OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

Largest Empty Circle Problem Jan Pleśek pleselan@fel:cviticz

Problem

- Given set Pif n points in the plane find a largest circle that contains no points of the set P and whose center is internal to the convex hull of those points."
$\left.\left.-\mathrm{r}=\max \left(\min \left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{0}\right) \text {) }+\left(\mathrm{y}_{i}-\mathrm{y}_{0}\right)\right)^{2}\right)\right)$
- rehill P)

Problem

Problem

What is this good for?

My idea

My idea

My idea

Toxic Waste Dump problem

* What to do with toxic waste?"
- cities with more than 100000 citizens
-251 cities in USA

Credits: http://cz.123rf.com/

Toxic Waste Dump problem

Credits: Megan Schuster

Locations for new stores

- Points are current stores
- Best location-center of largest circle

Locations for new stores

- Points are current stores
- Best location-center of largest circle

Facts

- Largest Empty Circle - LEC
- LEC:centeris in the convex huill of set P
- Else center in infinity

Facts

- LEC is centered in Vorono vertex
* or in the intersection between Voronoi veitex and convex hull

Facts

- LEC is centered in Voronol vertex
- or in the intersection between Voronoi veitex and convex hull

Facts

- LEC is centered in Vorono vertex.
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Vorono vertex.
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Vorono vertex
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Vorono vertex
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Vorono vertex
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Vorono vertex
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Voronol vertex
- or in the intersection between Vorono veitex and

Facts

- LEC is centered in Vorono vertex
- or in the intersection between Vorono veitex and

Facts

- Voronoi diagram is dual to Delaunay triangulation
* every Voronoi vertex - Delaunay triangle
- neighbors triangles are in Voronoi connected by edge

Facts

- Voronoi diagram is dual to Delaunay triangulation
- every Vorono vertex - Delaunay tringle
* neighbors triangles are y Yronot connected by edge

Facts

- Voronoi diagram is dual to Delaunay triangulation
- every Vorono vertex - Delaunay tringle
* neighbors triangles are in yoronoi connected by edge

Voronoi Diagram

- Georgy Vorono (1908)
- proximity information
complexty Q(nlog $n)$

Delaunay triangulation

Boris Delaunay
 21934

- no skinny triangles
no point in set P is in circumcircle of any triangle

Delaunay triangulation

Delaunay triangulation

 8

Delaunay triangulation

 8

Delaunay triangulation

Algorithm

- Delaunay triangulation
- Voronoi diagram
- Convex huill
- Check interiornodes
- Find intersection between Voronoi edges and convex hull
- Find the LEC

Delaunay Triangulation

- incremental aloorithm
- maximalze minimalangle
- represented by acyclic graph

Delaunay Triangulation algorithm:

- start with enclosing triangle
- adding points one by one
- locate triangle Thich contain point r (the new one)
- draw edges between r and points in T

Delaunay Triangulation example:

Delaunay Triangulation example:

Delaunay Triangulation example:

Delaunay Triangulation example:

Delaunay Triangulation \rightarrow Voronoi diagram

- Iterate over all trangies Q(n)
- compute Vorono veitex (centers of triangles) O(1)
- connect Vorono vertex (3 neighbor triangles) O(1)

Delaunay Triangulation \rightarrow Voronoi diagram

Delaunay Triangulation \rightarrow
 Voronoi diagram

Delaunay Triangulation ->

 Voronoi diagram

Convex Hull

- Jarvis March
- complexity O(nh)

Convex Hull

- Jarvis March
- complexity O(nh)

Interior Nodes

- for all Voronoi vertices
- for convex hill points LGCW
- if Vorono vericesis right) return false //exterior
- return true / interior
- complexity. O(nh)

Interior Nodes

Interior Nodes

Finding Convex hull and Voronoi edge intersection

- for all Vorono edges (two points)
- if(first point $=$ nhterior) \&\&(second point $=$ exterior))
find intersectiono
complexity O(hh)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Finding LEC

- draw circles and find the biggest
- O(n)

Finding LEC

- draw circles and find the biggest
- O(n)

Finding LEC

* draw circles and find the biggest
- O(n)

Brief history about LEC

Dasarathy and White

- first attempt (197.5)
- worst case complexty $Q\left(n^{3}\right)$
- imperfect analysis of the problem

Michael Shamos

- PhD thesis (1978)
- complexity O(n)
vrong assumption:
- every convex hili edge is intersect at most by two Voronot edges

Example

Godfried Toussaint

- present correct algorithm (1983)
- complexity Q(n log h)

Algorithm

* compute LEC for each interior Vorono vertex O(n log h)
- O(n) Vorono vertices
- O(log h) check if is hterior (hy edge in convex hull)
- O(1) computing LEC
- compute all intersection between Voronoi edges and convex hull O(n log h)

O(n) Voronoi edges

- O(log h) Chazelle (1980) - intersection between line segment and convex n-gon

Preparata \& Shamos

* slightly improvement (1985)
- marching method O(n)
- finding intersection between Voronol edge and convex huill

4 all this algorithns need $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ for Voronoi diagram

Reference

* Preparata Computational Geometry. An Introduction
* Schuster The Largest Enpty Gicce Problem
- Toussaint Computing Largest Empty Circles
with Locations Constrains
- Shamos: Computional Geometry
- M de Berg. Computational Geometry Algorithms and Applications
- Dasarathy White A Maxmin Location Problem

Questions \& Comments

Is it possible in 3D?

- YES!
- Largest Empty Sphere problem
- it is possible in d dimension

Two lines intersection

$$
\begin{aligned}
\left(P_{x}, P_{y}\right)= & \left(\frac{\left(x_{1} y_{2}-y_{1} x_{2}\right)\left(x_{3}-x_{4}\right)-\left(x_{1}-x_{2}\right)\left(x_{3} y_{4}-y_{3} x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(y_{3}-y_{4}\right)-\left(y_{1}-y_{2}\right)\left(x_{3}-x_{4}\right)},\right. \\
& \left.\frac{\left(x_{1} y_{2}-y_{1} x_{2}\right)\left(y_{3}-y_{4}\right)-\left(y_{1}-y_{2}\right)\left(x_{3} y_{4}-y_{3} x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(y_{3}-y_{4}\right)-\left(y_{1}-y_{2}\right)\left(x_{3}-x_{4}\right)}\right)
\end{aligned}
$$

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

