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1. Computational geometry today

 Popular: beauty as discipline, wide applicability

 Started in 2D with linear objects (points, lines,…), 
now 3D and nD, hyperplanes, curved objects,…

 Shift from purely mathematical approach and 
asymptotical optimality ignoring singular cases

 to practical algorithms, simpler data structures 
and robustness => algorithms and data structures 
provable efficient in realistic situations (application 
dependent)
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Space efficient algorithms - practical advantages

 Allow for processing larger data sets
– Algorithms with separate input and output 

need space for 2n points to store – O(n) extra space
– Space efficient algs – n points + O(1) or O(log n) space

 Greater locality of reference
– Practical for modern HW with memory hierarchies

(e.g., main RAM – ram on chip – registers, caches, disk 
latency, network latency )

 Less prone to failure
– no allocation of large amounts of memory, which can 

fail at run time
– good for mission critical applications

 Less memory => faster program
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2. In-place / in situ algorithms

Space efficient algorithms

 output is in the same location as the input and

 need only a small amount of additionaly memory
– in-place – O(1) extra storage

– in situ – O(log n) extra storage

In-place sorting

 In array – continuous block in memory
– Select sort, insert sort … yes, ܱሺ1ሻ	memory, ܱሺ݊2ሻ time

– Heapsort – yes, ܱሺ1ሻ	additional memory

– Quicksort – yes, ܱሺlog ݊ሻ	additional memory for 
recursion

– Mergesort – not in-place

 In list – linked lists in dynamical memory
– nth element in ܱሺ݊ሻ time

– Mergesort – ܱሺlog ݊ሻ	time, ܱሺlog ݊ሻ	additional memory
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Input:
Output:

Graham in-place algorithm

Graham-InPlaceHull(ܵ, ݊)
ܵ – an array of length ݊ with points in plane
Convex Hull in clockwise order

1. ݄← Graham-InPlace-Scan(ܵ, ݊, 1) // CW upper hull
2. for ݅ ← 0 . . . ݄	 െ 	2	do
3. swap ܵሾ݅ሿ 	↔ 	ܵሾ݅	 ൅ 	1ሿ // bubble ܽ to the right
4. ݄′	← Graham-InPlace-Scan(ܵ	 ൅ 	݄	 െ 	2, ݊	 െ 	݄	 ൅ 	2, െ1) // lower hull
5. return ݄	 ൅ 	݄′	 െ 	2

Stack at the beginning of the array
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Graham in-place algorithm
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[BrönnimannC]

Input:
Output:

Graham in-place algorithm
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Graham-InPlaceScan(ܵ, ݊, ݀)
ܵሾ0, n െ 1ሿ – array of length ݊ with points in plane, ݀ ൌ േ1 direction
Convex Hull in clockwise order

1. InPlace-Sort(ܵ, ݊, ݀)  // ݀ ൌ 1 CW for upper hull, ݀ ൌ െ1	CCW for LH
2. ݄	 ← 	1
3. for ݅	 ← 	1	. . . ݊	 െ 	1 do
4. while ݄	 ൒ 	2	and not right turn(	ܵሾ݄	 െ 	2ሿ, ܵሾ݄	 െ 	1ሿ, ܵሾ݅ሿ ) do
5. 			݄	 ← 	݄	 െ 	1 // pop top element from the stack 
6. swap ܵሾ݅ሿ 	↔ 	ܵሾ݄ሿ
7. 			݄	 ← 	݄	 ൅ 	1
8. return ݄
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Optimized Graham in-place algorithm

above ܽ, ܾ below	ܽ, ܾ

[BrönnimannC]
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3. Data stream algorithms [Indyk]

 Data stream = a massive sequence of data
– Too large to store (on disk, memory, cache,…)

 Examples
– Network traffic 

– Database transactions

– Sensor networks

– Satelite data feeds

– …

 Aproaches
– Ignore It

– Develop algorithms for dealing with such data

Motivation example [Muthukrishnan]

 Paul presents numbers x ൌ 1. . ݊ in random 
order, one number missing

 Carole must determine the missing number
but has only ܱሺlog	݊ ሻ bits of memory

 Compute the sum of the numbers and subtracts 
the incoming numbers one by one. 

ݎܾ݁݉ݑ݊	݃݊݅ݏݏ݅݉ ൌ 	
݊ሺ݊ ൅ 1ሻ

2
െ෍ݔሾ݅ሿ

௜ழ௡

 The missing number remains
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Motivation example [Muthukrishnan]

 And two missing numbers?

 Store sum of numbers ݏ and sum of squares ݏ′

݅ ൅ ݆ ൌ 	
݊ሺ݊ ൅ 1ሻ

2
	െ ݏ

݅2 ൅ ݆2 ൌ 	
݊ሺ݊ ൅ 1ሻሺ2݊ ൅ 1ሻ

6
	െ ′ݏ
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Basic data stream model [Indyk]

 Single pass over the data: ܽ1, ܽ2, … , ܽ݊
– Typically ݊ is known

 Bounded storage (typically ݊ఈ or log௖݊ or only ܿ)
– Units of storage: bits, words, or elements 

(such as points, nodes/edges, …)

– Impossible to store the data 

 Fast processing time per element
– Randomness is OK (in fact, almost necessary)
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Data stream models classification

 Input stream ܽ1, ܽ2, … , ܽ݊
– arrives sequentially, item by item

– describes an underlying signal ܣ, 
a 1D function ܣ:	ሾ1. . ܰሿ 	െ൐ 	ܴ

 Models differ on how ܽ݅’s describe the signal ܣ
(in decreasing order of generality):

a) Time series model  - ܽ݅ equals ܣ ݅ , in increasing ݅
b) Cash register model - ܽ݅ are increments to ,ሾ݆ሿܣ 	݅ܫ ൐

	0
c) Turnstyle model - ܽ݅ are updates to ܣ ݆ , ܷ݅ ∈ ܴ	
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a) Time series model (Časová řada)

 Stream elements ܽ݅ are equal to ܣ ݅
(samples of the signal)

 ܽ݅’s appear in increasing order of ݅

 Applications
 Observation of the traffic on IP address each 5 minutes

 NASDAQ volume of trades per minute
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b) Cash register model (registrační pokladna)

 ܽ݅ are increments to ܣ ݆ ᇱݏ

 Stream elements ܽ݅ ൌ ሺ݆, 	݅ܫ		 ,ሻ݅ܫ ൒ 	0 to mean

݅ܣ ݆ ൌ ݅ܣ െ 1 ݆ ൅ ݅ܫ
where 
– ݅ܣ is the state of the signal after seeing ݅-th item

– multiple ܽ݅ can increment given ܣ ݆ over time

 A most popular data stream model
– IP addresses accessing web server

– Source IP addresses sending packets over a link

– access many times, send many packets,…
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c) Turnstile model (turniket)

 ܽ݅ are updates to ܣ ݆ ᇱݏ

 Stream elements ܽ݅ ൌ ሺ݆, ܷ݅ሻ, 		݅ܫ	 ∈ ܴ to mean

݅ܣ ݆ ൌ ݅ܣ
െ 1 ݆ ൅ ܷ݅

where 
– ݅ܣ is the state of the signal after seeing ݅-th item

– ܷ݅ may be positive or negative

– multiple ܽ݅ can updategiven ܣ ݆ over time

 A most general data stream model
– Passengers in NY subway arriving and departing

– Hard to get reasonable solution in this model
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c) Turnstile model variants (for completness)

 strict turnstile model –	݅ܣ ݆ ൒ 0	for	all	݅
– People can only exit via the turnstile they entered in

– Databases – delete only a record you inserted

– Storage – you can take items only if they are there

 non-strict turnstile model – ݅ܣ ݆ ൏ 0	for	some	݅
– Difference between two cash register streams
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Examples: Iceberg queries

 Identify all elements whose current frequency 
exceeds support threshold  s = 0.1%.
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Stream
[Manku]

Ex: Iceberg queries – a) ordinary solution 

The ordinary solution in two passes

1. Pass – identify frequencies
– a set of counters is maintained. Each incoming item is 

hashed onto a counter, which is incremented. 

– These counters are then compressed into a bitmap, 
with a 1 denoting a large counter value. 

2. Pass – count exact values
– exact frequencies for only those elements are 

maintained which hash to a value whose 
corresponding bitmap value is 1

 Hard to modify for datastream – unknown 
frequencies after only 1st pass
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Ex: Iceberg queries – problem definition

 Input: threshold ݏ ∈ 0,1 ,error	ߝ ∈ 0,1 , length	N

 Output: list of items and frequencies              ߳ ≪ ݏ

 Guarantees:
– No item omitted (reported all items with frequency > ܰݏ)

– No item added (no item with frequency < ሺݏ െ ߳ሻܰ)

– Estimated frequencies not less than ߳ܰ of the true 
frequencies

 Ex: ݏ ൌ 0.1%, ߳ ൌ 0.01%	 െ ߳	about ଵ
ଵ଴
	to ଵ

ଶ଴
of	ݏ

– All element with freq. > 0.1% will output

– None of element with freq. < 0.09% will output

– Some elements between 0.09% and 0.1% will output
Felkel: Computational geometry
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Ex: Iceberg queries – b) sticky sampling

 Probabilistic algorithm, given threshold ݏ, error ߳
and probability of failure	ߜ

– Data structure ܵ of entries ሺ݁, ݂ሻ, 
݁ element, ݂ estimated frequency, 

r sampling rate, sampling probability 
ଵ

௥
	

 ܵ ← ∅, ݎ ← 1

 If ݁ ∈ ,then ሺ݁	ݏ ݂൅൅ሻ
else insert ݁, ݂ into ܵ with probability 

ଵ

௥

 ܵ sweeps along the stream as a magnet, attracting 
all elements which already have an entry in ܵ
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Ex: Iceberg queries – b) sticky sampling

 r changes over the stream, ݐ ൌ ଵ

ఢ
log ଵ

௦ఋ
, |ܵ| ൏ ݐ2

– ݎ elements	ݐ2 ൌ 1
– next 2ݐ elements ݎ ൌ 2
– next 4ݐ elements ݎ ൌ 	4	…

 whenever ݎ changes, we update ܵ
– For each entry ݁, ݂ 	in ܵ

• toss a coin until successful (head)

• if not successful (tail), decrement ݂
• if ݂ becomes 0, remove entry ሺ݁, ݂ሻ	from ܵ

 Output: list of items with threshold ݏ
i.e. all entries in S where ݂ ൒ ݏ െ ߳ ܰ

Felkel: Computational geometry

(24)



5

Ex: Iceberg queries – b) sticky sampling

 Space complexity is independent on ܰ

 For 
– support threshold ݏ ൌ 0.1%,	
– error ߳ ൌ 0.01%, 

– and probability of failure	ߜ ൌ 1%

 Sticky sampling computes results 
– with 1 െ ߜ ൌ 99% probability 

– using  at most 2t = 80 000 entries

– ݐ ൌ ଵ

ఢ
log ଵ

௦ఋ
ൌ 40	000, |ܵ| ൏ ݐ2
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Ex: Iceberg queries – b) sticky sampling
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Stream

 Create counters by sampling
(mind the order of counters)

34
15
30

28
31
41
23
35
19

[Manku]

Ex: Iceberg queries – c) lossy counting

 Deterministic algorithm

 Stream conceptually divided into buckets
– With ݓ ൌ items each ߝ/1

– Numbered from 1, current bucket id is ܾܿݐ݊݁ݎݎݑ

 Data structure ܦ of entries ሺ݁, ݂, ∆ሻ, 
– ݁ element,

– ݂ estimated frequency, 

– ∆ maximum possible error of ݂
(max number of occurences in previous buckets)

 At most 
ଵ

ఢ
log ଵ

ఌே
entries
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Ex: Iceberg queries – c) lossy counting

Felkel: Computational geometry

(28)

bucket 1 bucket 2 bucket 3

 Divide the stream into buckets

 Keep exact counters for items in the buckets

 Prune entries at bucket boundaries
(remove entries  for which ݂ ൅ ∆	൑ (	ݐ݊݁ݎݎݑܾܿ

[Manku]

Ex: Iceberg queries – c) lossy counting alg.

 ܦ ← ∅

 New element ݁
– If ݁ ∈ ܦ then increment its f

– If ݁ ∉ ܦ then 
• Create a new entry ݁, 1, ݐ݊݁ݎݎݑܾܿ െ 1
• If on the bucket border, i.e., ܰ	݉݀݋	ݓ ൌ 0 then delete entries with 
݂ ൅ ∆	൑ 	ݐ݊݁ݎݎݑܾܿ

• i.e., with zero or one occurence in previous buckets

– New ∆	ൌ ݐ݊݁ݎݎݑܾܿ െ 1 is maximum number of times ݁
could have occured in the first ܾܿݐ݊݁ݎݎݑ െ 1 buckets

 Output: list of items with threshold ݏ
i.e. all entries in S where ݂ ൒ ݏ െ ߳ ܰ
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Comparison of sticky and lossy sampling

 Sticky sampling performs worse
– Tendency to remember every unique element

– The worst case is for sequence without duplicates

 Lossy counting
– Is good in pruning low frequency elements quickly

– Worst case for pathological sequence which never 
occurs in reality
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Number of mutually different entries

 Input: stream ܽ1, ܽ2, … , ܽ݊, with repeated entries

 Output: Estimate of number of different entries

 Appl: # of different transactions in one day

 Precise deterministic algorithm:
– Array ܾሾ1. . ܷሿ, ܷ ൌ max number of different entries

– Init by ܾሾ݅ሿ 	ൌ 	0	for all ݅, counter ܿ ൌ 0
– For each ܽ݅

• if ܾሾܽ݅ሿ 	ൌ 	0	then incሺܿሻ, ܾሾ݅ሿ ൌ 1

– Return ܿ as number of different entries in ܾሾሿ
– ܱሺ1ሻ update and query times, ܱሺܷሻ	memory 
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Number of mutually different entries

 Approximate algorithm
– Array ܾሾ1. . log	ܷ ሿ, ܷ ൌ max number of different entries

– Init by ܾሾ݅ሿ 	ൌ 	0	for all ݅, counter ܿ ൌ 0
– Hash function ݄:	 1. . ܷ → ሼ0. . log ܷሽ
– For each ܽ݅

Set ܾሾ݄ሺܽ݅ሻሿ = 1

– Extract probable number of different entries from ܾሾሿ
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Sublinear time example

 Given mutually different numbers ܽ1, ܽ2, … , ܽ݊

 Determine number in upper half of values

 Alg: select ݇ numbers equally randomly 
– Compute their maximum 

– Return it as solution 

 Probability of wrong answer = probability of all 

selected numbers are from the lower half = 
ଵ

ଶ

௞

 For error ߜ take log ଵ
ఋ

samples

 Not useful for MIN, MAX selection
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4. Randomized algorithms

Motivation

 Array of elements, half of char ”a”, half of char ”b”

 Find ”a”

 Deterministic alg: ݊/2 steps of sequential search
(when all ”b” are first)

 Randomized: 
– Try random indices

– Probability of finding ”a” soon is high regardless of the 
order of characters in the array
(Las Vegas algorithm)
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Randomized algorithms

 May be simpler even if the same worst time

 We do not know a deterministic version 
(prime numbers)

 Deterministic algorithm does not exist

 Randomization can improve the average running 
time (with the same worst case time), while the 
worst time depends on our luck – not on the data 
distribution
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Randomized algorithms

a) Incremental algorithms
– Linear programming – see seminars

– Convex hulls

– Intersections, space subdivisions

b) Divide and conquer
– Random sampling

– Nearest neighbors, trapezoidal subdivisions

Felkel: Computational geometry
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Random sampling

 Hierarchical data structures

 Sublinear algorithms

 Randomized quicksort

 Approximate solutions on random samples
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Another classification

 Monte Carlo
– We always get an answer, often not correct

– Fast solution with risk of an error

– It is not possible to determine, if the answer is correct
→ run multiple times and compare the results

– Output can be understand as a random variable

– Example: prime number test

• Task: Find a ∈ 2,
௡

ଶ
such as n is divisible by a

• Algorithm: Sample 10 numbers from the given interval, answer 

 Las Vegas
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Las Vegas algorithms

Las Vegas
– We always get a correct answer

– The run time is random

– Sometimes fails –> perform restart

– Example: Randomized quicksort 
• No median necessary

• Simpler algorithm

• Independent on data distribution

• Return a correct result

• The result will be ready to uphold with a high probability

• ሺ݊ߠ log ݊ሻ	čas na lib. Výstup s velkou pravděpodobností

• Bad luck – we select the smallest element -> Selection sort
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Input:
Output:

Randomized quicksort

RQS = Randomized Quicksort
] sequence of data elements ܽ1, ܽ2, … , ܽ݊ ∈ ܵ

sorted set ܵ

1. Step 1: choose ݅ ∈ 1, ݊ in random
2. Step 2: Let A is a multiset ሼܽ1, ܽ2, … , ܽ݊ሽ

• if ݊ ൌ 1	then output(S)
• else – create three subsets of 	ܵ

൏
, 	ܵ

ൌ
, 	ܵ

൐
ܵ
൏
ൌ :ܣ	ݖ	ܾ ܾ ൏ ܽ݅

ܵ
ൌ
ൌ :ܣ	ݖ	ܾ ܾ ൌ ܽ݅

ܵ
൐
ൌ :ܣ	ݖ	ܾ ܾ ൐ ܽ݅

3. Step 3: Sort ܵ
൏
ܽ݊݀	ܵ

൐
4. Výstup: RQS(ܵ<), S=, RQS(ܵ>)
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Conclusion 

 Randomized algs. are often experimental

 We would not get perfect results, but nicely good

 We use randomized algorithm if we do not know 
how proceed
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