
OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

Problem definition
Data structure

Insertion/Deletion
Summary

Dynamic convex hull

Radek Matějka (matejra4)

CTU in Prague, FEL - A4M39VG

2012

Radek Matějka (matejra4) Dynamic convex hull 1 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Content

1 Problem definition

2 Data structure
Problem decomposition
Data structure overview
Concatenable queue

3 Insertion/Deletion
Descend
Insert/delete point
Ascend

4 Summary
Complexity
Conclusion

Radek Matějka (matejra4) Dynamic convex hull 2 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Problem definition

Dynamic convex hull problem
Maintain a convex hull allowing the following operations:

point insertion
point deletion

Presented solution is from Mark H. Overmars and Jan
Van Leeuwen [3].

Radek Matějka (matejra4) Dynamic convex hull 3 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Problem decomposition
Data structure overview
Concatenable queue

Problem decomposition

UH

LH
IMAGE FROM [2]

Splitting to upper hull and
lower hull.
Only upper hull(UH) will be
considered.

Radek Matějka (matejra4) Dynamic convex hull 4 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Problem decomposition
Data structure overview
Concatenable queue

Data structure overview

411 93 85 12671 102

{11,4,1,5,12},3

{2},1

{10},1 {},1

{8},1

{3,9},2 {},1

{},1{},1

{7},2

Q J

{6},1

IMAGE FROM [2]

balanced tree
root represents whole upper
hull
inner node represents upper
hull of its subtree
inner node contains

Q - concatenable queue
J - splitting index

leaf represents point

Radek Matějka (matejra4) Dynamic convex hull 5 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Problem decomposition
Data structure overview
Concatenable queue

Concatenable queue

Concatenable queue definition
Operations and required complexity:

search
split
splice
insert

each in O(log(n))

Concatenable queue is used to store indices to points in inner
nodes. The points are sorted according to x coordinate. The
stored points are points (necessarily not all) of some particular
hull (eg. portion of a hull of a subtree).

Radek Matějka (matejra4) Dynamic convex hull 6 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Insertion/deletion overview

411 93 85 12671 102

{11,4,1,5,12},3

{2},1

{10},1 {},1

{8},1

{3,9},2 {},1

{},1{},1

{7},2

Q J

{6},1

IMAGE FROM [2]

insertion/deletion:
1 descend
2 insert/delete leaf
3 ascend

Radek Matějka (matejra4) Dynamic convex hull 7 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Descend

411 93 85 12671 102

v {2,5,12},1

{10},1 {},1

{8},1 {6},1

{3,9},2 {},1

{},1{},1

{11,4,1,7},2

p
13

IMAGE FROM [2]

function DESCEND(TreeNode v, Point p)
if v 6= LEAF then

QL,QR ← split(v .Q, v .J)
v .lChld .Q ← splice(QL, v .lChld .Q)
v .rChld .Q ← splice(v .rChld .Q,QR)
if p.x ≤ v .rChld .minX then

v ← v .lChld
else

v ← v .rChld
end if
descend(v, p)

end if
end function

Radek Matějka (matejra4) Dynamic convex hull 8 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Insert point

p
13

102

{10},1

102 13

{10},1

{},1

p
13

insertion

Once the position is found you
can perform required
operation.
In our case, we insert a new
point. Deletion would be done
analogicaly.

Radek Matějka (matejra4) Dynamic convex hull 9 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Ascend

411 93 85 12671 102

{5},1

{8},1 {6},1

{3,9},2 {},1

{},1{},1

{11,4,1,7},2

p
13

13

v

{10},1

{},1

{2,13,12},2

Q
1
:={11,4,1} Q

2
:={7} Q

3
:={2} Q

4
:={13,12} J:=3

IMAGE FROM [2]

Goal: ascend the tree and
splice two nonoverlapping
upper hulls of siblings.

Special function needed -
bridge(..)

Radek Matějka (matejra4) Dynamic convex hull 10 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Bridge (1)

v

v'

v''

p

v

v'

v''

p
v

v'v''

p

Reflex SupportingConcave
IMAGE FROM [2]

Concave v is concave if vp crosses inside of a hull,
otherwise it is reflex or supporting

Reflex v is reflex if v’ and v” are on different sides of a line
induced by vp

Supporting v is supporting if v’ and v” are on the same side of
a line induced by vp

Radek Matějka (matejra4) Dynamic convex hull 11 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Bridge (2)

Concave Supporting Reflex

Concave

Supporting

Reflex

q
2q

1

q
1

q
2

PROBLEM

DONE

IMAGE FROM [2]

In all cases except one
(noted as problem) we
can immediately prune
the search space.
The concave-concave
case requires special
approach.

Radek Matějka (matejra4) Dynamic convex hull 12 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Bridge (3)

q
2q

1

q''
q'

H
R

H
L

l
p

l

IMAGE FROM [2]

In concave-concave case a
special investigation is
needed.
Construct tangents of hulls at
points q1,q2 respectively.
Examine the intersection
(point p).
If p is on the right throw away
points under q2. (figure)
If p is on the left throw away
points under p1.

Radek Matějka (matejra4) Dynamic convex hull 13 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Descend
Insert/delete point
Ascend

Ascend - summary

411 93 85 12671 102

{5},1

{8},1 {6},1

{3,9},2 {},1

{},1{},1

{11,4,1,7},2

p
13

13

v

{10},1

{},1

{2,13,12},2

Q
1
:={11,4,1} Q

2
:={7} Q

3
:={2} Q

4
:={13,12} J:=3

IMAGE FROM [2]

function ASCEND(TreeNode v)
if v 6= ROOT then

Q1,Q2,Q3,Q4, J ← bridge(v .Q, v .sibling.Q)
v .father .Q ← splice(Q1,Q4)
v .father .J ← J
v .father .lSon.Q ← Q2

v .father .rSon.Q ← Q3

ascend(v .father)
end if

end function

Radek Matějka (matejra4) Dynamic convex hull 14 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Complexity
Conclusion

Complexity

Complexity of Overmars and van Leeuwen’s algorithm

Inserts and deletes in O(log2(n))

(ascend︷ ︸︸ ︷
log(n) ·

split︷ ︸︸ ︷
log(k)+

descend︷ ︸︸ ︷
log(n) ·

bridge︷ ︸︸ ︷
log(m)

)
∈ O(log2(n))

k ≤ n;m ≤ n

n - total number of points
k - number of points in queue being spliced
m - number of points in both hulls when bridging

Radek Matějka (matejra4) Dynamic convex hull 15 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

Complexity
Conclusion

Conclusion

If deletion or insertion is not needed there are faster
algorithms.
Faster choice can be Brodal and Jacob working in
O(n · log(n)).

Radek Matějka (matejra4) Dynamic convex hull 16 of 17

Problem definition
Data structure

Insertion/Deletion
Summary

References

[1] Franco P. Preparata, Michael Ian Shamos -
Computational Geometry: An Introduction

[2] Jan Novák - Maintaining 2D Convex Hulls

[3] Mark H. Overmars, Jan Van Leeuwen - Maintenance of
Configurations in the Plane

Radek Matějka (matejra4) Dynamic convex hull 17 of 17

http://twoflower.ic.cz/vge/

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

