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Problem definition

Dynamic convex hull problem
Maintain a convex hull allowing the following operations:

point insertion
point deletion

Presented solution is from Mark H. Overmars and Jan
Van Leeuwen [3].
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Problem decomposition

UH

LH
IMAGE FROM [2]

Splitting to upper hull and
lower hull.
Only upper hull(UH) will be
considered.
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Data structure overview
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IMAGE FROM [2]

balanced tree
root represents whole upper
hull
inner node represents upper
hull of its subtree
inner node contains

Q - concatenable queue
J - splitting index

leaf represents point
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Concatenable queue

Concatenable queue definition
Operations and required complexity:

search
split
splice
insert

each in O(log(n))

Concatenable queue is used to store indices to points in inner
nodes. The points are sorted according to x coordinate. The
stored points are points (necessarily not all) of some particular
hull (eg. portion of a hull of a subtree).
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insertion/deletion:
1 descend
2 insert/delete leaf
3 ascend
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function DESCEND(TreeNode v, Point p)
if v 6= LEAF then

QL,QR ← split(v .Q, v .J)
v .lChld .Q ← splice(QL, v .lChld .Q)
v .rChld .Q ← splice(v .rChld .Q,QR)
if p.x ≤ v .rChld .minX then

v ← v .lChld
else

v ← v .rChld
end if
descend(v, p)

end if
end function
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insertion

Once the position is found you
can perform required
operation.
In our case, we insert a new
point. Deletion would be done
analogicaly.
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Goal: ascend the tree and
splice two nonoverlapping
upper hulls of siblings.

Special function needed -
bridge(..)
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IMAGE FROM [2]

Concave v is concave if vp crosses inside of a hull,
otherwise it is reflex or supporting

Reflex v is reflex if v’ and v” are on different sides of a line
induced by vp

Supporting v is supporting if v’ and v” are on the same side of
a line induced by vp
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IMAGE FROM [2]

In all cases except one
(noted as problem) we
can immediately prune
the search space.
The concave-concave
case requires special
approach.
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IMAGE FROM [2]

In concave-concave case a
special investigation is
needed.
Construct tangents of hulls at
points q1,q2 respectively.
Examine the intersection
(point p).
If p is on the right throw away
points under q2. (figure)
If p is on the left throw away
points under p1.
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function ASCEND(TreeNode v)
if v 6= ROOT then

Q1,Q2,Q3,Q4, J ← bridge(v .Q, v .sibling.Q)
v .father .Q ← splice(Q1,Q4)
v .father .J ← J
v .father .lSon.Q ← Q2

v .father .rSon.Q ← Q3

ascend(v .father)
end if

end function
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Complexity

Complexity of Overmars and van Leeuwen’s algorithm

Inserts and deletes in O(log2(n))

( ascend︷ ︸︸ ︷
log(n) ·

split︷ ︸︸ ︷
log(k)+

descend︷ ︸︸ ︷
log(n) ·

bridge︷ ︸︸ ︷
log(m)

)
∈ O(log2(n))

k ≤ n;m ≤ n

n - total number of points
k - number of points in queue being spliced
m - number of points in both hulls when bridging
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Conclusion

If deletion or insertion is not needed there are faster
algorithms.
Faster choice can be Brodal and Jacob working in
O(n · log(n)).
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