
OPPA European Social Fund
Prague & EU: We invest in your future.

1

MODERN ALGORITHMS
(not only in computational geometry)

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

http://service.felk.cvut.cz/courses/X36VGE

Based on [Kolingerova], [Brönnimann], and [Muthukrishnan]

Version from 22.12.2011

Modern algorithms

1. Computational geometry today

2. In-place / in situ algorithms

3. Data stream algorithms

4. Randomized algorithms

5. Sublineární algoritmy

Felkel: Computational geometryNázev prezentace, konference, apod.

(2)

1. Computational geometry today

 Popular: beauty as discipline, wide applicability

 Started in 2D with linear objects (points, lines,…),
now 3D and nD, hyperplanes, curved objects,…

 Shift from purely mathematical approach and
asymptotical optimality ignoring singular cases

 to practical algorithms, simpler data structures
and robustness => algorithms and data structures
provable efficient in realistic situations (application
dependent)

Felkel: Computational geometry

(3)

Felkel: Computational geometry

(4)

Space efficient algorithms - practical advantages

 Allow for processing larger data sets
– Algorithms with separate input and output

need space for 2n points to store – O(n) extra space
– Space efficient algs – n points + O(1) or O(log n) space

 Greater locality of reference
– Practical for modern HW with memory hierarchies

(e.g., main RAM – ram on chip – registers, caches, disk
latency, network latency)

 Less prone to failure
– no allocation of large amounts of memory, which can

fail at run time
– good for mission critical applications

 Less memory => faster program

Felkel: Computational geometry

(5)

2. In-place / in situ algorithms

Space efficient algorithms

 output is in the same location as the input and

 need only a small amount of additionaly memory
– in-place – O(1) extra storage

– in situ – O(log n) extra storage

In-place sorting

 In array – continuous block in memory
– Select sort, insert sort … yes, 1 	memory, 2 time

– Heapsort – yes, 1 	additional memory

– Quicksort – yes, log 	additional memory for
recursion

– Mergesort – not in-place

 In list – linked lists in dynamical memory
– nth element in time

– Mergesort – log 	time, log 	additional memory

Felkel: Computational geometry

(6)

2

Input:
Output:

Graham in-place algorithm

Graham-InPlaceHull(,)
– an array of length with points in plane

Convex Hull in clockwise order

1. ← Graham-InPlace-Scan(, , 1) // CW upper hull
2. for ← 0 . . . 	 	2	do
3. swap 	↔ 	 	 	1 // bubble to the right
4. ′	← Graham-InPlace-Scan(2, 	 	 	 	2, 1) // lower hull
5. return 	 	 ′	 	2

Stack at the beginning of the array

Felkel: Computational geometry

(7 / 38)

Graham in-place algorithm

Felkel: Computational geometry

(8 / 38)

[BrönnimannC]

Input:
Output:

Graham in-place algorithm

Felkel: Computational geometry

(9)

Graham-InPlaceScan(, ,)
0, n 1 – array of length with points in plane, 1 direction

Convex Hull in clockwise order

1. InPlace-Sort(, ,) // 1 CW for upper hull, 1	CCW for LH
2. 	 ← 	1
3. for 	 ← 	1	. . . 	 	1 do
4. while 	 	2	and not right turn(2 , 	 	1 ,) do
5. 			 	 ← 	 	 	1 // pop top element from the stack
6. swap 	↔ 	
7. 			 	 ← 	 	 	1
8. return

Felkel: Computational geometry

(10 / 38)

Optimized Graham in-place algorithm

above , below	 ,

[BrönnimannC]

Felkel: Computational geometry

(11)

3. Data stream algorithms [Indyk]

 Data stream = a massive sequence of data
– Too large to store (on disk, memory, cache,…)

 Examples
– Network traffic

– Database transactions

– Sensor networks

– Satelite data feeds

– …

 Aproaches
– Ignore It

– Develop algorithms for dealing with such data

Motivation example [Muthukrishnan]

 Paul presents numbers x 1. . in random
order, one number missing

 Carole must determine the missing number
but has only log	 bits of memory

 Compute the sum of the numbers and subtracts
the incoming numbers one by one.

	 	
1

2

 The missing number remains
Felkel: Computational geometry

(12)

Any idea?

3

Motivation example [Muthukrishnan]

 And two missing numbers?

 Store sum of numbers and sum of squares ′

	
1

2
	

2 2 	
1 2 1
6

	 ′

Felkel: Computational geometry

(13)

Basic data stream model [Indyk]

 Single pass over the data: 1, 2, … ,
– Typically is known

 Bounded storage (typically or log or only)
– Units of storage: bits, words, or elements

(such as points, nodes/edges, …)

– Impossible to store the data

 Fast processing time per element
– Randomness is OK (in fact, almost necessary)

Felkel: Computational geometry

(14)

Data stream models classification

 Input stream 1, 2, … ,
– arrives sequentially, item by item

– describes an underlying signal ,
a 1D function : 	 1. . 	 	

 Models differ on how ’s describe the signal
(in decreasing order of generality):

a) Time series model - equals , in increasing

b) Cash register model - are increments to , 	
	0

c) Turnstyle model - are updates to , ∈ 	

Felkel: Computational geometry

(15)

a) Time series model (Časová řada)

 Stream elements are equal to
(samples of the signal)

 ’s appear in increasing order of

 Applications
 Observation of the traffic on IP address each 5 minutes

 NASDAQ volume of trades per minute

Felkel: Computational geometry

(16)

b) Cash register model (registrační pokladna)

 are increments to

 Stream elements , , 		 	 	0 to mean

1
where
– is the state of the signal after seeing -th item

– multiple can increment given over time

 A most popular data stream model
– IP addresses accessing web server

– Source IP addresses sending packets over a link

– access many times, send many packets,…

Felkel: Computational geometry

(17)

c) Turnstile model (turniket)

 are updates to

 Stream elements , , 		 	 ∈ to mean

1
where
– is the state of the signal after seeing -th item

– may be positive or negative

– multiple can updategiven over time

 A most general data stream model
– Passengers in NY subway arriving and departing

– Hard to get reasonable solution in this model

Felkel: Computational geometry

(18)

4

c) Turnstile model variants (for completness)

 strict turnstile model –	 0	for	all	
– People can only exit via the turnstile they entered in

– Databases – delete only a record you inserted

– Storage – you can take items only if they are there

 non-strict turnstile model – 0	for	some	
– Difference between two cash register streams

Felkel: Computational geometry

(19)

Examples: Iceberg queries

 Identify all elements whose current frequency
exceeds support threshold s = 0.1%.

Felkel: Computational geometry

(20)

Stream
[Manku]

Ex: Iceberg queries – a) ordinary solution

The ordinary solution in two passes

1. Pass – identify frequencies
– a set of counters is maintained. Each incoming item is

hashed onto a counter, which is incremented.

– These counters are then compressed into a bitmap,
with a 1 denoting a large counter value.

2. Pass – count exact values
– exact frequencies for only those elements are

maintained which hash to a value whose
corresponding bitmap value is 1

 Hard to modify for datastream – unknown
frequencies after only 1st pass

Felkel: Computational geometry

(21)

Ex: Iceberg queries – problem definition

 Input: threshold ∈ 0,1 ,error	 ∈ 0,1 , length	N

 Output: list of items and frequencies ≪

 Guarantees:
– No item omitted (reported all items with frequency >)

– No item added (no item with frequency <)

– Estimated frequencies not less than of the true
frequencies

 Ex: 0.1%, 0.01%	 	about 	to of	

– All element with freq. > 0.1% will output

– None of element with freq. < 0.09% will output

– Some elements between 0.09% and 0.1% will output
Felkel: Computational geometry

(22)

Ex: Iceberg queries – b) sticky sampling

 Probabilistic algorithm, given threshold , error
and probability of failure	

– Data structure of entries , ,
element, estimated frequency,

r sampling rate, sampling probability 	

 ← ∅, ← 1

 If ∈ 	then ,
else insert , into with probability

 sweeps along the stream as a magnet, attracting
all elements which already have an entry in

Felkel: Computational geometry

(23)

Ex: Iceberg queries – b) sticky sampling

 r changes over the stream, log , | | 2

– 2 	elements 1
– next 2 elements 2
– next 4 elements 	4	 …

 whenever changes, we update
– For each entry , 	in

• toss a coin until successful (head)

• if not successful (tail), decrement

• if becomes 0, remove entry , 	from

 Output: list of items with threshold
i.e. all entries in S where

Felkel: Computational geometry

(24)

5

Ex: Iceberg queries – b) sticky sampling

 Space complexity is independent on

 For
– support threshold 0.1%,	
– error 0.01%,

– and probability of failure	 1%

 Sticky sampling computes results
– with 1 99% probability

– using at most 2t = 80 000 entries

– log 40	000, | | 2

Felkel: Computational geometry

(25)

Ex: Iceberg queries – b) sticky sampling

Felkel: Computational geometry

(26)

Stream

 Create counters by sampling
(mind the order of counters)

34
15
30

28
31
41
23
35
19

[Manku]

Ex: Iceberg queries – c) lossy counting

 Deterministic algorithm

 Stream conceptually divided into buckets
– With 1/ items each

– Numbered from 1, current bucket id is

 Data structure of entries , , ∆ ,
– element,

– estimated frequency,

– ∆ maximum possible error of
(max number of occurences in previous buckets)

 At most log entries

Felkel: Computational geometry

(27)

Ex: Iceberg queries – c) lossy counting

Felkel: Computational geometry

(28)

bucket 1 bucket 2 bucket 3

 Divide the stream into buckets

 Keep exact counters for items in the buckets

 Prune entries at bucket boundaries
(remove entries for which ∆)

[Manku]

Ex: Iceberg queries – c) lossy counting alg.

 ← ∅

 New element
– If ∈ then increment its f

– If ∉ then
• Create a new entry , 1, 1
• If on the bucket border, i.e., 	 	 0 then delete entries with

∆	 	
• i.e., with zero or one occurence in previous buckets

– New ∆	 1 is maximum number of times
could have occured in the first 1 buckets

 Output: list of items with threshold
i.e. all entries in S where

Felkel: Computational geometry

(29)

Comparison of sticky and lossy sampling

 Sticky sampling performs worse
– Tendency to remember every unique element

– The worst case is for sequence without duplicates

 Lossy counting
– Is good in pruning low frequency elements quickly

– Worst case for pathological sequence which never
occurs in reality

Felkel: Computational geometry

(30)

6

Number of mutually different entries

 Input: stream 1, 2, … , , with repeated entries

 Output: Estimate of number of different entries

 Appl: # of different transactions in one day

 Precise deterministic algorithm:
– Array 1. . , max number of different entries

– Init by 	 	0	for all , counter 0
– For each

• if 	 	0	then inc , 1

– Return as number of different entries in

– 1 update and query times, 	memory

Felkel: Computational geometry

(31)

Number of mutually different entries

 Approximate algorithm
– Array 1. . log	 , max number of different entries

– Init by 	 	0	for all , counter 0
– Hash function : 	 1. . → 0. . log
– For each

Set = 1

– Extract probable number of different entries from

Felkel: Computational geometry

(32)

Sublinear time example

 Given mutually different numbers 1, 2, … ,

 Determine number in upper half of values

 Alg: select numbers equally randomly
– Compute their maximum

– Return it as solution

 Probability of wrong answer = probability of all

selected numbers are from the lower half =

 For error take log samples

 Not useful for MIN, MAX selection

Felkel: Computational geometry

(33)

4. Randomized algorithms

Motivation

 Array of elements, half of char ”a”, half of char ”b”

 Find ”a”

 Deterministic alg: /2 steps of sequential search
(when all ”b” are first)

 Randomized:
– Try random indices

– Probability of finding ”a” soon is high regardless of the
order of characters in the array
(Las Vegas algorithm)

Felkel: Computational geometry

(34)

Randomized algorithms

 May be simpler even if the same worst time

 We do not know a deterministic version
(prime numbers)

 Deterministic algorithm does not exist

 Randomization can improve the average running
time (with the same worst case time), while the
worst time depends on our luck – not on the data
distribution

Felkel: Computational geometry

(35)

Randomized algorithms

a) Incremental algorithms
– Linear programming – see seminars

– Convex hulls

– Intersections, space subdivisions

b) Divide and conquer
– Random sampling

– Nearest neighbors, trapezoidal subdivisions

Felkel: Computational geometry

(36)

7

Random sampling

 Hierarchical data structures

 Sublinear algorithms

 Randomized quicksort

 Approximate solutions on random samples

Felkel: Computational geometry

(37)

Another classification

 Monte Carlo
– We always get an answer, often not correct

– Fast solution with risk of an error

– It is not possible to determine, if the answer is correct
→ run multiple times and compare the results

– Output can be understand as a random variable

– Example: prime number test

• Task: Find a ∈ 2, such as n is divisible by a

• Algorithm: Sample 10 numbers from the given interval, answer

 Las Vegas

Felkel: Computational geometry

(38)

Las Vegas algorithms

Las Vegas
– We always get a correct answer

– The run time is random

– Sometimes fails –> perform restart

– Example: Randomized quicksort
• No median necessary

• Simpler algorithm

• Independent on data distribution

• Return a correct result

• The result will be ready to uphold with a high probability

• log 	čas na lib. Výstup s velkou pravděpodobností

• Bad luck – we select the smallest element -> Selection sort

Felkel: Computational geometry

(39)

Input:
Output:

Randomized quicksort

RQS = Randomized Quicksort
] sequence of data elements 1, 2, … , ∈

sorted set

1. Step 1: choose ∈ 1, in random
2. Step 2: Let A is a multiset 1, 2, … ,

• if 1	then output(S)
• else – create three subsets of 	 , 	 , 	

	 	 :
	 	 :
	 	 :

3. Step 3: Sort 	
4. Výstup: RQS(<), S=, RQS(>)

Felkel: Computational geometry

(40)

Conclusion

 Randomized algs. are often experimental

 We would not get perfect results, but nicely good

 We use randomized algorithm if we do not know
how proceed

Felkel: Computational geometry

(41 / 38)

Felkel: Computational geometry

(42)

References

[Kolingerová] Nové směry v algoritmizaci a výpočetní geometrii (1 a 2),
přednáška z předmětu Aplikovaná výpočetní geometrie, MFF UK,
2008

[Brönnimann] Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms,
Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004

[BrönnimannC]Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull
Algorithms. In Proceedings of the 5th Latin American Symposium
on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.).
Springer-Verlag, London, UK, UK, 494-507.
http://dl.acm.org/citation.cfm?id=690520

[Indyk] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space
Algorithms, MIT course

[Muthukrishnan] Data streams: Algorithms and applications, (“adorisms” in Google)

[Mulmuley] Ketan Mulmuley. Computational Geometry. An Introduction
Through Randomized Algorithms. Prentice Hall, NJ,1994

[Manku] G.S. Manku, R. Motwani. Approximate Frequency Counts over
Data Streams, Proceedings of the 28th VLDB Conference, Hong
Kong, China, 2002. http://www.vldb.org/conf/2002/S10P03.pdf

OPPA European Social Fund
Prague & EU: We invest in your future.

