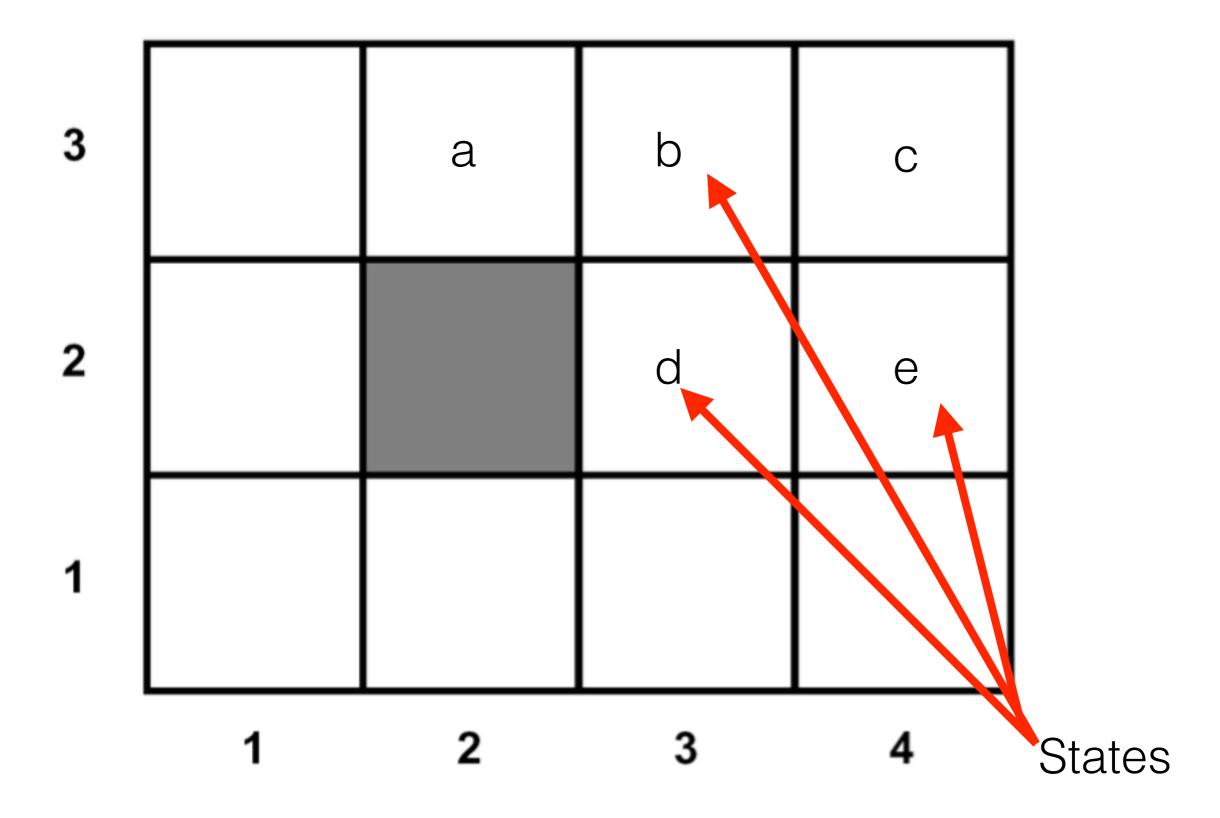
Deep Q-learning (e.g. [Mnih, Nature 2015])

Value-based methods (dual function [Kober, 2013])

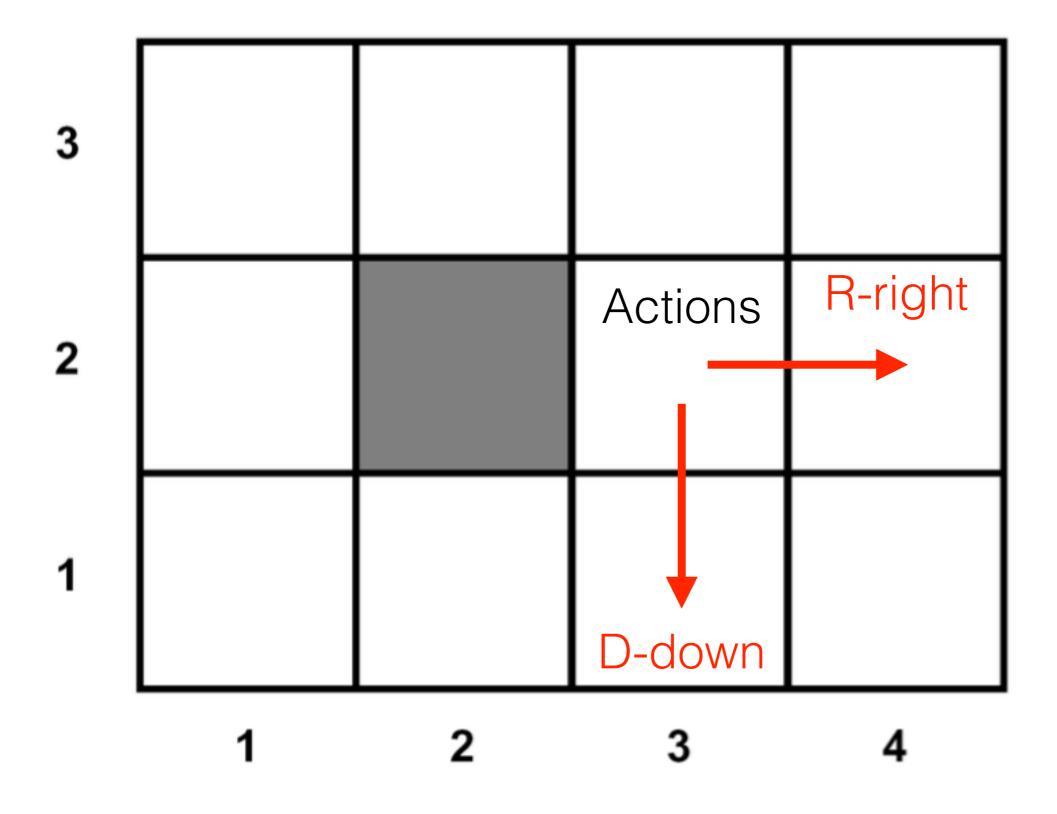
e.g. search for
$$Q(\mathbf{x}, \mathbf{a}) = r(\mathbf{x}, \mathbf{a}, \mathbf{x}') + \gamma \max_{\mathbf{a}'} Q(\mathbf{x}', \mathbf{a}')$$

$$\pi^* = \arg\max_a Q(\mathbf{x}, \mathbf{a})$$

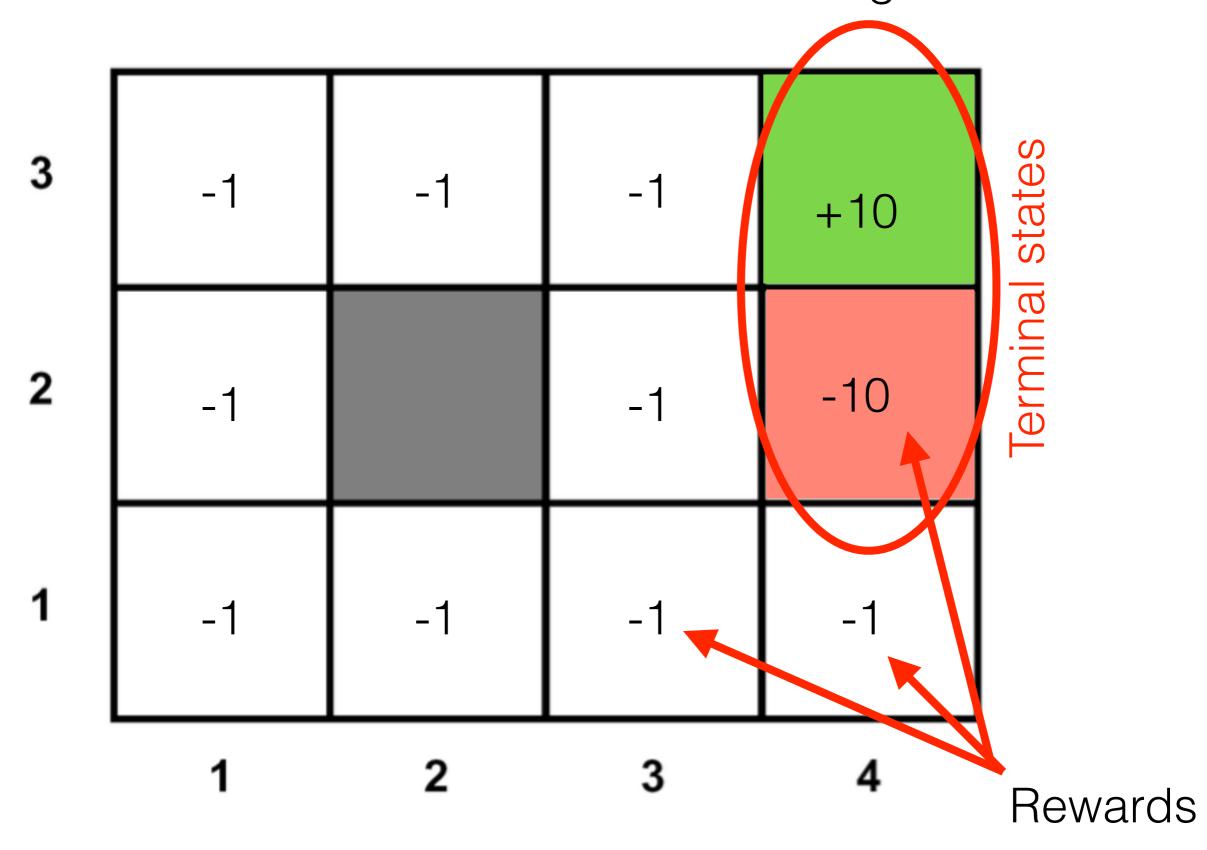
Value-based methods: Q-learning



Value-based methods: Q-learning



Value-based methods: Q-learning



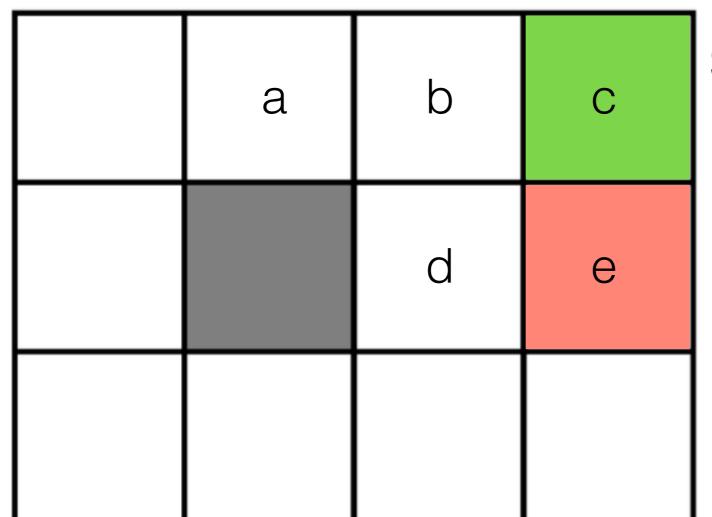
a	b	С
	d	е

State-action value function

$$Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$$

The best sum of rewards I can get, when following action u in state x and then controlling optimally

• Search for the Q, which satisfies Bellman equation $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$



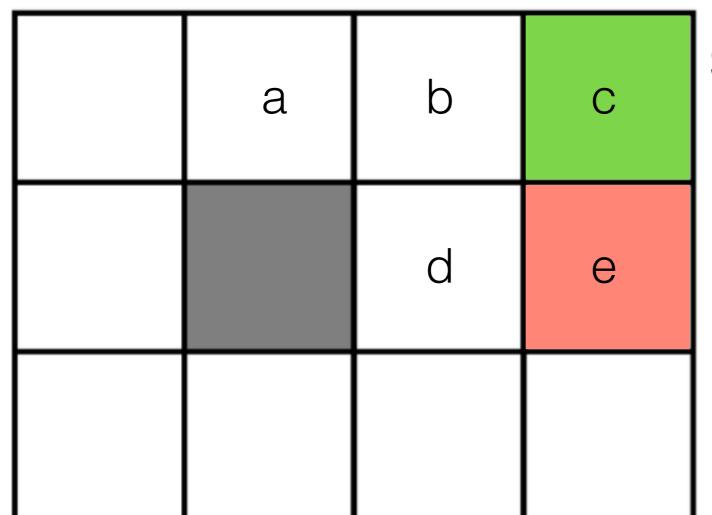
State-action value function

$$Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$$

The best sum of rewards I can get, when following action u in state x and then controlling optimally

- Search for the Q, which satisfies Bellman equation $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- Once we find it, we can control optimally as follows:

$$\pi^*(\mathbf{x}) = \arg\max_{\mathbf{u}} Q(\mathbf{x}, \mathbf{u}) = \arg\max_{\pi} J_{\pi}$$



State-action value function

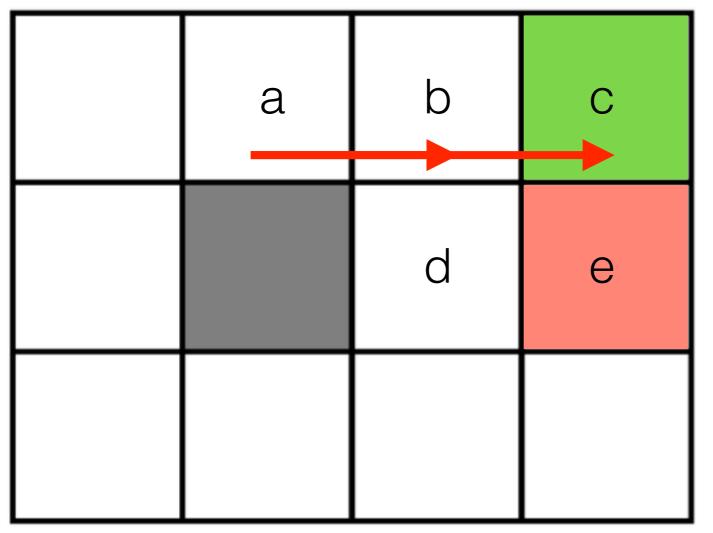
$$Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$$

The best sum of rewards I can get, when following action u in state x and then controlling optimally

- Search for the Q, which satisfies Bellman equation $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- Once we find it, we can control optimally as follows:

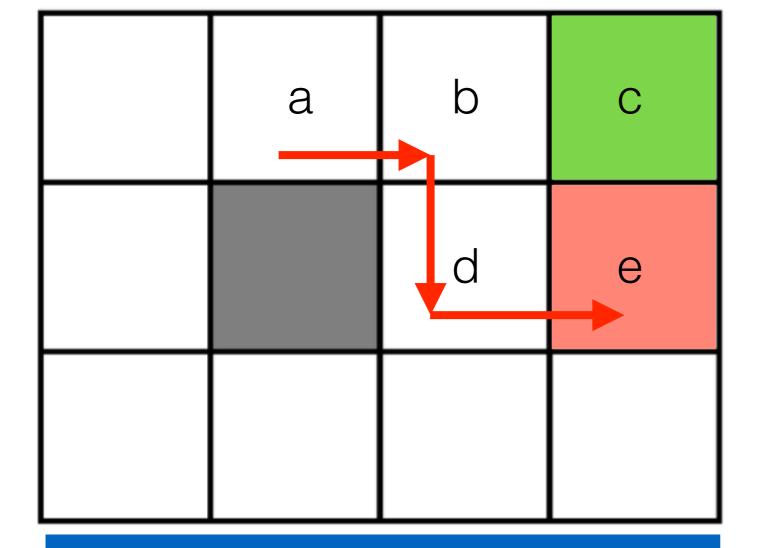
$$\pi^*(\mathbf{x}) = \arg\max_{\mathbf{u}} Q(\mathbf{x}, \mathbf{u}) = \arg\max_{\pi} J_{\pi}$$

Search without model is based on collecting trajectories



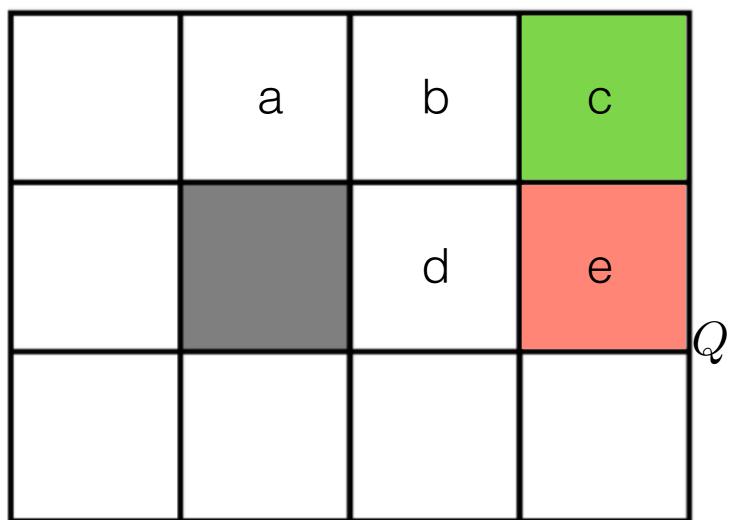
	71 •	
(a, R, -1),	(b, R, -1),	(c, R, 10)

Q	R - right	D - down
a	?	?
b	?	?
С	?	?
d	?	?
е	?	?



$ au_2$	•
(a, R, -1),	(b, D, -1),
(d, R, -1),	(e, R, -10)

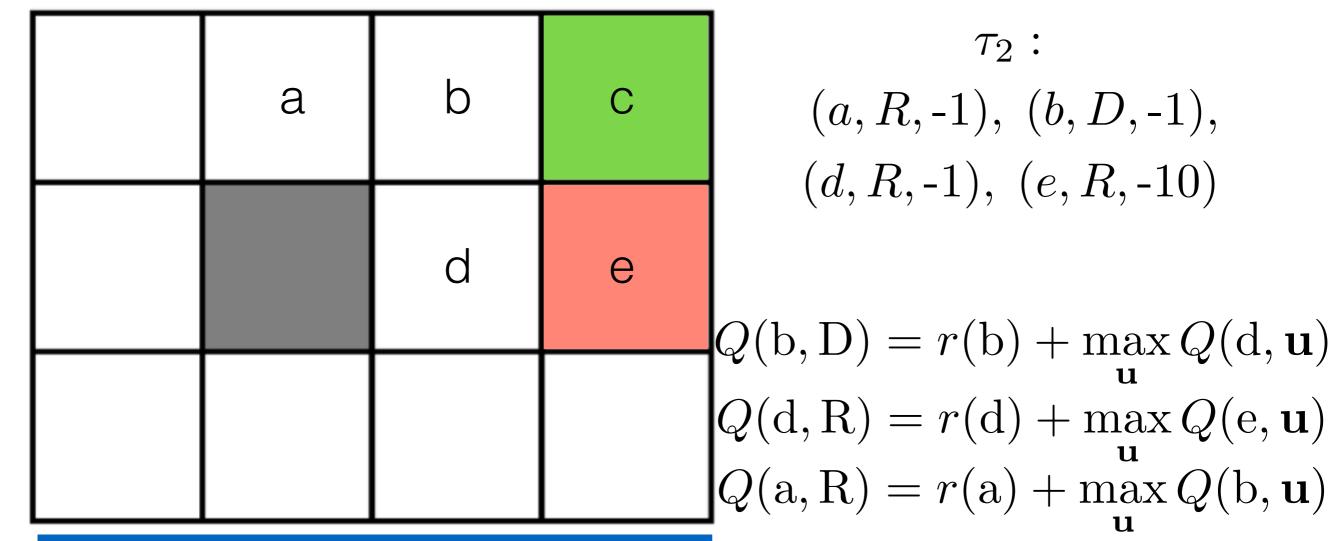
Q	R - right	D - down
a	?	?
b	?	?
C	?	?
d	?	?
е	?	?



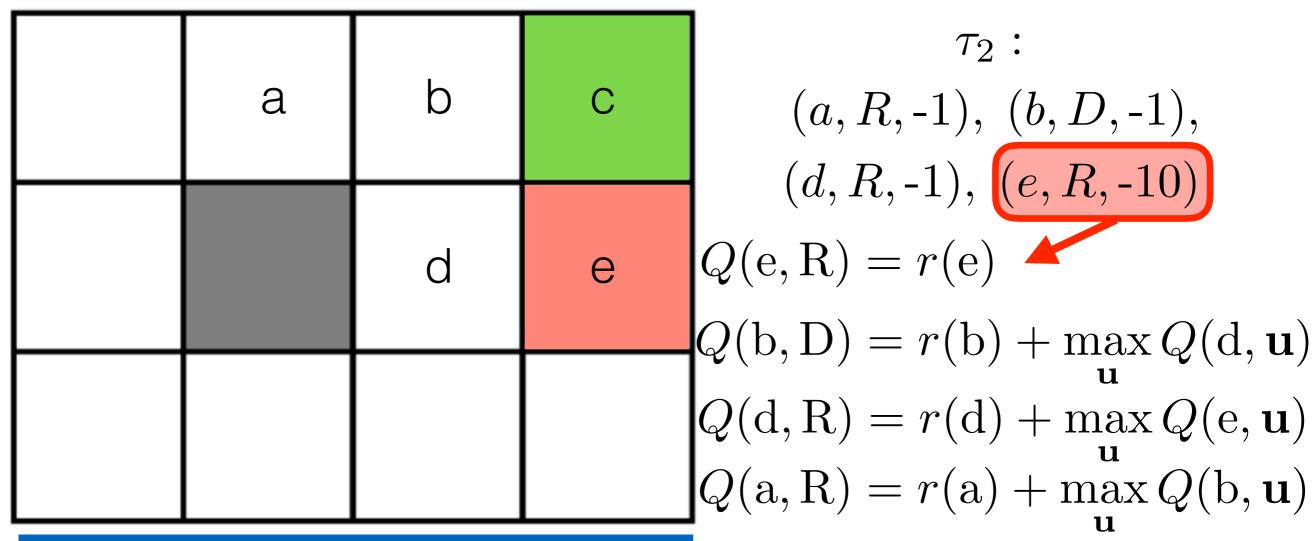
$$7_2$$
:
 $(a, R, -1), (b, D, -1),$
 $(d, R, -1), (e, R, -10)$

$$Q(\mathbf{b}, \mathbf{D}) = r(\mathbf{b}) + \max_{\mathbf{u}} Q(\mathbf{d}, \mathbf{u})$$

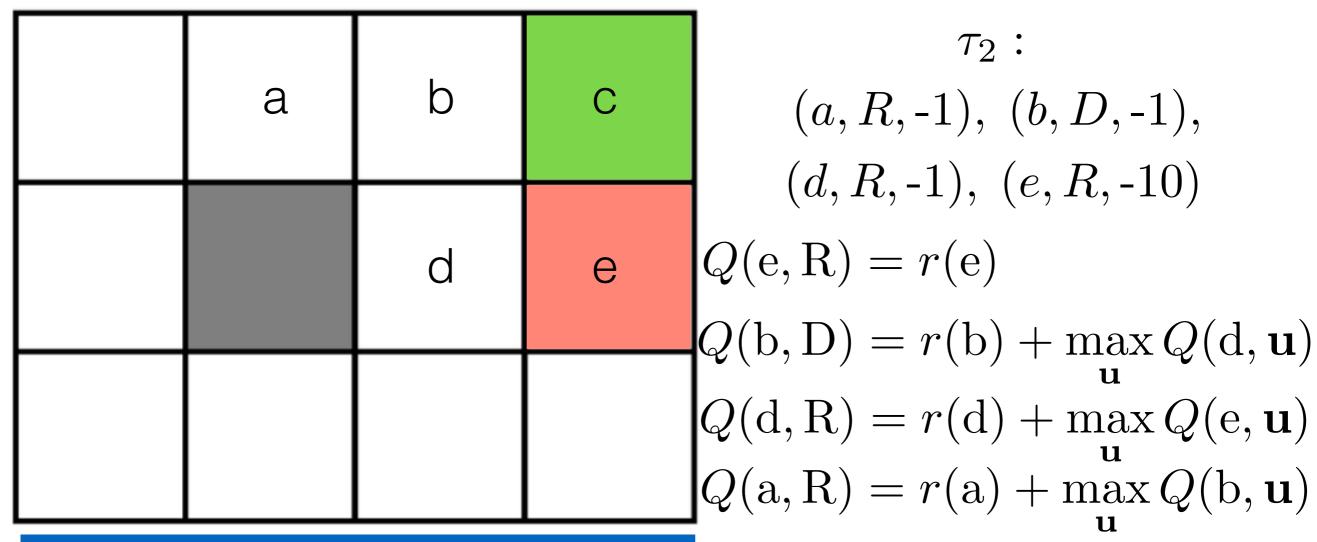
Q	R - right	D - down
a	?	?
b	?	?
C	?	?
d	?	?
е	?	?



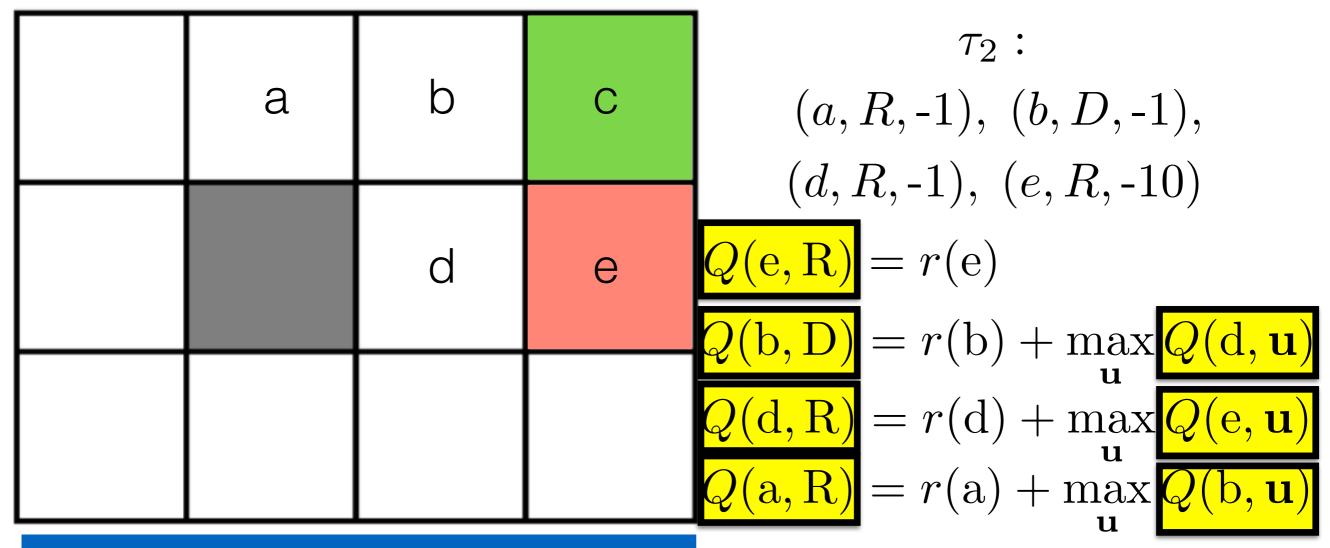
Q	R - right	D - down
a	?	?
b	?	?
C	?	?
d	?	?
е	?	?



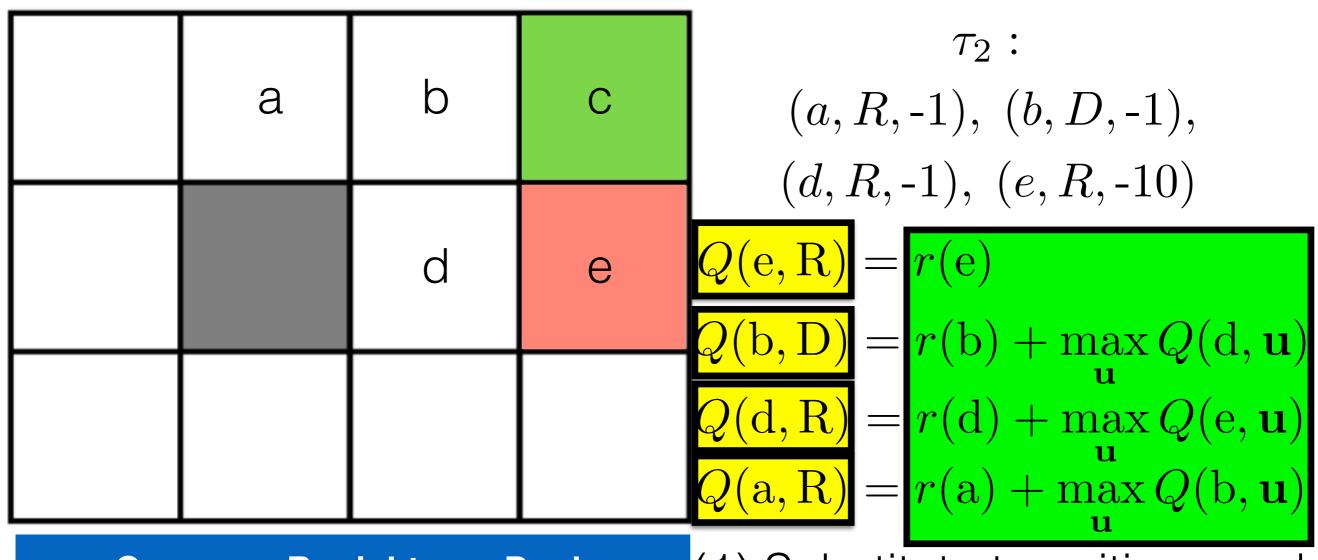
Q	R - right	D - down
a	?	?
b	?	?
C	?	?
d	?	?
е	?	?



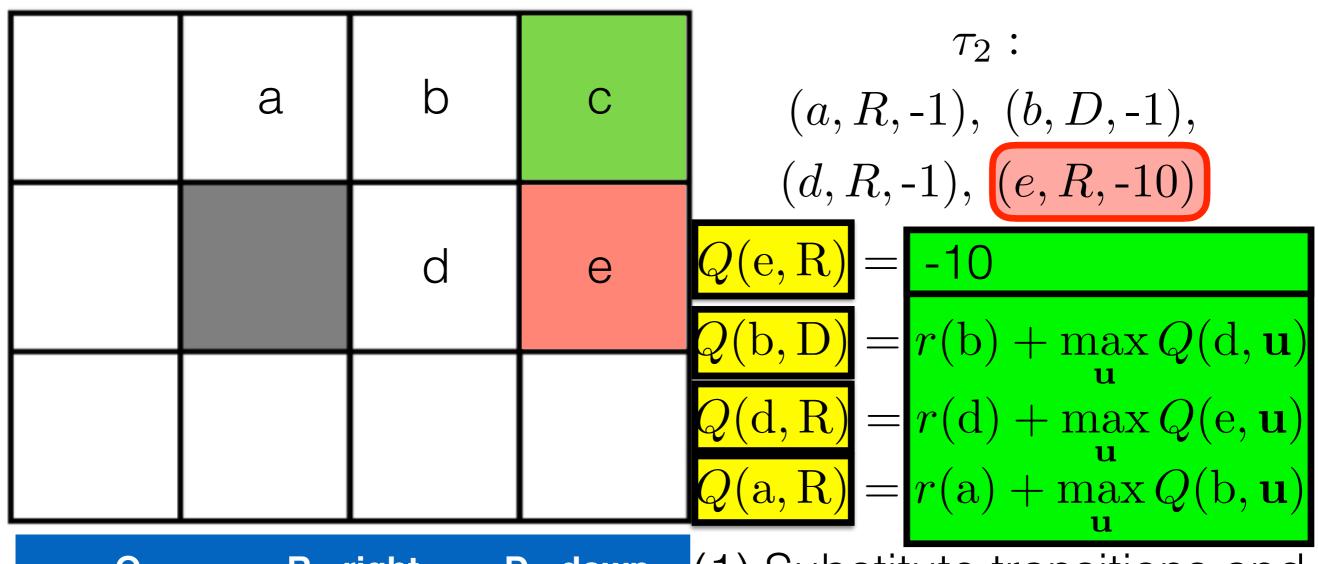
Q	R - right	D - down
a	?	?
b	?	?
C	?	?
d	?	?
е	?	?



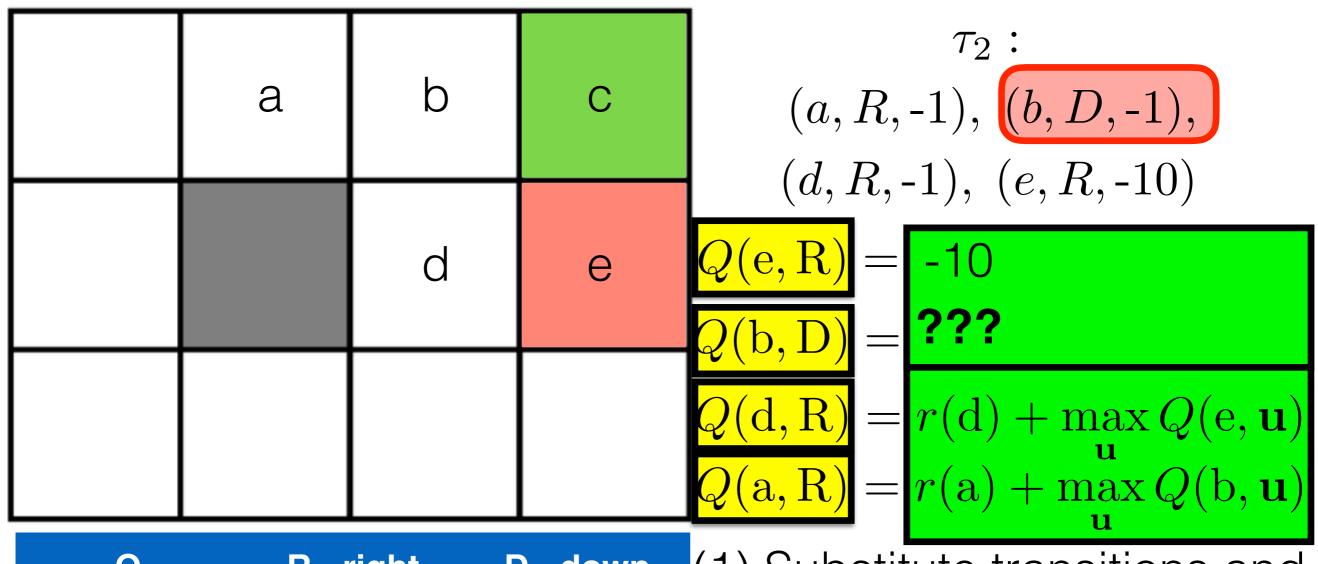
Q	R - right	D - down	
a	?	?	unknowns
b	?	?	
C	?	?	Having a trajectory, each
d	?	?	transition gives one equation
е	?	?	



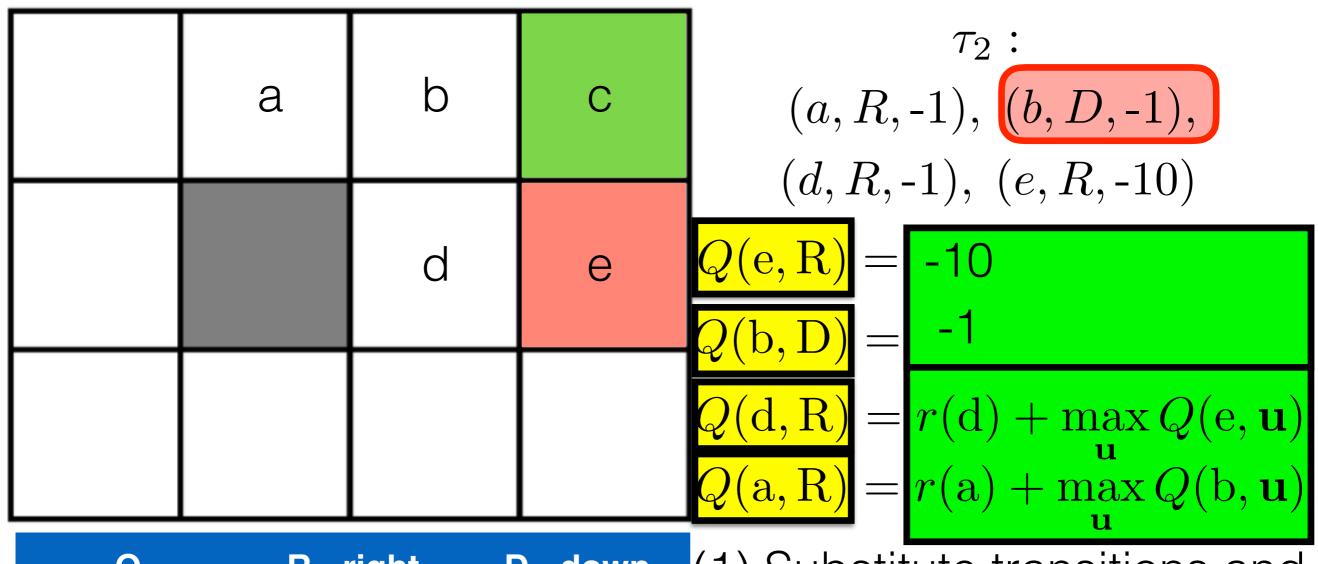
Q	R - right	D - down
a	0	0
b	0	0
C	0	0
d	0	0
е	0	0



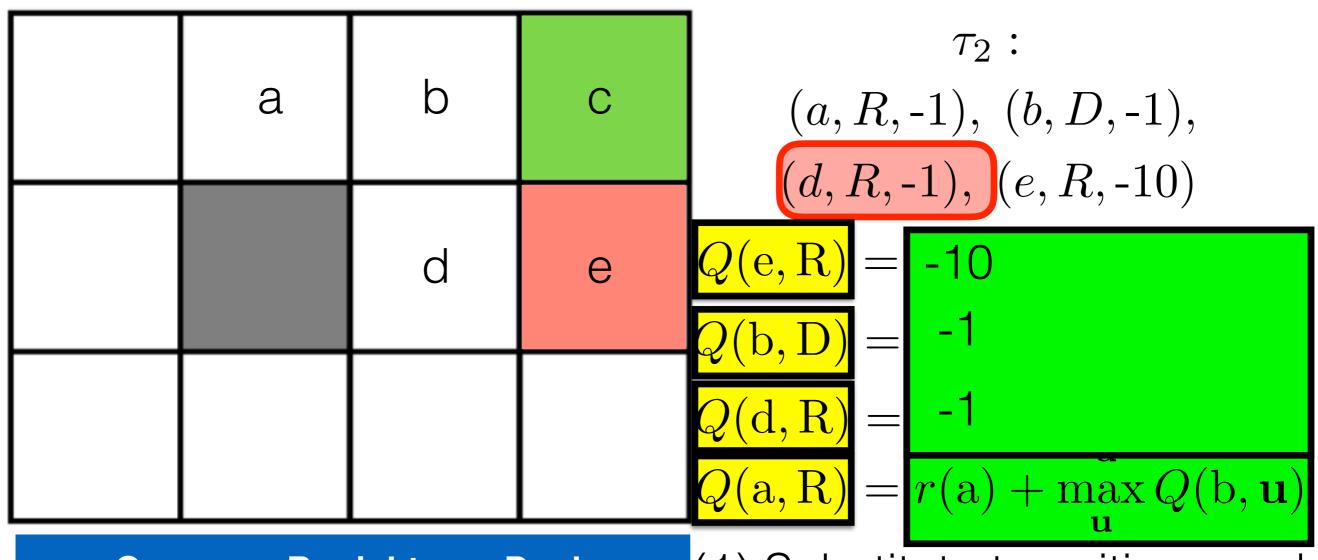
Q	R - right	D - down
a	0	0
b	0	0
C	0	0
d	0	0
е	-10	0



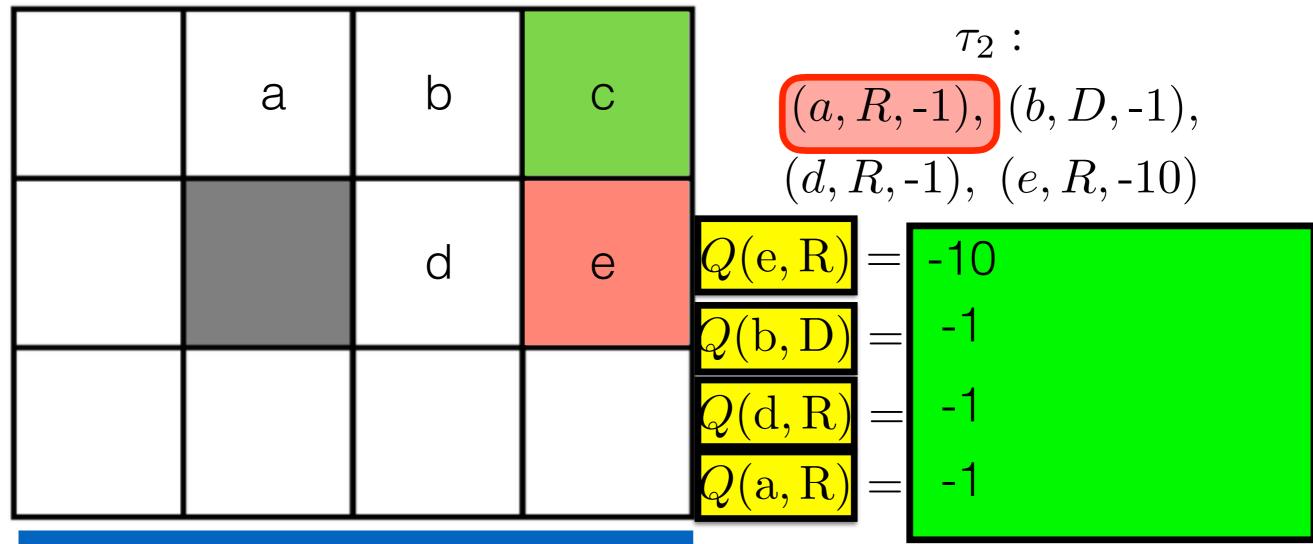
Q	R - right	D - down
a	O	0
b	0	-1
C	0	0
d	0	0
е	-10	0



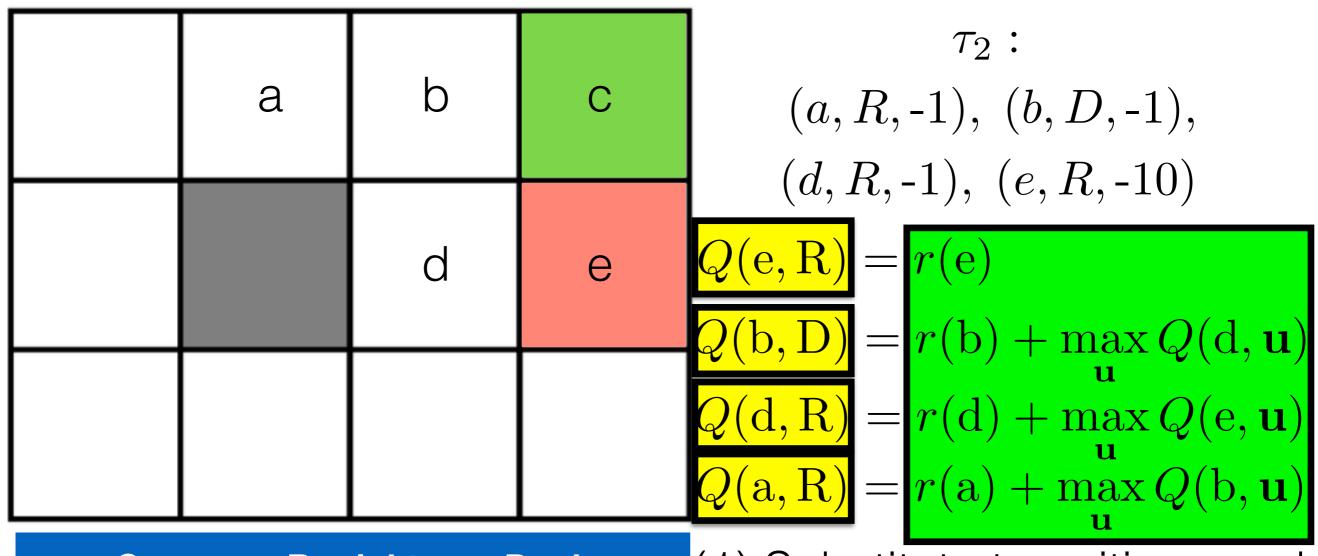
Q	R - right	D - down
а	0	0
b	0	-1
C	0	0
d	0	0
е	-10	0



Q	R - right	D - down	
a	0	0	
b	0	-1	
C	O	0	
d	-1	0	
е	-10	0	

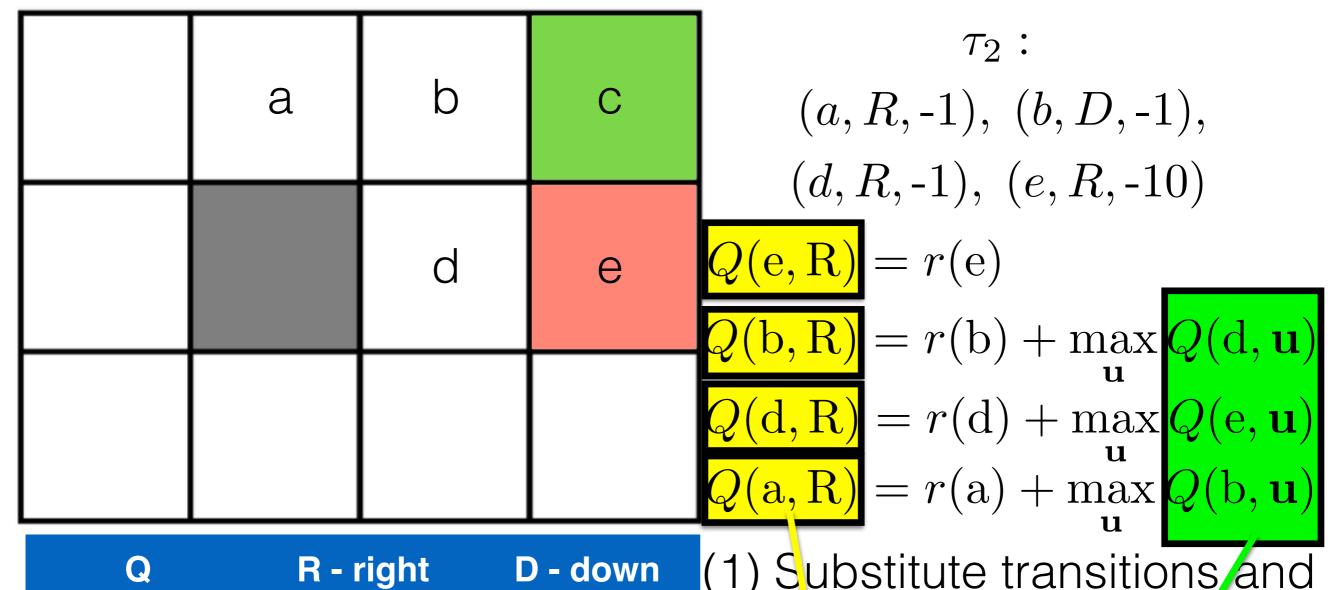


Q	R - right D - down			
a	-1	0	(
b	0	-1		
C	0	0		
d	-1	0		
е	-10	0		

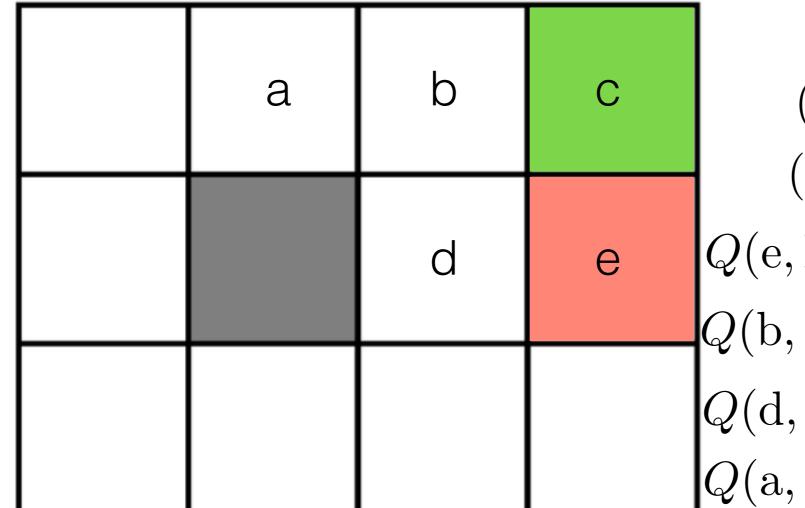


Q	R - right D - dow	
a	-1	0
b	0	-1
C	0	0
d	-1	0
е	-10	0

(1) Substitute transitions and current Q-values to the right side and solve for left side.(2) Repeat several times



Q	R - right	D - down	(1) Substitute transitions and
a	-1	0	current Q-values to the right
b	0	-1	side and solve for left/side.
C	O	0	(2) Repeat several times
d	-1	0	(search for the fixed point of the Bellman operator)
е	-10	0	$Q = \mathcal{B}(Q)$



$$au_2$$
:

$$(a, R, -1), (b, D, -1),$$

$$(d, R, -1), (e, R, -10)$$

$$Q(e, R) = r(e)$$

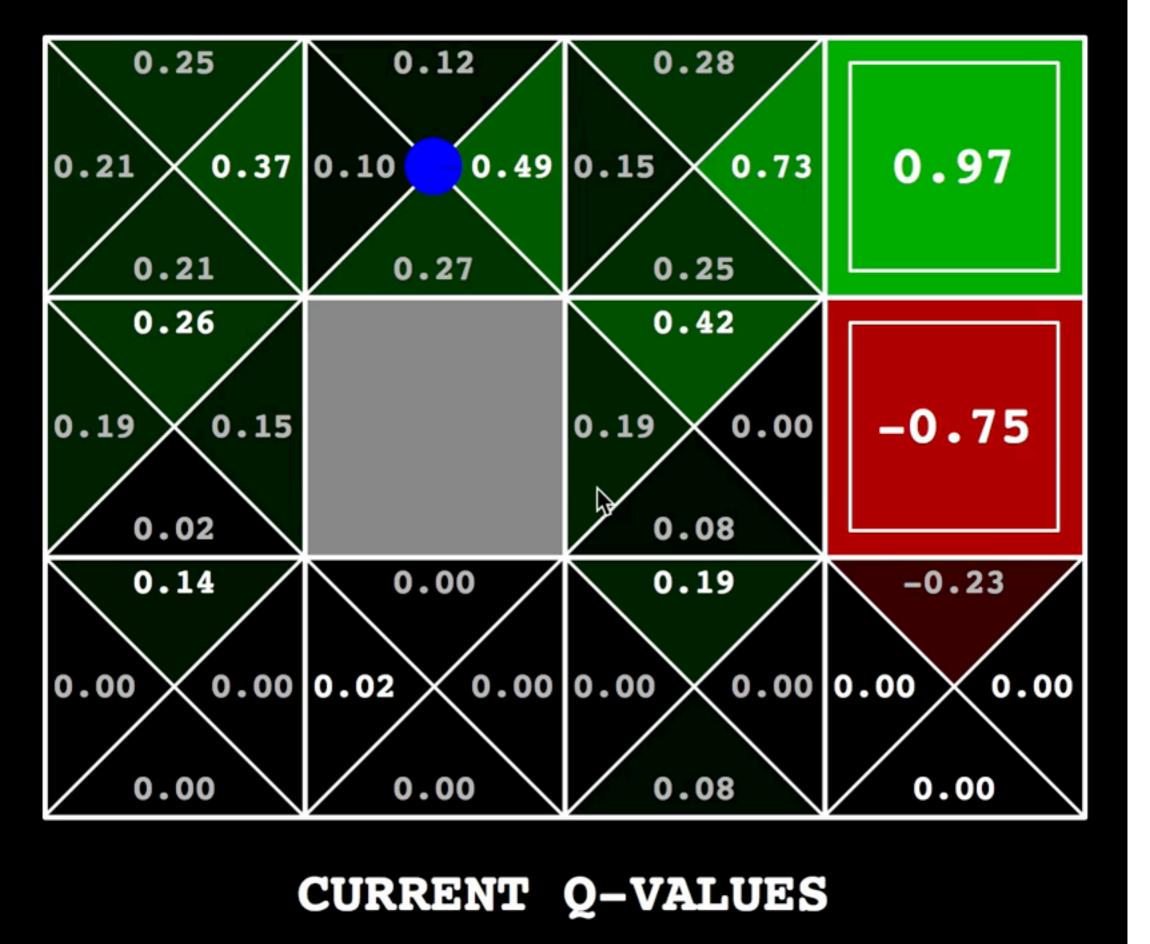
$$Q(\mathbf{b}, \mathbf{R}) = r(\mathbf{b}) + \max_{\mathbf{u}} Q(\mathbf{d}, \mathbf{u})$$

$$Q(d, R) = r(d) + \max_{\mathbf{q}} Q(e, \mathbf{u})$$

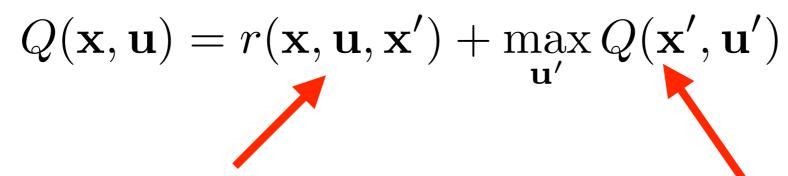
$$Q(\mathbf{a}, \mathbf{R}) = r(\mathbf{a}) + \max_{\mathbf{u}} Q(\mathbf{b}, \mathbf{u})$$

- Iterations of the Bellman operator converge to a fixed point !!!
- (1) Substitute transitions and current Q-values to the right side and solve for left side.
- (2) Repeat several times (search for the fixed point of the Bellman operator)

$$Q = \mathcal{B}(Q)$$



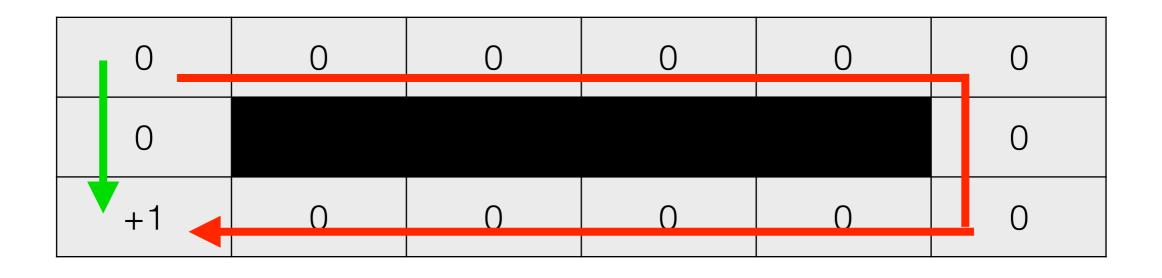
Bellman equation



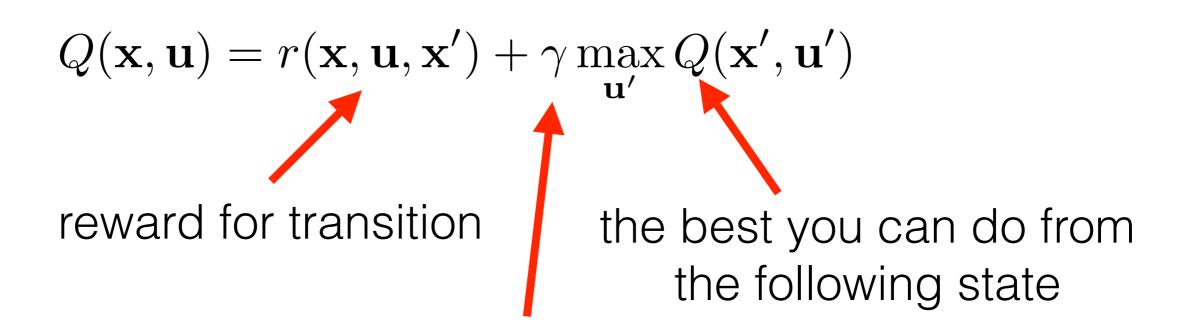
reward for transition

the best you can do from the following state

Which path is better?



Bellman equation



discount factor $\gamma \in [0; 1]$

0	0	0	0	0	0
0					0
+1	0	0	0	0	0

Q-learning

- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \dots$
- 2. Solve $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- 3. Repeat from 1

- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \dots$
- 2. Solve $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- 3. Repeat from 1
- Curse of dimensionality

- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \dots$
- 2. Solve $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- 3. Repeat from 1
- Curse of dimensionality
- Replace table $Q(\mathbf{x}, \mathbf{u})$ by function $Q_{\theta}(\mathbf{x}, \mathbf{u})$

- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \dots$
- 2. Solve $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- 3. Repeat from 1
- Curse of dimensionality
- Replace table $Q(\mathbf{x}, \mathbf{u})$ by function $Q_{\theta}(\mathbf{x}, \mathbf{u})$ Approximate Q-learning
- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \ldots$, initialize $\theta = \text{rand}$
- 2. Estimate $\mathbf{y} = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\theta} Q_{\theta}(\mathbf{x}', \mathbf{u}')$
- 3. Update parameters by learning

$$\arg\min_{\theta} \sum_{\mathbf{x}, \mathbf{u}, \mathbf{y}} \|Q_{\theta}(\mathbf{x}, \mathbf{u}) - \mathbf{y}\|$$

- 4. Repeat from 2
- 5. Repeat from 1
 Czech Technical University in Prague
 Faculty of Electrical Engineering, Department of Cybernetics

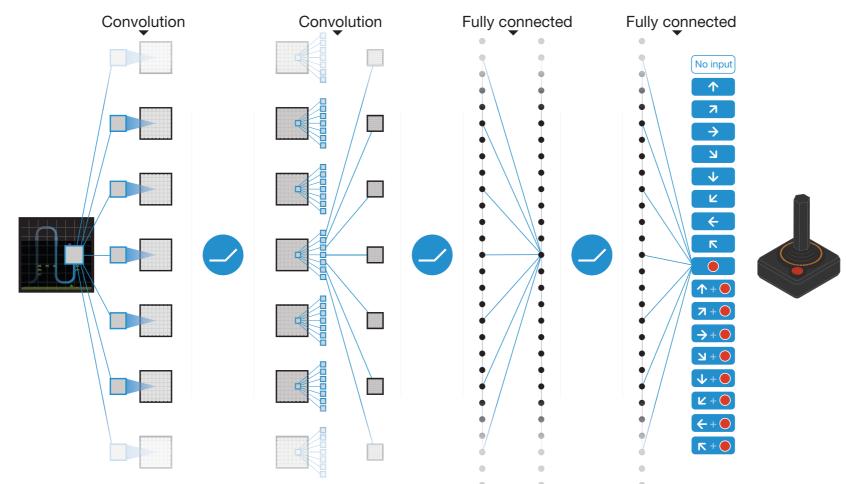
- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \dots$
- 2. Solve $Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$
- 3. Repeat from 1
- Curse of dimensionality
- Replace table $Q(\mathbf{x}, \mathbf{u})$ by function $Q_{\theta}(\mathbf{x}, \mathbf{u})$ Approximate Q-learning
- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, \ldots$, initialize $\theta = \text{rand}$
- 2. Estimate $\mathbf{y} = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\theta} Q_{\theta}(\mathbf{x}', \mathbf{u}')$
- 3. Update parameters by learning

$$\arg\min_{\theta} \sum_{\mathbf{x}, \mathbf{u}, \mathbf{y}} \|Q_{\theta}(\mathbf{x}, \mathbf{u}) - \mathbf{y}\|$$

- 4. Repeat from 2 Approximated Q-learning does not
- 5. Repeat from 1 have to converge to a fixed-point !!!

Mnih et al. Nature 2015

- 2600 atari games
- state space: pixels (e.g. VGA resolution)
- action space: discrete joystic actions (8 direction + 8 direction with button + neutral action)
- replay buffer (decorrelates samples to be "more i.i.d")
- two Q-networks (suppress oscilations)

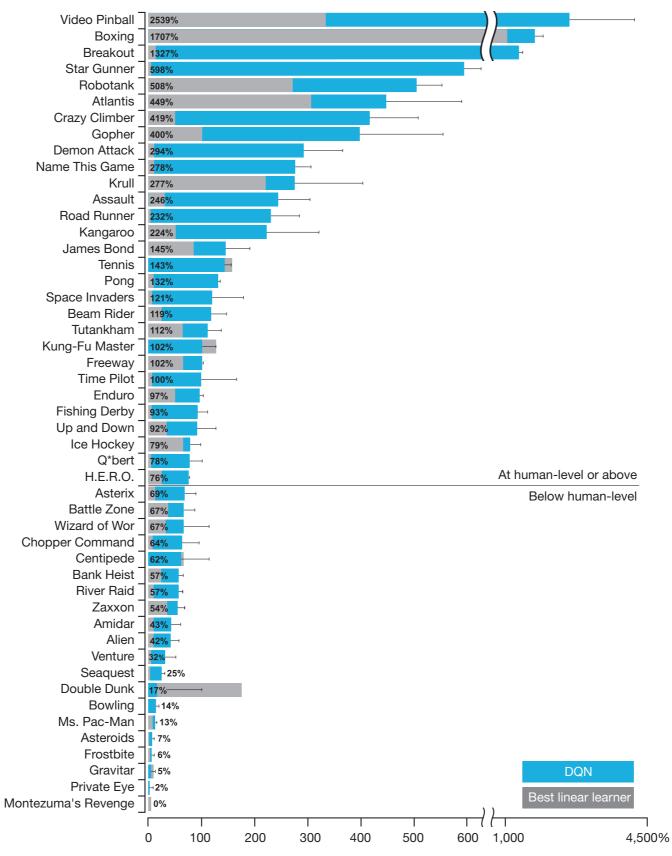


Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Mnih et al. Nature 2015

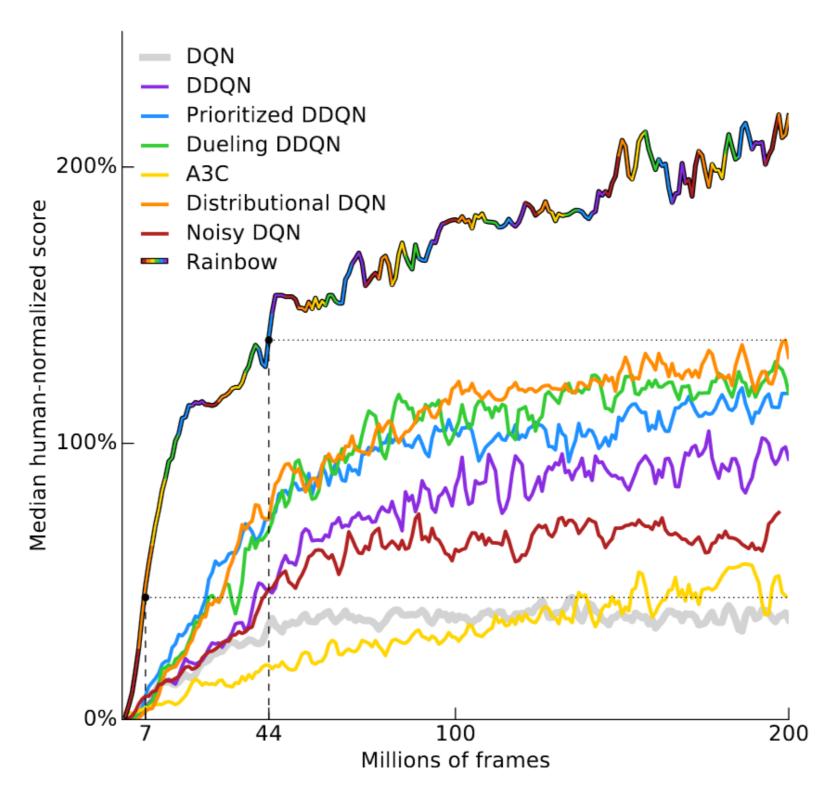
- 2600 atari games
- state space: pixels (e.g. VGA resolution)
- action space: discrete joystic actions (8 directions + 8 directions with button)
- collection of control tasks: https://gym.openai.com

Mnih et al. Nature 2015



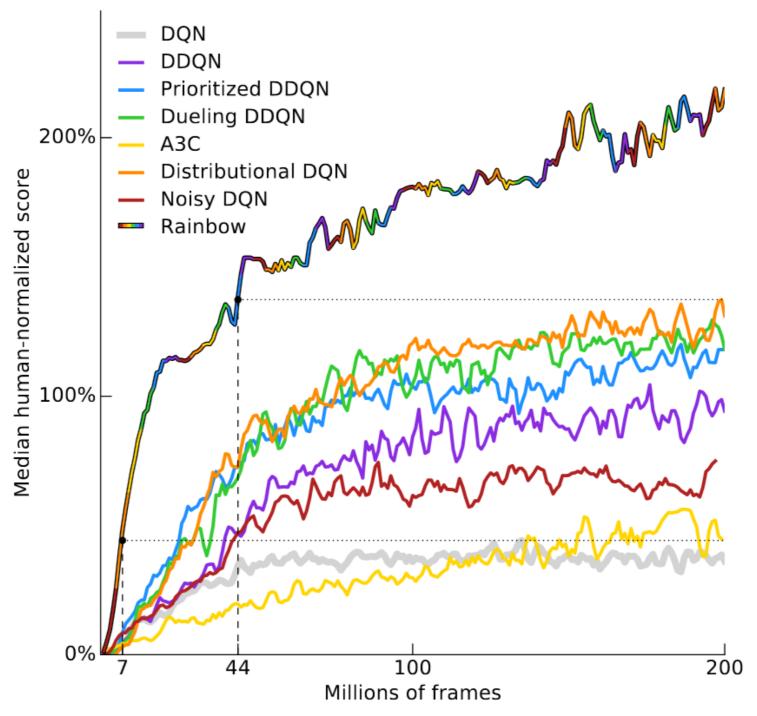
Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics

Hessel et. al Rainbow DQN, 2017

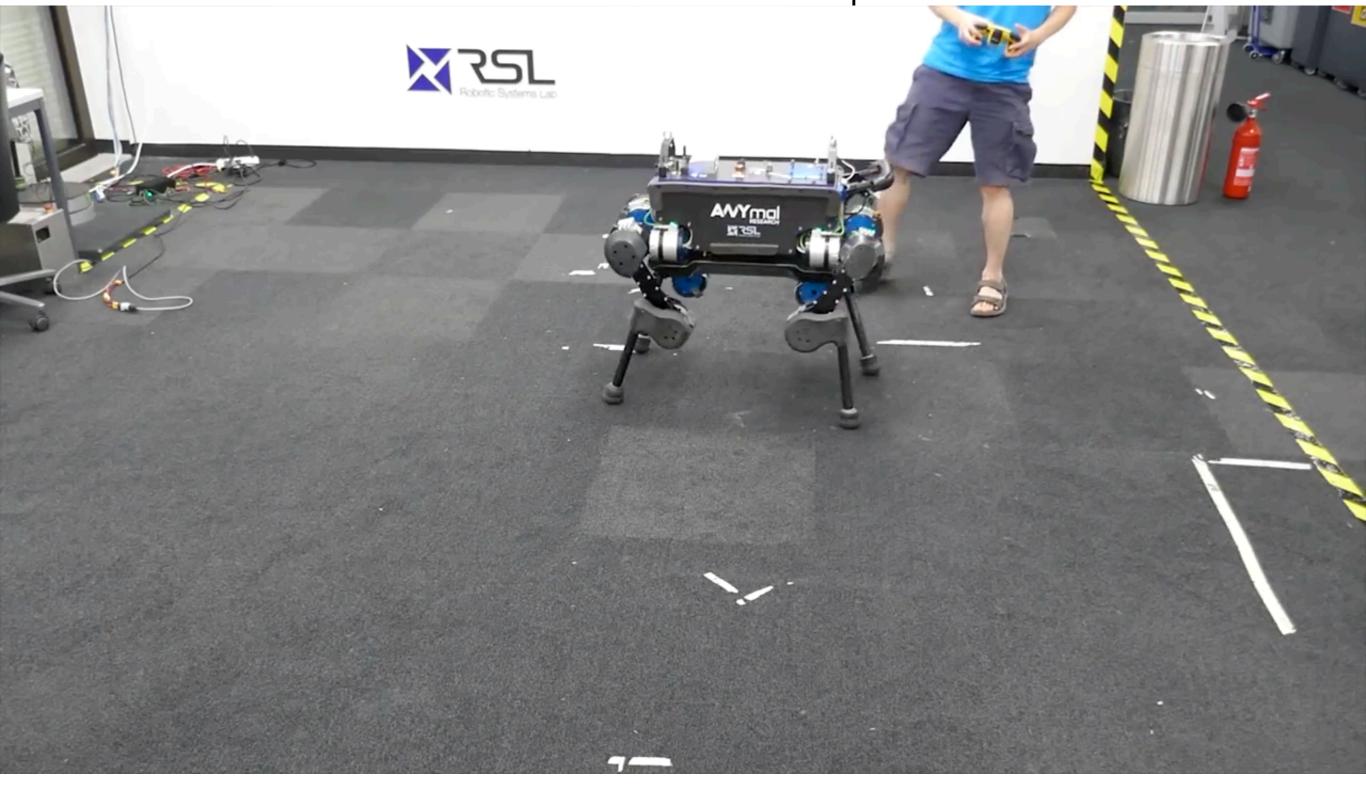


Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics

- Learning has been shown to be possible in simulation
- but can I use on a real robot??
- !!! millions (or billions) of real-world trials are needed

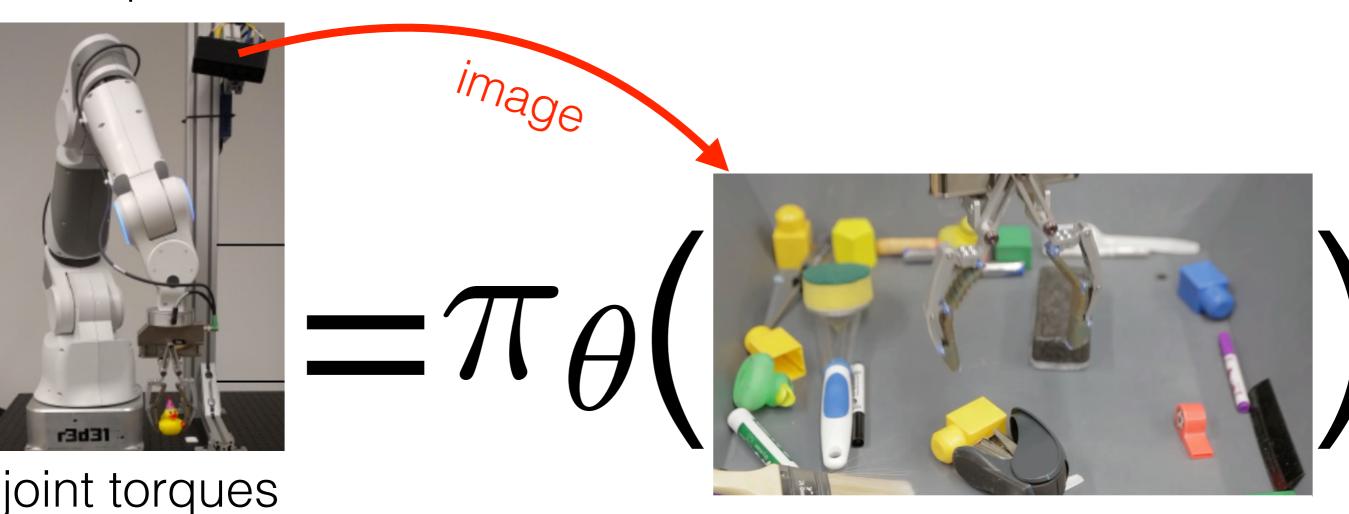


Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics If exteroceptive sensors are not used, then transfer from accurate simulation is possible



[Hwangbo, ETH Zurich, Science Robotics, 2018]

[Levine IJRR 2017] https://arxiv.org/abs/1603.02199
Another option is to avoid simulation completely !!! manipulator+ RGB camera



Continues motion control from RGB(D)

[Levine IJRR 2017] https://arxiv.org/abs/1603.02199

 Sometimes easier to provide good trajectories than good rewards.

- Sometimes easier to provide good trajectories than good rewards.
- Imitation learning setup

- Sometimes easier to provide good trajectories than good rewards.
- Imitation learning setup
 - 1. Collect expert trajectories $\tau_1^*, \tau_2^*, \tau_3^*, \dots$
 - 2. Find policy $\arg\min_{\theta} \sum_{(\mathbf{x}_i, \mathbf{a}_i) \in \tau^*} \|\pi_{\theta}(\mathbf{x}_i) \mathbf{a}_i\|_2^2$

- Sometimes easier to provide good trajectories than good rewards.
- Imitation learning setup (statistically inconsistent+ blackbox)
 - 1. Collect expert trajectories $\tau_1^*, \tau_2^*, \tau_3^*, \dots$
 - 2. Find policy $\arg\min_{\theta} \sum_{(\mathbf{x}_i, \mathbf{a}_i) \in \tau^*} \|\pi_{\theta}(\mathbf{x}_i) \mathbf{a}_i\|_2^2$
- Inverse reinforcement learning setup

- Sometimes easier to provide good trajectories than good rewards.
- Imitation learning setup (statistically inconsistent+ blackbox)
 - 1. Collect expert trajectories $\tau_1^*, \tau_2^*, \tau_3^*, \dots$
 - 2. Find policy $\arg\min_{\theta} \sum_{(\mathbf{x}_i, \mathbf{a}_i) \in \tau^*} \|\pi_{\theta}(\mathbf{x}_i) \mathbf{a}_i\|_2^2$
- Inverse reinforcement learning setup
 - 1. Collect expert trajectories $\tau_1^*, \tau_2^*, \tau_3^*, \dots$
 - 2. Find reward function $r_{\mathbf{w}}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{arg min}} \|\mathbf{w}\|_{2}^{2} \\ & \text{subject to:} \sum_{(\mathbf{x}, \mathbf{u}, \mathbf{x}') \in \tau^{*}} r_{\mathbf{w}}(\mathbf{x}, \mathbf{u}, \mathbf{x}') \leq \sum_{(\mathbf{x}, \mathbf{u}, \mathbf{x}') \in \{\mathcal{T} \setminus \tau^{*}\}} r_{\mathbf{w}}(\mathbf{x}, \mathbf{u}, \mathbf{x}') \end{aligned}$$

- Sometimes easier to provide good trajectories than good rewards.
- Imitation learning setup (statistically inconsistent+ blackbox)
 - 1. Collect expert trajectories $\tau_1^*, \tau_2^*, \tau_3^*, \dots$
 - 2. Find policy $\arg\min_{\theta} \sum_{(\mathbf{x}_i, \mathbf{a}_i) \in \tau^*} \|\pi_{\theta}(\mathbf{x}_i) \mathbf{a}_i\|_2^2$
- Inverse reinforcement learning setup
 - 1. Collect expert trajectories $\tau_1^*, \tau_2^*, \tau_3^*, \dots$
 - 2. Find reward function $r_{\mathbf{w}}$

$$\underset{\mathbf{x}, \mathbf{u}, \mathbf{x}') \in \tau^*}{\min} \|\mathbf{w}\|_2^2$$
subject to:
$$\sum_{(\mathbf{x}, \mathbf{u}, \mathbf{x}') \in \tau^*} r_{\mathbf{w}}(\mathbf{x}, \mathbf{u}, \mathbf{x}') \leq \sum_{(\mathbf{x}, \mathbf{u}, \mathbf{x}') \in \{\mathcal{T} \setminus \tau^*\}} r_{\mathbf{w}}(\mathbf{x}, \mathbf{u}, \mathbf{x}')$$

3. Solve underlying RL task

Abbeel et al. IJRR 2010

- inverse reinforcement learning
- state space: angular and euclidean position, velocity, acceleration
- action space: motor torques
- learning reward function from expert pilot

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

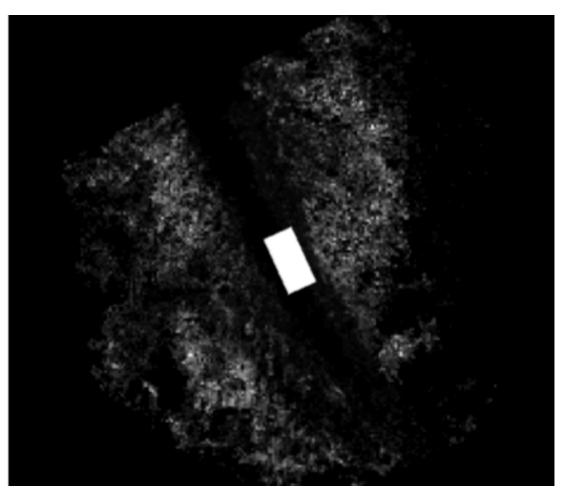
Abbeel et al. IJRR 2010

Silver et al. IJRR 2010

http://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdf

Silver et al. IJRR 2010

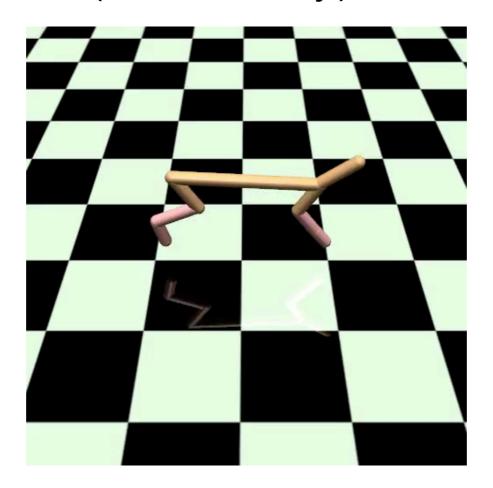
input image (state)



learned reward function (traversability map)

http://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdf

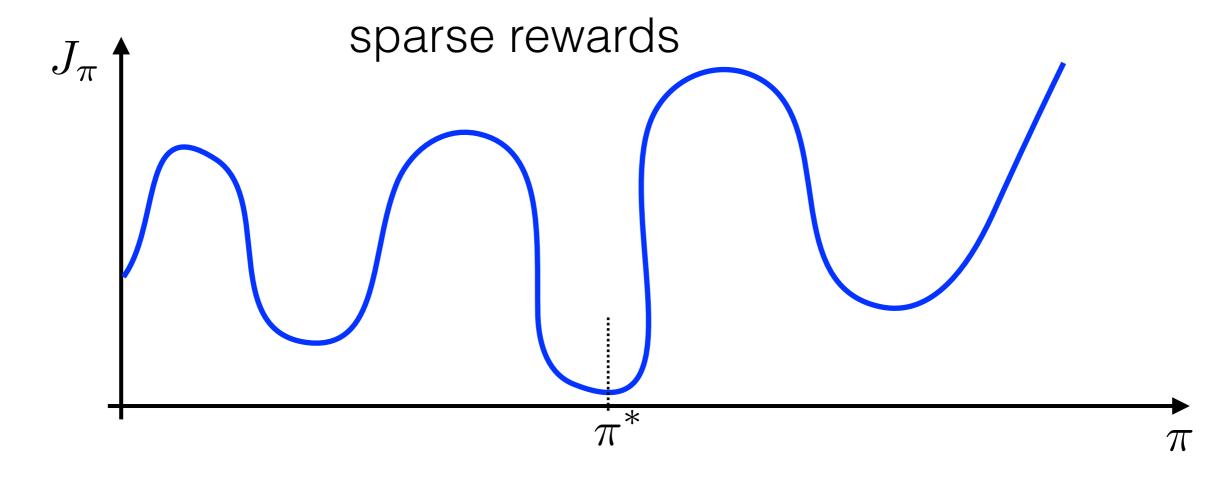
- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn
- Half cheetah:
 - sparse rewards (for reaching the goal position fast)
 - dense rewards (for velocity)



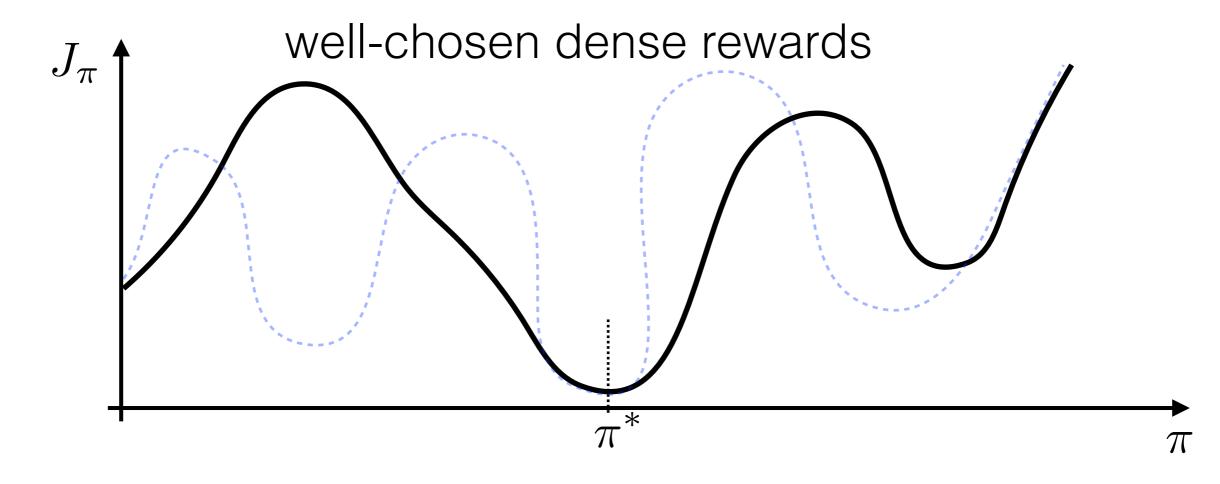
- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn

- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn

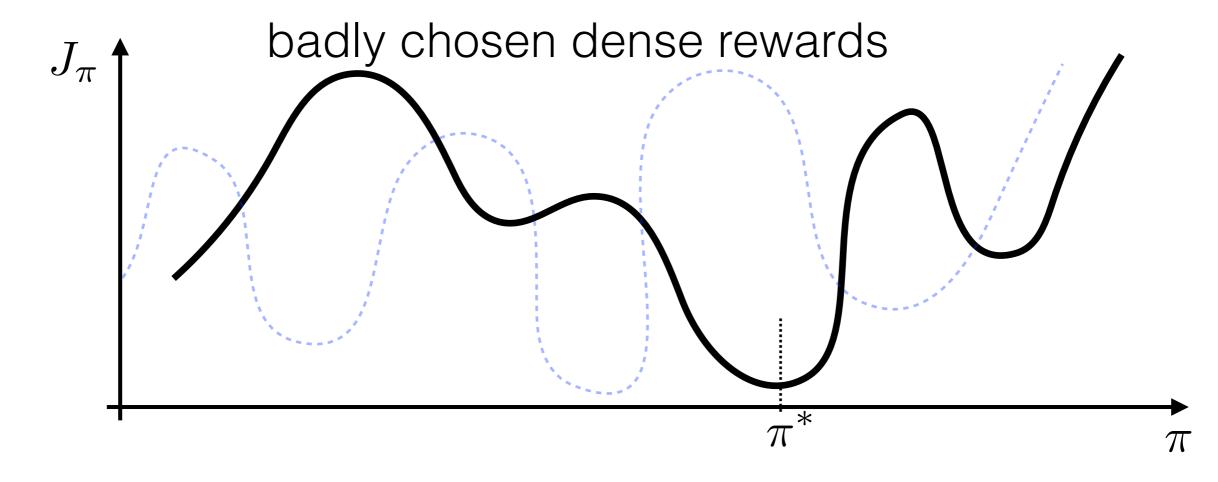
- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn



- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn



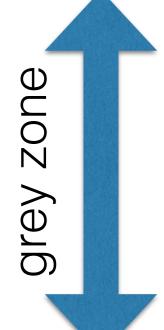
- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn



- Sparse rewards are easier to design correctly
- Dense rewards are easier to learn
- Boat racing (bad dense rewards):
 - sparse rewards (winning the race)
 - dense rewards (collecting powerups, checkpoints ...)

Taxonomy of policy search methods

• Direct policy search (primal task) e.g. gradient ascent for $\pi^* = \arg\max_{\pi} J_{\pi}$



Episodic REPS [Peters, 2010]

PILCO [Deisenroth, ICML 2011]

Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih, Nature 2015])

Value-based methods (dual function [Kober, 2013])

e.g. search for
$$Q(\mathbf{x}, \mathbf{a}) = r(\mathbf{x}, \mathbf{a}, \mathbf{x}') + \gamma \max_{\mathbf{a}'} Q(\mathbf{x}', \mathbf{a}')$$

$$\pi^* = \arg\max Q(\mathbf{x}, \mathbf{a})$$

1. Randomly initialize policy π_{θ}

- 1. Randomly initialize policy π_{θ}
- 2. Collect trajectories τ with policy π_{θ}

- 1. Randomly initialize policy π_{θ}
- 2. Collect trajectories τ with policy π_{θ}
- 3. Denote $p(\tau|\pi_{\theta})$ probability of τ occurs when following π_{θ}

- 1. Randomly initialize policy π_{θ}
- 2. Collect trajectories τ with policy π_{θ}
- 3. Denote $p(\tau|\pi_{\theta})$ probability of τ occurs when following π_{θ}
- 4. Define criterion

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau \mid \pi_{\theta})} \{ r(\tau) \} = \int_{\tau \in \mathcal{T}} p(\tau \mid \pi_{\theta}) r(\tau) d\tau \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_{i})$$

- 1. Randomly initialize policy π_{θ}
- 2. Collect trajectories τ with policy π_{θ}
- 3. Denote $p(\tau|\pi_{\theta})$ probability of τ occurs when following π_{θ}
- 4. Define criterion

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau \mid \pi_{\theta})} \{ r(\tau) \} = \int_{\tau \in \mathcal{T}} p(\tau \mid \pi_{\theta}) r(\tau) d\tau \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_{i})$$

5. Optimize criterion (e.g. gradient descent)

$$\theta^* = \arg\min_{\theta} J(\theta)$$

6. Repeat from 2

Primal task
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau \mid \pi_{\theta})} \{ r(\tau) \} = \int_{\tau \in \mathcal{T}} p(\tau \mid \pi_{\theta}) r(\tau) \, \mathrm{d}\tau \, \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_{i})$$

$$\theta^{*} = \arg\min_{\theta} J(\theta)$$

- What do I need for gradient descent optimization? $\frac{\partial J(\theta)}{\partial \theta}$
- Perturb parameters by $\Delta\theta_i$ and estimate $J(\theta+\Delta\theta_i)$

$$J(\theta + \Delta\theta_i) = J(\theta) + \frac{\partial J(\theta)}{\partial \theta}^{\top} \Delta\theta_i$$
$$\Delta\theta_i^{\top} \frac{\partial J(\theta)}{\partial \theta} = J(\theta) - J(\theta + \Delta\theta_i)$$

Primal task
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau \mid \pi_{\theta})} \{ r(\tau) \} = \int_{\tau \in \mathcal{T}} p(\tau \mid \pi_{\theta}) r(\tau) \, \mathrm{d}\tau \, \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_{i})$$
$$\theta^{*} = \arg\min_{\theta} J(\theta)$$

- What do I need for gradient descent optimization? $\frac{\partial J(\theta)}{\partial \theta}$
- Perturb parameters by $\Delta\theta_i$ and estimate $J(\theta+\Delta\theta_i)$

$$J(\theta + \Delta\theta_i) = J(\theta) + \frac{\partial J(\theta)}{\partial \theta}^{\top} \Delta\theta_i$$

$$\Delta\theta_i^{\top} \frac{\partial J(\theta)}{\partial \theta} = J(\theta) - J(\theta + \Delta\theta_i)$$

$$\begin{bmatrix} \Delta\theta_1^{\top} \\ \vdots \\ \Delta\theta_n^{\top} \end{bmatrix} \frac{\partial J(\theta)}{\partial \theta} = \begin{bmatrix} J(\theta) - J(\theta + \Delta\theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta\theta_n) \end{bmatrix}$$
matrix A vector b

Czech Technical University in Prague

$$\underbrace{\begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}}_{\text{matrix A}} \frac{\partial J(\theta)}{\partial \theta} = \underbrace{\begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}}_{\text{vector } \mathbf{b}}$$

$$\frac{\partial J(\theta)}{\partial \theta} = \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}^+ \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}$$

- 1. Randomly initialize θ
- 2. Collect trajectories randomly perturbed policy $\pi_{\theta+\Delta\theta_i}$

3. Compute gradient
$$\frac{\partial J(\theta)}{\partial \theta}^{\top}$$
 using pseudo-inverse
$$\frac{\partial J(\theta)}{\partial \theta} = \begin{bmatrix} \Delta \theta_1^{\top} \\ \vdots \\ \Delta \theta_n^{\top} \end{bmatrix}^{+} \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}$$

4. Update parameters

$$\theta \leftarrow \theta + \alpha \frac{\partial J(\theta)}{\partial \theta}$$

REINFORCE: better gradient approximation

stochastic policy

$$\pi_{\theta}(\mathbf{u}|\mathbf{x}): X \times U \to [0;1]$$

gradient of the criterion

$$\nabla_{\theta} J(\theta) = \int_{T} \nabla_{\theta} p(\tau | \theta) r(\tau) d\tau$$

likelihood ratio trick express gradient of the prob distr.

$$\nabla_{\theta} p(\tau | \theta) = p(\tau | \theta) \nabla_{\theta} \log p(\tau | \theta)$$

after substitution

$$\nabla_{\theta} J(\theta) = \int_{T} p(\tau|\theta) \nabla_{\theta} \log p(\tau|\theta) r(\tau) d\tau =$$

$$= E[\nabla_{\theta} \log p(\tau|\theta) r(\tau)] \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p(\tau_i|\theta) r(\tau_i)$$

where prob distribution simplified using MDP assumption

$$p(\tau|\theta) = p(\mathbf{x_0}) \prod_k p(\mathbf{x}_{k+1}|\mathbf{x}_k, \mathbf{u}_k) \pi_{\theta}(\mathbf{u}_k|\mathbf{x}_k)$$

$$\nabla_{\theta} \log p(\tau|\theta) = \nabla_{\theta} [\log p(\mathbf{x}_0) + \sum_{k} \log p(\mathbf{x}_{k+1}|\mathbf{x}_k, \mathbf{u}_k) + \sum_{k} \log \pi_{\theta}(\mathbf{u}_k|\mathbf{x}_k)]$$
$$= \sum_{k} \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_k|\mathbf{x}_k)$$

REINFORCE algorithm:

collect N trajectories

$$\tau_1 = [(\mathbf{u}_{1,1}, \mathbf{x}_{1,1}) \dots \mathbf{u}_{M,1}, \mathbf{x}_{M,1})]$$

 $au_N = [(\mathbf{u}_{1,N}, \mathbf{x}_{1,N}) \dots \mathbf{u}_{M,N}, \mathbf{x}_{M,N})]$

compute gradient

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{M} \nabla_{\theta} \log \pi_{\theta}(\mathbf{u}_{k,i} | \mathbf{x}_{k,i})$$

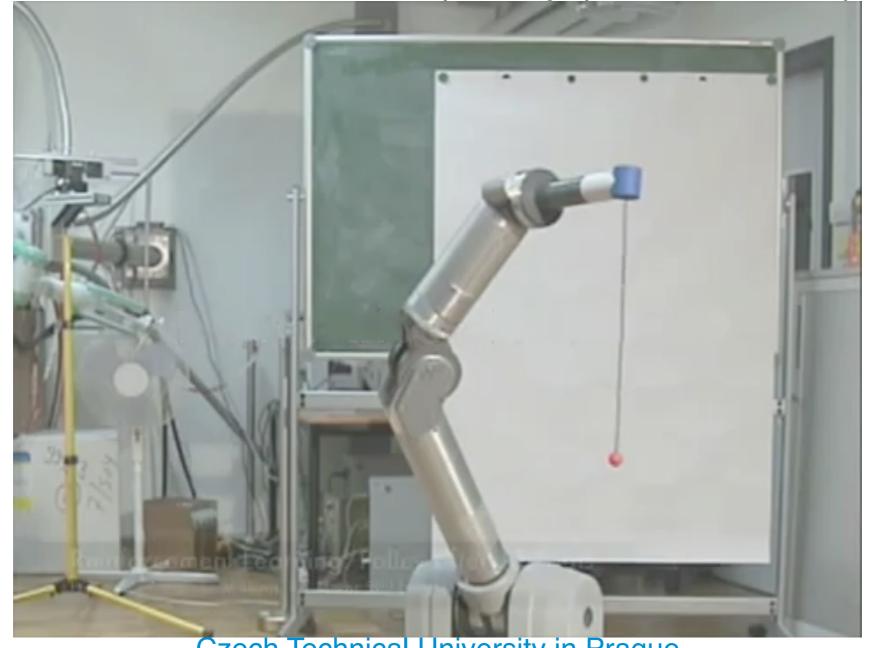
update parameters

$$\theta \leftarrow \theta + \alpha \frac{\partial J(\theta)}{\partial \theta}$$

- No motion model required
- Converges to local optima (good initialization needed)
- High-dimensional parameters are requires many samples
- Imitation learning from expert trajectories
- There are better gradient approximations [Deisenroth 2013] (e.g. REINFORCE, GPREPS, ...)
 [Deisenroth 2013] M. Deisenroth, G. Neumann and J. Peters,

Peters et al. NOW 2013

- imitation learning from human demonstration
- state space: joint positions, velocities, acceler.
- action space: motor torques
- gradient minimization in policy parameter space



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Summary RL

- No motion model required
- Converges to local optima (good initialization needed)
- High-dimensional parameters => requires many samples
- Imitation or Inverse RL learning from expert trajectories
- There are better gradient approximations [Deisenroth 2013]
 (e.g. REINFORCE, GPREPS, ...)
 [Deisenroth 2013] M. Deisenroth, G. Neumann and J. Peters,
 A Survey on Policy Search for Robotics, NOW, 2013
- If motion model is available then trajectory optimization
 [Tassa 2013] Tassa, Synthesis and Stabilization of Complex
 Behaviors through Online Trajectory Optimization, IROS2013

Taxonomy of policy search methods

Direct policy search (primal task)

e.g. gradient ascent for $\pi^* = \arg\max_{\pi} J_{\pi}$

Episodic REPS [Peters, 2010]

PILCO [Deisenroth, ICML 2011]

Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih, Nature 2015])

Value-based methods (dual function [Kober, 2013])

e.g. search for
$$Q(\mathbf{x}, \mathbf{a}) = r(\mathbf{x}, \mathbf{a}, \mathbf{x}') + \gamma \max_{\mathbf{a}'} Q(\mathbf{x}', \mathbf{a}')$$

$$\pi^* = \arg\max_a Q(\mathbf{x}, \mathbf{a})$$

Actor-critic methods

- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, ...$ initialize $\theta = \text{rand}$
- 2. Estimate $\mathbf{y} = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{y}} Q_{\theta}(\mathbf{x}', \mathbf{u}')$
- 3. Update parameters by learning

$$\arg\min_{\theta} \sum_{\mathbf{x}, \mathbf{u}, \mathbf{y}} \|Q_{\theta}(\mathbf{x}, \mathbf{u}) - \mathbf{y}\|$$

Approximated Q-learning

Actor-critic methods

- 1. Collect trajectories $\tau_1, \tau_2, \tau_3, ...$ initialize $\theta = \text{rand}$
- 2. Estimate $\mathbf{y} = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q_{\theta}(\mathbf{x}', \mathbf{u}')$ 3. Update parameters by learning

$$\arg\min_{\theta} \sum_{\mathbf{x}, \mathbf{u}, \mathbf{y}} \|Q_{\theta}(\mathbf{x}, \mathbf{u}) - \mathbf{y}\|$$

4. Learn policy π_{ω} which do actions maximizing the state-action value function on the collected trajectories

$$\arg\max_{\omega} \sum_{\mathbf{x} \in \tau} Q_{\theta}(\mathbf{x}, \pi_{\omega}(\mathbf{x}))$$

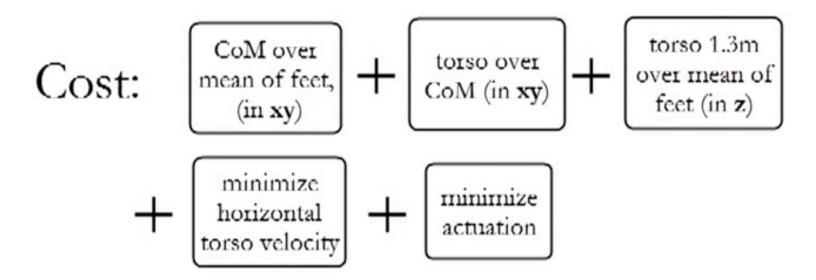
Direct policy optimization on Q

2·1 knees 2.1 ankles

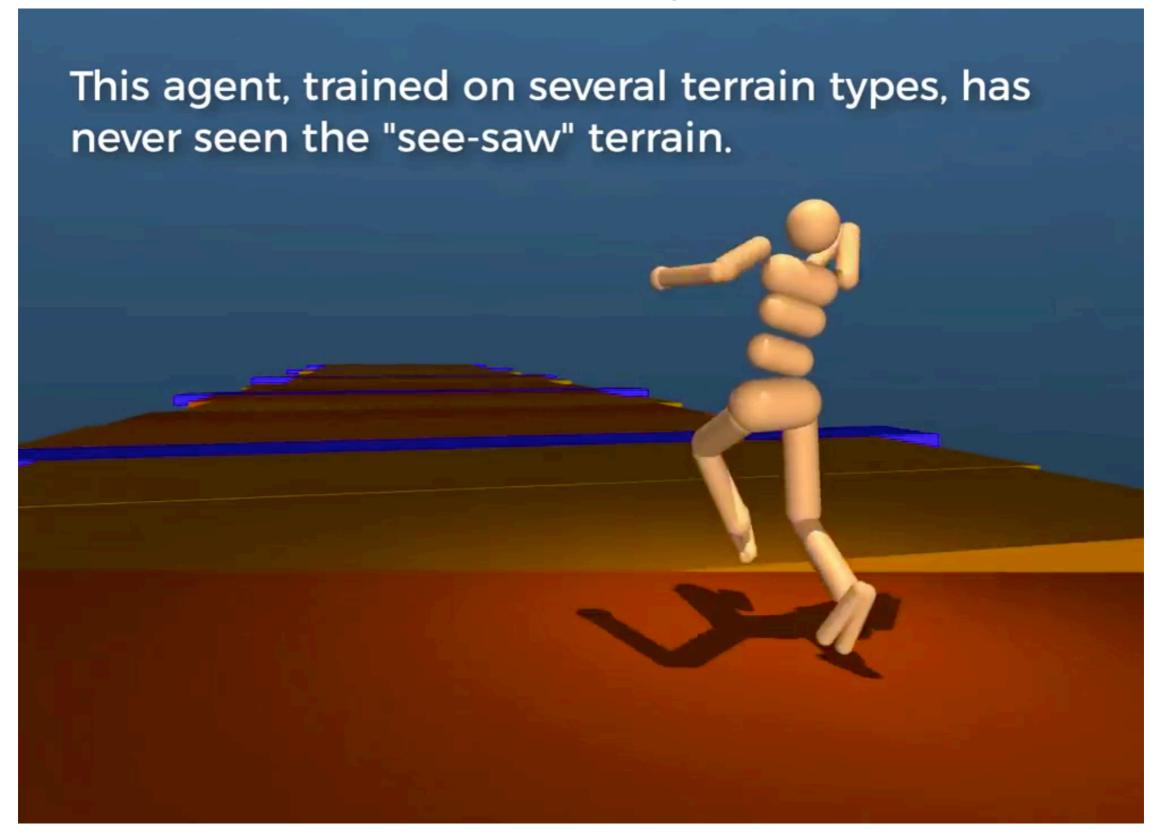
3D humanoid

6 spatial Degrees-of-freedom: 22 2 abdomen 2.2 shoulders 2.1 elbows 2.2 hips

Control dimensions: 16 all joints



[Heess 2017] https://arxiv.org/abs/1707.02286



Levine et al JMLR 2016

- guides policy gradient method by optimal trajectories
- state space: RGB camera images
- action space: motor torques

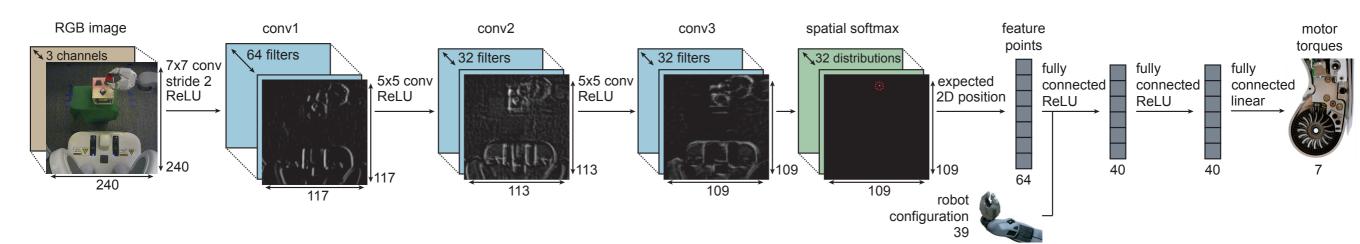


(a) hanger

(b) cube

(c) hammer

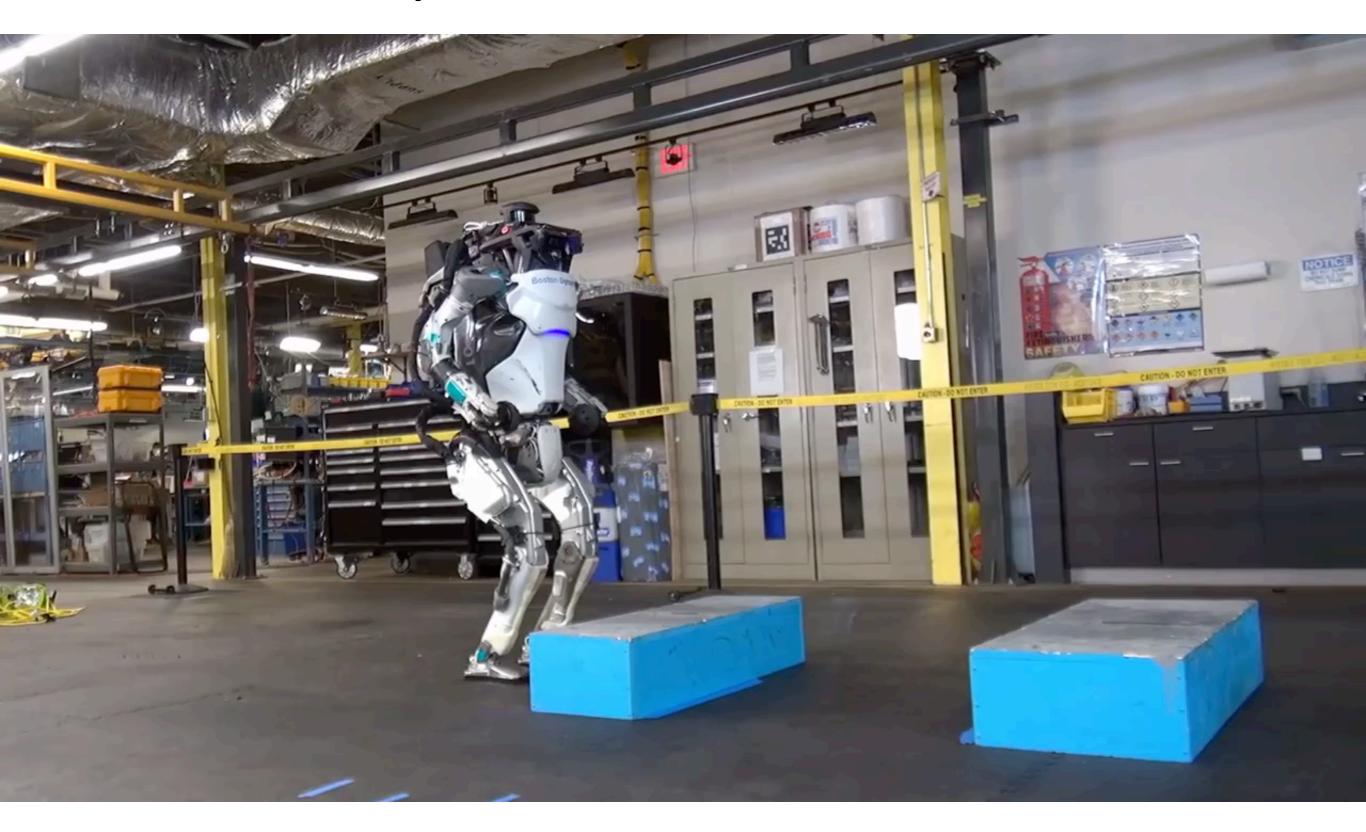
(d) bottle



Levine et al JMLR 2016

Learned Visuomotor Policy: Bottle Task

Boston dynamics - Atlas - NO RL AT ALL



Boston dynamics - Big dog - NO RL AT ALL

Known RL successes

- AlphaGo/Alpha Zero https://en.wikipedia.org/wiki/AlphaZero
- SearchTrees has no chance in huge state-action spaces
 - AlphaGo:
 - beat professional Go player
 - 9 dan professional ranking
 - Alpha Zero: Top Chess Engine Championship 2017
 - 9h of self-play, no openingbooks nor endgames tables
 - 1 minute per move, 1GB RAM
 - 28 wins, 72 withdraws
- DOTA 2 openAI+ bot https://blog.openai.com/dota-2/
- AutoML https://cloud.google.com/automl/
 - [Zoph 2016] REINFORCE learns RCNN policy which generates deep CNN architectures.

Summary

- If accurate differentiable motion model and reward functions are known, than optimal control in MDP is straightforward optimization problem (efficiently tackled by DP or DDP)
- State-action value function is dual variable wrt policy. It serves as auxiliary function in the policy optimization:
 - actor-critic methods
 - heuristic in planning methods (LQR trees)
- Holy grail is to efficiently combine motion model, state-action value function with efficient planning, learning and exploration.
- RL will be much more useful for motion control, when accurate domain transfer methods (from simulators to reality) become available.

