

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

Largest Empty Circle Problem Jan Plešek plesejan@fel.cvut.cz

Problem

 "Given set P of n points in the plane, find a largest circle that contains no points of the set P and whose center is internal to the convex hull of those points."

r = max(min(
$$(x_i - x_0)^2 + (y_i - y_0)^2$$
))

r ∈ Hull(**P**) i

Problem

Problem

What is this good for?

My idea

My idea

My idea

Toxic Waste Dump problem

- "What to do with toxic waste?"
- cities with more than 100 000 citizens
- 251 cities in USA

Credits: http://cz.123rf.com/

Toxic Waste Dump problem

Credits: Megan Schuster

Locations for new stores

- Points are current stores
- Best location = center of largest circle

Locations for new stores

- Points are current stores
- Best location = center of largest circle

Largest Empty Circle = LEC

LEC center is in the convex hull of set P else center in infinity

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- LEC is centered in Voronoi vertex
- or in the intersection between Voronoi vertex and convex hull

- Voronoi diagram is dual to Delaunay triangulation
 - every Voronoi vertex == Delaunay triangle
 - neighbors triangles are in Voronoi connected by edge

- Voronoi diagram is dual to Delaunay triangulation
 - every Voronoi vertex == Delaunay triangle
 - neighbors triangles are in Voronoi connected by edge

- Voronoi diagram is dual to Delaunay triangulation
 - every Voronoi vertex == Delaunay triangle
 - neighbors triangles are in Voronoi connected by edge

Voronoi Diagram

- Georgy Voronoi (1908)
- proximity information
- complexity: O(n log n)

- Boris Delaunay
- **•** 1934
- no skinny triangles
- no point in set P is in circumcircle of any triangle

Credits: http://feeldesign.com

Algorithm

- Delaunay triangulation
- Voronoi diagram
- Convex hull
- Check interior nodes
- Find intersection between Voronoi edges and convex hull
- Find the LEC

- incremental algorithm
- maximalize minimal angle
- represented by acyclic graph

Delaunay Triangulation algorithm:

- start with enclosing triangle
- adding points one by one
- Iocate triangle T which contain point r (the new one)
- draw edges between r and points in T

 \bigcirc

Ο

 \mathbf{O}

 \bigcirc

Credits: Megan Schuster

- iterate over all triangles O(n)
- compute Voronoi vertex (centers of triangles) O(1)
- connect Voronoi vertex (3 neighbor triangles) O(1)

0

 \bigcirc

Ο

00

 \bigcirc

Convex Hull

- Jarvis March
- complexity O(nh)

Ο

Ο

00

Convex Hull

- Jarvis March
- complexity O(nh)

Interior Nodes

for all Voronoi vertices

• for convex hull points //CCW

if(Voronoi verices is right) return false //exterior

return true //interior

complexity: O(nh)

Interior Nodes

Interior Nodes

Finding Convex hull and Voronoi edge intersection

for all Voronoi edges (two points)

- if((first_point==interior)&&(second_point==exterior))
 - find_intersection()

complexity: O(nh)

- draw circles and find the biggest
- **•** O(n)

draw circles and find the biggest

draw circles and find the biggest

× O(n)

draw circles and find the biggest

draw circles and find the biggest

draw circles and find the biggest

Brief history about LEC

Dasarathy and White

- first attempt (1975)
- worst case complexity: O (n³)
- imperfect analysis of the problem

Michael Shamos

- PhD thesis (1978)
- complexity: O(n)
- wrong assumption:
 - every convex hull edge is intersect at most by two Voronoi edges

Godfried Toussaint

- present correct algorithm (1983)
- complexity: O(n log h)

Algorithm

- compute LEC for each interior Voronoi vertex O(n log h)
 - O(n) Voronoi vertices
 - O(log h) check if is interior (h = edge in convex hull)
 O(1) computing LEC
- compute all intersection between Voronoi edges and convex hull O(n log h)
 - O(n)Voronoi edges
 - O(log h) Chazelle (1980) intersection between line segment and convex n-gon

Preparata & Shamos

- slightly improvement (1985)
- marching method O(n)
 - finding intersection between Voronoi edge and convex hull

all this algorithms need O(n log n) for Voronoi diagram

Reference

- Preparata: Computational Geometry: An Introduction
- Schuster: The Largest Empty Circle Problem
- Toussaint: Computing Largest Empty Circles with Locations Constrains
- Shamos: Computional Geometry
- M. de Berg: Computational Geometry: Algorithms and Applications
- Dasarathy, White: A Maxmin Location Problem

Questions & Comments

Is it possible in 3D?

× YES!

- Largest Empty Sphere problem
- it is possible in d-dimension

Two lines intersection

$$(P_x, P_y) = \left(\frac{(x_1y_2 - y_1x_2)(x_3 - x_4) - (x_1 - x_2)(x_3y_4 - y_3x_4)}{(x_1 - x_2)(y_3 - y_4) - (y_1 - y_2)(x_3 - x_4)}, \\ \frac{(x_1y_2 - y_1x_2)(y_3 - y_4) - (y_1 - y_2)(x_3y_4 - y_3x_4)}{(x_1 - x_2)(y_3 - y_4) - (y_1 - y_2)(x_3 - x_4)}\right)$$

OI-OPPA. European Social Fund Prague & EU: We invest in your future.