OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

Partition Trees

J Pritts 29.1I.2012 ae4m39vg

Overview

- Used to quickly $O(\sqrt{n})$ count points in an arbitrary region
- A query range is any subset of the plane that can be approximated by a simple polygon
- Part of the family of geometric range searching algorithms, specifically, it is called a simplex range search (you will see why)

Application

Query range defined by wind patterns results in a O non-orthogonal query

Figure 16.1
Population density of the Netherlands

Application

Query range defined by wind patterns results in a O non-orthogonal query

Figure 16.1
Population density of the Netherlands

Simplifying the query

- Query regions can be arbitrarily large and complex
- Replace representation
 of polygon by a union of disjoint closed simplexes (triangles in 2D)
- Range search on query region is sum of range searches on triangles

Counting triangles

- Need to find how many triangles are in the interior of a simplex
- Create three sets corresponding to the three half planes, each containing the triangles which are subsets of the corresponding half-plane

Searching Half Spaces

- Reduced complexity of our 2D range search from counting in simple polygons to counting in half-planes
- How can we quickly count points in halfspaces?
- Counting quickly in half-spaces is the motivation for partition trees

I-dimension

- Used a balanced binary search tree
- Child of root is two halflines
- each node contains keyvalue pair (coordinate,count)
- At each level, must recurse on at most one subtree

- results in logarithmic query time

2-dimensions

- Not as easily partitioned as the line
- If root is entire plane, what do children represent?
- Second degree of freedom makes a partitioning scheme nonobvious

Simplical-partition

- Divide and conquer
- Partition point set with simplexes
- Simplexes can overlap in space, but each point can only be a member of one class
- Recursively partition simplexes

Half-plane counting

- Add points of triangles that are subsets of the half-plane
- If half plane crosses triangle, recurse into triangle and repeat test
- Recurse until all triangles lie on either side of halfplane or contain exactly one point

Partition Tree

- Ternary tree where the number of children of any vertex corresponds to the number of simplexes needed to partition point set
- During query, subtrees are traversed if intersected by half plane. If m simplexes are intersected, m subtrees are traversed
- Each vertex of trees stores the simplex vertices and the number of interior points.

Range Query Example

$$
\begin{aligned}
\text { O} & =\text { selected node } \\
& =\text { visited node }
\end{aligned}
$$

S: simplex
N : simplex count

recursively visited subtrees

Range Query

SelectInHalfplane(half-plane h, partition tree \mathcal{T})
$N \leftarrow \emptyset \quad\{$ set of selected nodes $\}$
if $\mathcal{T}=\{\mu\}$ then
if point stored at μ lies in h then

$$
N \leftarrow\{\mu\}
$$

else
for each child ν of the root of \mathcal{T} do if $t(v) \subset h$ then
$N \leftarrow N \cup\{\nu\}$
else
if $t(\nu) \cap h \neq \emptyset$ then
$N \leftarrow N \cup \operatorname{SelectInHalfplane}\left(h, \mathcal{T}_{\nu}\right)$
return N

Simplex counting

- We conduct a half plane range query

- As we traverse the partition tree, we mark those vertices that are not in the half-plane
- On the second and third range search, we ignore previously marked vertices when counting

Region range search

- The sum the counts of all triangles is the region range search

Complexity

Review

- Need to query on complex 2D regions, but that is hard
- Transform problem to sequence half-plane searches
- Bisecting half-spaces works in ID, but does not generalize
- Need concept of recursive simplical partition to divide higher dimensional space
- Need of for fast half-plane searching on simplical partition motivates partition tree data structure

Complexity problem?

- Number of half-plane crossings is determined by the range query; query complexity is listed as $O(\sqrt{n})$. Why isn't this algorithm output sensitive life Jarvis?

Fine simplical partitions

$\Psi(S)=\left\{\left(S_{1}, t_{1}\right),\left(S_{2}, t_{2}\right), \ldots,\left(S_{r}, t_{r}\right)\right\}$ is a simplicial partition (of size r) for S if
$-S$ is partitioned by S_{1}, \ldots, S_{r} and

- for $1 \leq i \leq r, \quad t_{i}$ is a triangle and $S_{i} \subset t_{i}$.
$\Psi(S)$ is fine if $\left|S_{i}\right| \leq 2|S| / r$ for every $1 \leq i \leq r$.

Crossing Numbers

The crossing number of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_{1}, \ldots, t_{r} intersected by ℓ.

The crossing number of $\Psi(S)$ is the maximum crossing number over all possible lines.

Fine simplical construction

For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon>0$, such a partition can be built in $O\left(n^{1+\varepsilon}\right)$ time.

Query complexity guarantees

For any $\varepsilon>0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SelectinHalfplane selects in $O\left(n^{1 / 2+\varepsilon}\right)$ time a set N of $O\left(n^{1 / 2+\varepsilon}\right)$ nodes of \mathcal{T} with the property that $h \cap S=\bigcup_{\nu \in N} S(\nu)$.

Half-plane range counting queries can be answered in $O\left(n^{1 / 2+\varepsilon}\right)$ time.

Partition Tree construction

- Construct a fine simplical partition $\Psi(S)=\left\{\left(S_{1}, t_{1}\right),\left(S_{2}, t_{2}\right), \ldots,\left(S_{r}, t_{r}\right)\right\}$
- Add r vertices to partition tree with keyvalue pair (simplex, simplex count)
- Recurse on S_{1}, \ldots, S_{r} and grow partition tree as in step 2

Fine simplical construction

- A topic for another presenter. I punt :)
- Two algorithms to construct fine-simplical construction: randomized and deterministic
- Second algorithm results directly from a inductive proof for the complexity bound of constructing an epsilon-cutting (see Matousek)
- Efficient partition trees formalized in mid 90s

Sources

Matoušek, J. Construction of ε-nets, Disc. Comput. Geom. 5 (1990), 427-448.
Matoušek, J. Efficient partition trees, Disc. Comput. Geom. 8 (1992), 315-334.
Chazelle, B., Sharir, M., Welzl, E. Quasi-optimal upper bounds for simplex range searching and new zone theorems, Algorithmica 8 (1992), 407-429.

De Berg, Mark; Cheong, Otfried; Van Kreveld, Marc; Overmars (2008). Computational Geometry Algorithms and Applications

Some images adapted from:Alexander Wolf's presentation for Geometric algorithms: http://www.win.tue.nI/~awolff/teaching/2009/2IL55/pdf/v16.pdf

Questions

- ?

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

