

Ol-OPPA. European Social Fund Prague \& EU: We invest in your future.

DeWall algorithm

Tomáš Buk, ČVUT FEL

Table of contents

- Terminology
- Delauney triangulation
- DeWall algorithm
- Step by step tutorial
- InCoDe algorithm
- Remarks

Vocabulary

- Simplex, triangle
- 1-face, 2-face...
- Circumscribed sphere

Delaunay triangulation

- Pointcloud visualization
- Set of adjacent triangles build over given points P
- No point of P inside the circumcircle of any triangle
- Maximizes the minimum interior a triangles (no skinny triangles)
- Author - Boris Delaunay (1934)

Set of given points...

... and the resulting geometry

But how??

DeWall algorithm (D \& C)

(1) Compute the $\mathrm{CH}(\mathrm{P})$
(2) Select the splitting plane α
(3) Split P into subsets P_{1} and P_{2} and construct triangulation Σ_{α}
(4) Recursively apply DeWall on P_{1} and P_{2} to build triangulation Σ_{1} and Σ_{2}
(5) Return the union of $\Sigma_{\alpha}, \Sigma_{1}$ and Σ_{2}

Step by step example

 - .
Step by step example

How to achieve it?

- InCoDe algorithm
- makeFirstSimplex()
- makeSimplex()
- Triangulation construction in Σ_{α} only

Remarks

- Possible improvement - uniform grid
- Number of cells is equal to the number of points
- Restrict search to cells contained in AABB of the circumscribed sphere
- Parallelization
- $O\left(n^{3}\right)$ worst case, o($\left.n^{2}\right)$ expected

Sources

- D\&C Algorithm of Delaunay triangulation: DeWall algorithm. [Maur '02, 15-17]
- DeWall: A Fast Divide \& Conquer Delaunay Triangulation Algorithm in Ed; P. Cignoni, C. Montani, R. Scopigno. Pisa, Italy. 1997
- http://en.wikipedia.org/wiki/Delaunay_triangulati on

Questions?

Thank you for your attention!

makeFirstSimplex()

- Pick a point $\left(p_{1}\right)$ closest to the splitting plane
- Pick a point $\left(p_{2}\right)$ closest to the p_{1} in the other halfspace
- Pick a point $\left(p_{3}\right)$, so that the circumscribed sphere $\left(p_{1}, p_{2}, p_{3}\right)$ has minimal radius
- Repeat until required d-simplex is built

makeSimplex()

- Repeatedly picks a point that minimizes the „Delauney distance" function
- $d d(f, p)=r$ if c is in Halfspace (f, p)

$$
=-r \text { otherwise }
$$

- r - radius of the circumscribed sphere around f, p
- c - center of the circumscribed sphere around f, p

Triangulation construction in Σ_{α} only

- We want to triangulate only those simplices, intersected by splitting plane α
- Active Faces List
- AFL_ (d -1) faces, intersected by α
- AFL ${ }_{1}$: ($d-1$) faces with all points in P_{1}
- AFL 2 : ($d-1$) faces with all points in P_{2}

Ol-OPPA. European Social Fund Prague \& EU: We invest in your future.

