

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

DeWall algorithm

Table of contents

- Terminology
- Delauney triangulation
- DeWall algorithm
- Step by step tutorial
- InCoDe algorithm
- Remarks

Vocabulary

- Simplex, triangle
- 1-face, 2-face...
- Circumscribed sphere

Delaunay triangulation

- Pointcloud visualization
- Set of adjacent triangles build over given points P
- No point of P inside the circumcircle of any triangle
- Maximizes the minimum interior a triangles (no skinny triangles)
- Author Boris Delaunay (1934)

4

Set of given points...

... and the resulting geometry

But how??

DeWall algorithm (D & C)

- (1) Compute the CH(P)
- (2) Select the splitting plane $\boldsymbol{\alpha}$
- (3) Split *P* into subsets P_1 and P_2 and construct triangulation Σ_{α}
- (4) Recursively apply DeWall on P₁ and P₂ to build triangulation Σ_1 and Σ_2
- (5) Return the union of Σ_{α} , Σ_{1} and Σ_{2}

How to achieve it?

- InCoDe algorithm
- makeFirstSimplex()
- makeSimplex()
- Triangulation construction in $\boldsymbol{\Sigma}_{\!\boldsymbol{\alpha}}$ only

Remarks

- Possible improvement uniform grid
 - Number of cells is equal to the number of points
 - Restrict search to cells contained in AABB of the circumscribed sphere
 - Parallelization
- $O(n^3)$ worst case, $o(n^2)$ expected

Sources

- D&C Algorithm of Delaunay triangulation: DeWall algorithm. [Maur '02, 15-17]
- DeWall: A Fast Divide & Conquer Delaunay Triangulation Algorithm in E^d; P. Cignoni, C. Montani, R. Scopigno. Pisa, Italy. 1997
- http://en.wikipedia.org/wiki/Delaunay_triangulati on

Questions?

Thank you for your attention!

makeFirstSimplex()

- Pick a point (p₁) closest to the splitting plane
- Pick a point (p₂) closest to the p₁ in the other halfspace
- Pick a point (p₃), so that the circumscribed sphere (p₁, p₂, p₃) has minimal radius
- Repeat until required d-simplex is built

makeSimplex()

- Repeatedly picks a point that minimizes the "Delauney distance" function
- dd(f, p) = r if c is in Halfspace(f, p)

= -r otherwise

- r radius of the circumscribed sphere around f, p
- c center of the circumscribed sphere around f, p

Triangulation construction in $\boldsymbol{\Sigma}_{\!\boldsymbol{\alpha}}$ only

- We want to triangulate only those simplices, intersected by splitting plane $\boldsymbol{\alpha}$
- Active Faces List
 - AFL_{α} : (d 1) faces, intersected by α
 - AFL_1 : (d 1) faces with all points in P₁
 - AFL_2 : (d 1) faces with all points in P_2

OI-OPPA. European Social Fund Prague & EU: We invest in your future.