

OPPA European Social Fund Prague & EU: We invest in your future.

1. Computational geometry today
 Popular: beauty as discipline, wide applicability Started in 2D with linear objects (points, lines,), now 3D and nD, hyperplanes, curved objects,
 Shift from purely mathematical approach and asymptotical optimality ignoring singular cases
 to practical algorithms, simpler data structures and robustness => algorithms and data structures provable efficient in realistic situations (application dependent)
Feket: Computational geometry

Space efficient algorithms - practical advantages
 Allow for processing larger data sets Algorithms with separate input and output need space for 2n points to store - O(n) extra space Space efficient algs - n points + O(1) or O(log n) space
 Greater locality of reference Practical for modern HW with memory hierarchies (e.g., main RAM – ram on chip – registers, caches, disk latency, network latency)
 Less prone to failure
 no allocation of large amounts of memory, which can fail at run time good for mission critical applications
Less memory => faster program
Feter Computational geometry

a) Time series model (Časová řada)
 Stream elements a_i are equal to A[i] (samples of the signal)
 <i>a_i</i>'s appear in increasing order of <i>i</i>
 Applications Observation of the traffic on IP address each 5 minutes NASDAQ volume of trades per minute
1. + + + +
Fekel: Computational geometry

4. Randomized algorithms

Motivation

- Array of elements, half of char "a", half of char "b"
- Find "a"
- Deterministic alg: n/2 steps of sequential search (when all "b" are first)

Randomized:

- Try random indices
- Probability of finding "a" soon is high regardless of the order of characters in the array (Las Vegas algorithm)
 Example 1

Randomized algorithms

- May be simpler even if the same worst time
- We do not know a deterministic version (prime numbers)
- Deterministic algorithm does not exist
- Randomization can improve the average running time (with the same worst case time), while the worst time depends on our luck – not on the data distribution

Random sampling

- Hierarchical data structures
- Sublinear algorithms
- Randomized quicksort
- Approximate solutions on random samples

Randomized quicksort				
RQS = Randomized Quicksort <i>nput:</i> sequence of data elements $a_1, a_2, \dots, a_n \in S$ <i>Dutput:</i> sorted set <i>S</i>				
1. Step 1: choose $i \in (1, n)$ in random 2. Step 2: Let A is a multiset $\{a_1, a_2,, a_n\}$ • if $n = 1$ then output(S) • else - create three subsets of $S < S = S < S < S < S < S < S < S < S < $				
3. Step 3: Sort <i>S</i> and <i>S</i>				
H. Vystup: RQS(S<), S=, RQS(S>)				
+ + +				
<i>ž ‡ ‡ + }</i>				
Feikel: Computational geometry				

Referer		
[Kolingerová]	Nové směry v algoritmizaci a výpočetní geometrii (1 a 2), přednáška z předmětu Aplikovaná výpočetní geometrie, MFF UK, 2008	
[Brönnimann]	Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms, Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004	
[BrönnimannC	Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull Algorithms. In Proceedings of the 5th Latin American Symposium on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.). Springer-Verlag, London, UK, UK, 494-507. http://dia.mo.rg/citation.dtm?/de50520	
[Indyk]	Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space Algorithms, MIT course	
[Muthukrishnan] Data streams: Algorithms and applications, ("adorisms" in Google)		
[Mulmuley]	Ketan Mulmuley. Computational Geometry. An Introduction Through Randomized Algorithms. Prentice Hall, NJ,1994	
[Manku]	G.S. Manku, R. Motwani. Approximate Frequency Counts over Data Streams, Proceedings of the 28th VLDB Conference, Hong	
***	Kong, Chuna, 2002 http://www.virth.org/cnaff200/2530Bna.pdf Fekel: Computational geometry (42)	

OPPA European Social Fund Prague & EU: We invest in your future.