

Ol-OPPA. European Social Fund Prague \& EU: We invest in your future.

Partition trees

Radek Loucký

louckra1@fel.cvut.cz

What is it about?

- set of points in the plane and we want to count the points lying inside a query region
- count number of cities in range

Query region

- preprocessing
- query region is a polygon (if no, we can approximate it)
- triangulate region
- query each of the resulting triangles
- return set of points in all triangles
... but first, let's start with something easier

The 1D case

- how does it look like in 1D ?
- binary search tree
- one region is completely contained in query line, one is disjoint

On each level is visited only 0-1 subtree recursively

Can we use same approach in 2D?

The 2D case - partition tree

- the structure is a tree T of branching degree r
- with each child v we store the triangle $t(v)$
- crossing number ... maximum triangles crossed by any line
- fine partition ... every group contains $\leq 2 n / r$ points the subsets are fairly equally distributed

2D example

Pseudo-code

2D example

2D example

2D example

2D example

Which modifications do we need if we want to use triangles instead of half-planes?

None

Tree properties

Theorem:

For any set S of n points in the plane and any parameter r with $1 \leq r \leq n$, ψS of size r and crossing number $O(V r)$ exists.
Moreover, for any $\varepsilon>0$ such ψS can be constructed in time $O\left(n^{1+\varepsilon}\right)$.

- crossing number ... maximum triangles crossed by any line

Theorem:

Given a set S of n points in the plane, for any $\varepsilon>0$, a triangular range-counting query can be answered in $\mathbf{O}\left(\mathbf{n}^{1 / 2+\varepsilon}\right)$ time using a partition tree.

The tree can be built in $\mathbf{O}\left(\mathbf{n}^{1+\varepsilon}\right)$ time and uses $\mathbf{O}(\mathrm{n})$ space.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars
Computional geometry, Algorithm and applications
[2] J. Matoušek, Efficient partition trees, Discrete \& Computational Geometry
[3] Dr. André Schulz, Advanced Data Structures lecture http://courses.csail.mit.edu/6.851/spring10/scribe/lec06.pdf

Ol-OPPA. European Social Fund Prague \& EU: We invest in your future.

