Advanced Robotics

Lecture 12

Inverse kinematic task

Two consecutive bodies are related by a transform

Serial manipulator with 6 motions

Given the position of the flange, i.e. the matrix M and parameters of the mechanism, e.g. α_{i}, a_{i}, d_{i} compute the control variables $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}$

function of

$$
\begin{aligned}
& \alpha_{i}, a_{i}, d_{i} \\
& \text { and } \\
& \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}
\end{aligned}
$$

Change of variables - from trigonometry to algebra

$$
\begin{aligned}
& M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \quad M_{i}^{i n t}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \cos \theta_{i} \longrightarrow c_{i} \\
& \sin \theta_{i} \longrightarrow s_{i} \\
& \cos \alpha_{i} \longrightarrow p_{i} \\
& \sin \alpha_{i} \longrightarrow q_{i} \\
& M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
c_{i} & -s_{i} & 0 & 0 \\
s_{i} & c_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Algebraic identity

1 unknown $\theta_{i} \longrightarrow 2$ unknowns $c_{i}, s_{i}+1$ algebraic identity

$$
c_{i}^{2}+s_{i}^{2}=1
$$

Change of variables - from trigonometry to algebra

$$
\begin{aligned}
& M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \quad M_{i}^{i n t}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \cos \theta_{i} \longrightarrow c_{i} \\
& \sin \theta_{i} \longrightarrow s_{i} \\
& \cos \alpha_{i} \longrightarrow p_{i} \\
& \sin \alpha_{i} \longrightarrow q_{i} \\
& M_{i n t}^{i-1}=\left[\begin{array}{rrrr}
c_{i} & -s_{i} & 0 & 0 \\
s_{i} & c_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& c_{i}^{2}+s_{i}^{2}=1
\end{aligned}
$$

Given the position of the arm, i.e. the matrix M and parameters of the mechanisn, e.g. α_{i}, a_{i}, d_{i} compute the control variables
$s_{1}, c_{1} ; s_{2}, c_{2} ; s_{3}, c_{3} ; s_{4}, c_{4} ; s_{5}, c_{5} ; s_{6}, c_{6}$
subject to the constraint
$M=M_{1}^{0}\left(c_{1}, s_{1}\right) M_{2}^{1}\left(c_{2}, s_{2}\right) M_{3}^{2}\left(c_{3}, s_{3}\right) M_{4}^{3}\left(c_{4}, s_{4}\right) M_{5}^{4}\left(c_{5}, s_{5}\right) M_{6}^{5}\left(c_{6}, s_{6}\right)$
and

$$
\begin{array}{ll}
c_{1}^{2}+s_{1}^{2}=1 & c_{4}^{2}+s_{4}^{2}=1 \\
c_{2}^{2}+s_{2}^{2}=1 & c_{5}^{2}+s_{5}^{2}=1 \\
c_{3}^{2}+s_{3}^{2}=1 & c_{6}^{2}+s_{6}^{2}=1
\end{array}
$$

Counting unknowns and equations
12 unknowns
$s_{1}, c_{1} ; s_{2}, c_{2} ; s_{3}, c_{3} ; s_{4}, c_{4} ; s_{5}, c_{5} ; s_{6}, c_{6}$
12 equations (3×4 matrix) but only 6 independent (m constains rotation)
$M=M_{1}^{0}\left(c_{1}, s_{1}\right) M_{2}^{1}\left(c_{2}, s_{2}\right) M_{3}^{2}\left(c_{3}, s_{3}\right) M_{4}^{3}\left(c_{4}, s_{4}\right) M_{5}^{4}\left(c_{5}, s_{5}\right) M_{6}^{5}\left(c_{6}, s_{6}\right)$
6 equations
$c_{1}^{2}+s_{1}^{2}=1$
$c_{2}^{2}+s_{2}^{2}=1$
$c_{3}^{2}+s_{3}^{2}=1$
$c_{4}^{2}+s_{4}^{2}=1$
$c_{5}^{2}+s_{5}^{2}=1$
$c_{6}^{2}+s_{6}^{2}=1$
There is 12 unknowns and 12 equations \longrightarrow can be solved

Decomposition to elemantary motions

Decomposition to elementary motions

Decomposition to elemantary motions

and rename matrices to make it shorter

$$
M_{i}^{i-1} \longrightarrow M_{i}
$$

$$
M=M_{1}^{0} M_{2}^{1} M_{3}^{2} M_{4}^{3} M_{5}^{4} M_{6}^{5} \longrightarrow M=M_{1} M_{2} M_{3} M_{4} M_{5} M_{6}
$$

$$
M_{i n t}^{i-1} M_{i}^{i n t} \longrightarrow M_{i 1} M_{i 2}
$$

$$
M=M_{\text {int }}^{0} M_{1}^{\text {int }} M_{\text {int }}^{1} M_{2}^{\text {int }} M_{\text {int }}^{2} M_{3}^{\text {int }} M_{i n t}^{3} M_{4}^{\text {int }} M_{\text {int }}^{4} M_{5}^{i n t} M_{\text {int }}^{5} M_{6}^{\text {int }}
$$

$$
\downarrow
$$

$$
M=M_{11} M_{12} M_{21} M_{22} M_{31} M_{32} M_{41} M_{42} M_{51} M_{52} M_{61} M_{62}
$$

Inversion of D-H motion matrix preserves "linearity"

$$
M_{i}^{i-1}=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{rrrrr}
c_{i} & -s_{i} p_{i} & s_{i} q_{i} & a_{i} c_{i} \\
s_{i} & c_{i} p_{i} & -c_{i} q_{i} & a_{i} s_{i} \\
0 & q_{i} & p_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]}_{\text {linear in }}
$$

$$
c_{i}, s_{i}
$$

$$
=\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Inversion of D-H motion matrix preserves "linearity"

$$
\begin{aligned}
& \operatorname{inv}\left(M_{i}^{i-1}\right)=\operatorname{inv}\left(\left[\begin{array}{rrrr}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \operatorname{inv}\left(\left[\begin{array}{rrrr}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{rrrr}
1 & 0 & 0 & -a_{i} \\
0 & \cos \alpha_{i} & \sin \alpha_{i} & 0 \\
0 & -\sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
\cos \theta_{i} & \sin \theta_{i} & 0 & 0 \\
-\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & -d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
\cos \theta_{i} & \sin \theta_{i} & 0 & -a_{i} \\
-\sin \theta_{i} \cos \alpha_{i} & \cos \theta_{i} \cos \alpha_{i} & \sin \alpha_{i} & -d_{i} \sin \alpha_{i} \\
\sin \theta_{i} \sin \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & \cos \alpha_{i} & -d_{i} \cos \alpha_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
c_{i} & s_{i} & 0 & -a_{i} \\
-s_{i} p_{i} & c_{i} p_{i} & q_{i} & -d_{i} q_{i} \\
s_{i} q_{i} & -c_{i} q_{i} & p_{i} & -d_{i} p_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { linear in }
\end{aligned}
$$

$$
c_{i}, s_{i}
$$

Separate unknowns as much as possible
products of 6 unknowns

algebraic equations of degree 3

