PRA|HA * * %

PRA|GUE T

PRA|GA S
PRA|G

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.

CGl

KATEDRA POLITACOVE GRAFIKY A INTERAKCE

MODERN ALGORITHMS
(not only in computational geometry)

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
1 ce.felk.cvut.cz/course GE

Based on [Kolingeroval, [Bronnimann], and [Muthukrishnan]

Version from 22.12.2011

Modern algorithms

Computational geometry today
In-place / in situ algorithms
Data stream algorithms
Randomized algorithms

Sublinearni algoritmy

g
-+ Felkel: Computational geometryNazev prezentace, konference, apod.
DCG

1. Computational geometry today

Popular: beauty as discipline, wide applicability
Started in 2D with linear objects (points, lines,...),
now 3D and nD, hyperplanes, curved objects,...
Shift from purely mathematical approach and
asymptotical optimality ignoring singular cases

to practical algorithms, simpler data structures
and robustness => algorithms and data structures
provable efficient in realistic situations (application
dependent)

i %
DCG /

Space efficient algorithms - practical advantages

Allow for processing larger data sets

— Algorithms with separate input and output
need space for 2n points to store — O(n) extra space

— Space efficient algs — n points + O(1) or O(log n) space
Greater locality of reference
— Practical for modern HW with memory hierarchies
(e.g., main RAM — ram on chip — registers, caches, disk
latency, network latency)
Less prone to failure

— no allocation of large amounts of memory, which can
fail at run time

— good for mission critical applications
_ = L.ess memory => faster program

(4)

2. In-place /in situ algorithms

Space efficient algorithms
output is in the same location as the input and

need only a small amount of additionaly memory
— in-place — O(1) extra storage
— insitu - O(log n) extra storage

i %
DCG /

In-place sorting

In array — continuous block in memory
— Select sort, insert sort ... yes, 0(1) memory, 0(n?) time
— Heapsort — yes, 0(1) additional memory

— Quicksort — yes, 0(logn) additional memory for
recursion

— Mergesort — not in-place
In list — linked lists in dynamical memory
— nt element in O(n) time
— Mergesort — 0(logn) time, 0 (logn) additional memory

i %
DCG /

Graham in-place algorithm

Graham-InPlaceHull(S, n)
Input: § — an array of length n with points in plane
Output: Convex Hull in clockwise order

h < Graham-InPlace-Scan(S,n, 1) // CW upper hull
fori<—0...h — 2do
swap S[i] < S[i + 1] /I bubble a to the right
h' « Graham-InPlace-Scan(S + h — 2,n — h + 2,—1) // lower hull
retun h + h' — 2

aoroN=

Stack at the beginning of the array

/,/:' I { %
-+ Felkel: Computational geometry
DCGI i

Graham in-place algorithm

| |
compute upper hall

a0 Y Vi Vi Vi Vi V|

l.,|~.'j|j [_-_JH
a,l.'. S[hl,...,S[n=1] ‘

compute lower hll

S[h],. ... Sl — 1] |

l So).....Sh+H -2

[BronnimannC]
output hull

/,/1' I { %
-+ Felkel: Computational geometry
DCGI /50

Graham in-place algorithm

Graham-InPlaceScan(S, n, d)
Input: ~ S[0,n — 1] — array of length n with points in plane, d = +1 direction
Output: Convex Hull in clockwise order

1. InPlace-Sort(S,n,d) // d =1 CW for upper hull, d = —1 CCW for LH
2. he1

3. fori <« 1...n — 1do

4 while h > 2 and not right turn(S[h — 2], S[h — 1], S[i]) do

5. heh-1 /I pop top element from the stack

6 swap S[i] < S[h]

7 heh+1

8. return h

":": f -~
-+ DCGI Felkel: chpu::onm geometry %

Optimized Graham in-place algorithm

| |

partition
above a,b below a, b

[upper hull candidates l lower hull candidates |

compute upper hull

|.r| upper hull Ibl ‘ lower hull candidates |

W shift

| upper hull |Jr‘—i| lower hull candidates |

compute lower Tull

| convex lull I

‘*:’: f . [BronnimannC] ___
. DCGI owput bl
(10/38)

3. Data stream algorithms [Indyk]

= Data stream = a massive sequence of data
— Too large to store (on disk, memory, cache,...)
= Examples
— Network traffic
Database transactions
— Sensor networks
— Satelite data feeds

= Aproaches
— Ignore It
.~ Develop algorithms for dealing with such data

oot o
-+ DCGI Felkel: Cnmpu:\:\;)na\ geometry %

Motivation example [Muthukrishnan]

= Paul presents numbers x = {1..n} in random
order, one number missing

= Carole must determine the missing number
but has only 0(log n) bits of memory
Any idea?

= Compute the sum of the numbers and subtracts
the incoming numbers one by one.

o n(n+1) .
missing number = LI E Z x[i]

i<n

| |
1=

e missing number remains

‘*:’: e
-+ DCGI Felkel: Cumpu(l‘azlw;)na\ geometry %

Motivation example [Muthukrishnan]

= And two missing numbers?

= Store sum of numbers s and sum of squares s’

nn+1) s

i+j= =

n(n+1)(2n+1) 4
6

/‘/:L/ I +
-+ D C GI Felkel: Comw(l:\)or\a\ geometry %

i2+j2= !

Basic data stream model [Indyk]

= Single pass over the data: a,,a,, ..., a
— Typically n is known
= Bounded storage (typically n* or logn or only c)

— Units of storage: bits, words, or elements
(such as points, nodes/edges, ...)

— Impossible to store the data
= Fast processing time per element
— Randomness is OK (in fact, almost necessary)

n

/‘/:L/ I +
-+ D C GI Felkel: Comw(l:\)or\a\ geometry %

Data stream models classification

= Input stream a,, a,, ..., an
— arrives sequentially, item by item
— describes an underlying signal 4,
a 1D function 4: [1..N] —> R
= Models differ on how a;’s describe the signal 4
(in decreasing order of generality):
a) Time series model - a; equals A[i], in increasing i
b) Cash register model - a; are increments to A[j], Ii >
0

c) Turnstyle model

":": f -~
-+ DCGI Felkel: Cumpu(l‘a:;)na\ geometry %

- a; are updates to A[j], U; € R

a) Time series model (Casova Fada)

= Stream elements q; are equal to A[i]
(samples of the signal)

= @;'s appear in increasing order of i

= Applications
= Observation of the traffic on IP address each 5 minutes
= NASDAQ volume of trades per minute

":": f -~
-+ DCGI Felkel: Cumpu:ﬁl\;)na\ geometry %

b) Cash register model (registracni pokladna)

= g, are increments to A[j]'s
= Stream elements a;, = (j,[i), I; = 0to mean

Alil=A, L[1+1i
where
- A4, is the state of the signal after seeing i-th item
— multiple a; can increment given A[j] over time
= A most popular data stream model
— IP addresses accessing web server
— Source IP addresses sending packets over a link
_— access many times, send many packets,...

":": f -~
-+ DCGI Felkel: Cumpu(l‘a:;)na\ geometry %

¢) Turnstile model (turnikeft)

= g, are updates to A[j]'s
= Stream elements a; = (j,U;), I; € R to mean

Afj] = Ai _ U1+ U,
where
- A, is the state of the signal after seeing i-th item
- U; may be positive or negative
— multiple a; can updategiven A[j] over time
= A most general data stream model
— Passengers in NY subway arriving and departing
_— Hard to get reasonable solution in this model

Felkel: Computational geometry

“ DCGI

¢) Turnstile model variants (for completness)

= strict turnstile model — A,[j] = 0 for all i
— People can only exit via the turnstile they entered in
— Databases — delete only a record you inserted
— Storage - you can take items only if they are there
= non-strict turnstile model — 4,[j] < 0 for some i
— Difference between two cash register streams

/‘/:L/‘Z .

Examples: Iceberg queries

= |dentify all elements whose current frequency
exceeds support threshold s =0.1%.

O |_Jm]s] oooo
u EEO OOomm
] oom ooom
] omE oomo
] omO oooom
] OomO OoomOm
] oom oomOo@
] OmE oomOm
] EED ECOEOE
] EEO E0mEm
_— [Manku]

’,’:(/ I +
-+ D C GI Felkel: compu(:w)ona\ geometry %

Ex: Iceberg queries — a) ordinary solution

The ordinary solution in two passes

1. Pass — identify frequencies

— a set of counters is maintained. Each incoming item is
hashed onto a counter, which is incremented.

— These counters are then compressed into a bitmap,
with a 1 denoting a large counter value.
2. Pass — count exact values
— exact frequencies for only those elements are
maintained which hash to a value whose
corresponding bitmap value is 1
= Hard to modify for datastream — unknown
- ~-frequencies after only 1 pass %
“ DCGI)

Ex: Iceberg queries — problem definition

Input: threshold s € (0,1), error € € (0,1), length N
Output: list of items and frequencies €Ks

= Guarantees:
— No item omitted (reported all items with frequency > sN)
— No item added (no item with frequency < (s — €)N)
— Estimated frequencies not less than eN of the true
frequencies

= ExX:s=0.1%,e =0.01% — eabout% to% of s
— All element with freq. > 0.1% will output

— None of element with freq. < 0.09% will output
-~ 7= Some elements between 0.09% and 0.1% will out%

-

. DCGI Fekel: Cump\.:l:zlw;ma\ geometry

Ex: Iceberg queries — b) sticky sampling

= Probabilistic algorithm, given threshold s, error €
and probability of failure §

— Data structure S of entries (e, f),
e element, f estimated frequency,

r sampling rate, sampling probability %
m SeQre1l
= Ife esthen (e f++)
else insert (e, f) into S with probability%

= S sweeps along the stream as a magnet, attracting
all elements which already have an entry in-S

e

Ex: Iceberg queries — b) sticky sampling

1 1
= rchanges over the stream, t = ;log (E)' |S] < 2t

- 2telementsr =1
— next 2t elements r = 2
— next 4t elementsr = 4 ...

= whenever r changes, we update S
— Foreachentry (e,f)inS

« toss a coin until successful (head)
« if not successful (tail), decrement f
« if f becomes 0, remove entry (e, f) from S
= Output: list of items with threshold s
i.e. all entries in S where f > (s —)N

e

Ex: Iceberg queries — b) sticky sampling

= Space complexity is independent on N
= For

— support threshold s = 0.1%,

— error e = 0.01%,

— and probability of failure § = 1%
= Sticky sampling computes results

— with (1 — &) = 99% probability

— using at most 2t = 80 000 entries

1 1
- t="1log (5) =40000,|S| < 2¢

/‘/::’ I +
-+ D C GI Felkel Campu:::)or\a\ geometry %

Ex: Iceberg queries — b) sticky sampling

agute
*

oo
L]

- Create counters by sampling
(mind the order of counters)

/‘/::’ I +
-+ D C GI Felkel: Campu:::)or\a\ geometry %

Ex: Iceberg queries — ¢) lossy counting

= Deterministic algorithm

= Stream conceptually divided into buckets
— Withw = [1/¢] items each
— Numbered from 1, current bucket id is b
= Data structure D of entries (e, f, A),
- e element,
- f estimated frequency,

- A maximum possible error of f
(max number of occurences in previous buckets)

current

1 1 .
n At most ;log (5) entries

L

Ex: Iceberg queries — ¢) lossy counting

bucket 1 bucket 3
EOomo OmO0EEECO|oo
oomm OEEEEOC0|mm
OO0 jooEE@oojon
EECE EOEEEOCO|mO
OmOE EORECDOCO|om
OECE EOEOCOCm|Om
omoo [SEEEEEC S
E0Om DomEpooom|om
EOEE OEEpCOECR|(om
OOomm ETEIEEEC T

[Manku]
= Divide the stream into buckets

= Keep exact counters for items in the buckets

= Prune entries at bucket boundaries
(remove entries for which f + A < b yrent)

L

EXx: Iceberg queries — ¢) lossy counting alg.

s D« @

= New element e
— If e € D then increment its f
— Ife € D then

« Create a new entry (e, 1, bcurrent — 1)
« If on the bucket border, i.e., N mod w = 0 then delete entries with
f +A < bc‘urren[
« i.e., with zero or one occurence in previous buckets
— New A= b, — 1 is maximum number of times e
could have occured in the first b, — 1 buckets

current

= Output: list of items with threshold s
i.e. all entries in S where f > (s —€)N

e

Comparison of sticky and lossy sampling

= Sticky sampling performs worse

— Tendency to remember every unique element

— The worst case is for sequence without duplicates
= Lossy counting

— Is good in pruning low frequency elements quickly

— Worst case for pathological sequence which never
occurs in reality

i
e Jei®

Number of mutually different entries

= Input: stream a,, a,, ..., an, with repeated entries
= Output: Estimate of number of different entries
= Appl: # of different transactions in one day
= Precise deterministic algorithm:

— Array b[1..U], U = max number of different entries

Init by b[i] = 0forall i, counter c =0
For each q;
« if b[a;] = 0then inc(c), b[i] =1
— Return ¢ as number of different entries in b[]
- 0(1) update and query times, O(U) memory

’,’:(/ I +
-+ D C GI Felkel Compkl(l:w)or\a\ geometry %

Number of mutually different entries

= Approximate algorithm
— Array b[1..log U], U = max number of different entries
Init by b[i] = 0forall i, counter c =0
Hash function h: {1..U} - {0..log U}
For each q;
Set b[h(ai)] =1
Extract probable number of different entries from b[]

’,’:(/ I +
-+ D C GI Felkel: compu(l;—::)ona\ geometry %

Sublinear time example

= Given mutually different numbers a,, a,, ..., an
= Determine number in upper half of values

= Alg: select k numbers equally randomly
— Compute their maximum
— Return it as solution

= Probability of wrong answer = probability of all

k
selected numbers are from the lower half = G)

= Forerror § take log% samples
= Not useful for MIN, MAX selection

e

4. Randomized algorithms

Motivation

= Array of elements, half of char "a”, half of char "b”

= Find "a”

= Deterministic alg: n/2 steps of sequential search
(when all ’b” are first)

= Randomized:

— Try random indices

— Probability of finding "a” soon is high regardless of the
order of characters in the array
(Las Vegas algorithm)

i
e Jei®

Randomized algorithms

= May be simpler even if the same worst time

= We do not know a deterministic version
(prime numbers)

= Deterministic algorithm does not exist

= Randomization can improve the average running
time (with the same worst case time), while the

worst time depends on our luck — not on the data
distribution

e

Randomized algorithms

a) Incremental algorithms
— Linear programming — see seminars
— Convex hulls
— Intersections, space subdivisions

) Divide and conquer
— Random sampling
— Nearest neighbors, trapezoidal subdivisions

i
e Jei®

Random sampling

= Hierarchical data structures

= Sublinear algorithms

= Randomized quicksort

= Approximate solutions on random samples

/‘/:L/ I +
-+ D C GI Felkel: compu(l;\)ona\ geometry %

Another classification

= Monte Carlo
— We always get an answer, often not correct
— Fast solution with risk of an error

It is not possible to determine, if the answer is correct
— run multiple times and compare the results

— Output can be understand as a random variable
Example: prime number test

+ Task: Finda € (2, %) such as n is divisible by a
« Algorithm: Sample 10 numbers from the given interval, answer

= Las Vegas

/‘/:L/ I +
-+ D C GI Felkel: Comw(l;:\)or\a\ geometry %

Las Vegas algorithms

Las Vegas
— We always get a correct answer
— The run time is random
— Sometimes fails —> perform restart
Example: Randomized quicksort
« No median necessary
« Simpler algorithm
« Independent on data distribution
« Return a correct result
 The result will be ready to uphold with a high probability
« f(nlogn) ¢as na lib. Vystup s velkou pravdépodobnosti
« Bad luck — we select the smallest element -> Selection sort

":": f -~
-+ DCGI Felkel: Cumpu(l::\;)na\ geometry %

Randomized quicksort

RQS = Randomized Quicksort
Input: sequence of data elements a,, a,, ...,a, € S
Output: sorted set §

1. Step 1: choose i € (1,n) in random
2. Step 2: Let Ais a multiset {a,, a,, ..., a,}
« if n = 1then output(S)
- else —create three subsetsof § , §_, §
S ={bzA:b<a} -
S ={bzA:b=a}
S ={bzA:b>a}
3. Step3iSortSs _ and S
4. Vystup: RQS(S<), S=, RQS(S>)

":": f -~
-+ DCGI Felkel: Cumpu(l:;\;)na\ geometry %

>

VoA

Conclusion

= Randomized algs. are often experimental
= We would not get perfect results, but nicely good

= We use randomized algorithm if we do not know
how proceed

- <+
+ Felkel: Computational geometry %
DCGI 1130

References

[Kolingerova] Nové sméry v algoritmizaci a vypocetni geometrii (1 a 2),
prednaska z predmétu Aplikovana vypocetni geometrie, MFF UK,
2008

[Brénnimann] Hervé Bronnimann. Towards Space-Efficient Geometric Algorithms,
Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004

[BrénnimannC]Hervé Broénnimann, et al. 2002. In-Place Planar Convex Hull
Algorithms. In Proceedings of the 5th Latin American Symposium
on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.).
Springer-Verlag, London, UK, UK, 494-507.
hitp://dl.acm.org/citation.cfm?id=690520

[Indyk] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space
Algorithms, MIT course

[Muthukrishnan] Data streams: Algorithms and applications, (“adorisms” in Google)

[Mulmuley] Ketan Mulmuley. Computational Geometry. An Introduction

Through Randomized Algorithms. Prentice Hall, NJ,1994
[Manku] G.S. Manku, R. Motwani. Approximate Frequency Counts over
Data Streams, Proceedings of the 28th VLDB Conference, Hong
Kong,-China, 2002_ ntip:/wmw idn 10P03 pf

Felkel: Computational geometry
DCGI

PRA|HA * * %

PRA|GUE T

PRA|GA S
PRA|G

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.

