

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

ARRANGEMENTS (uspořádání)

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz http://service.felk.cvut.cz/courses/X36VGE

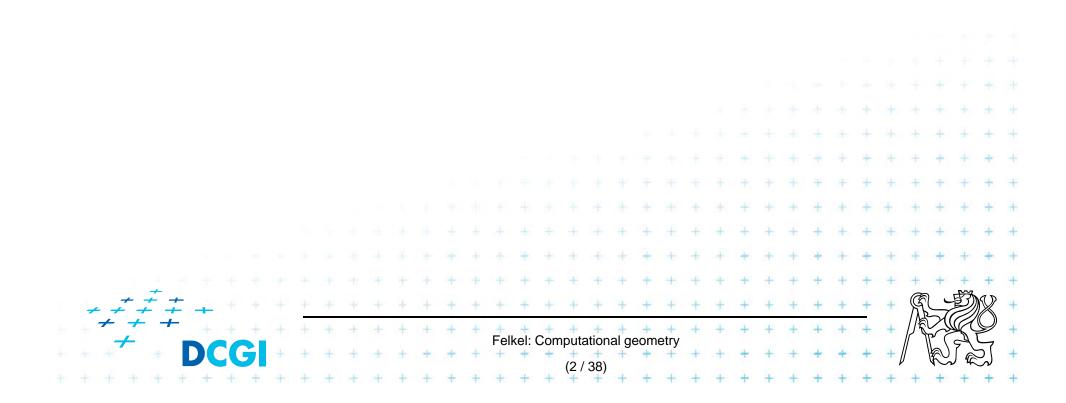
Based on [Berg], [Mount]

Version from 16.12.2011

Talk overview

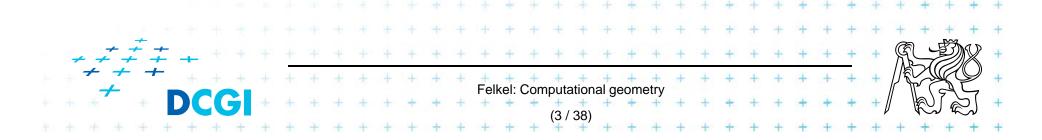
Arrangements of lines

- Incremental construction
- Topological plane sweep



Line arrangement

- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on lines in the plane
- Defined on terms of set of lines (set of points up to now) but
- Typical application is solving problems of point sets in dual plane

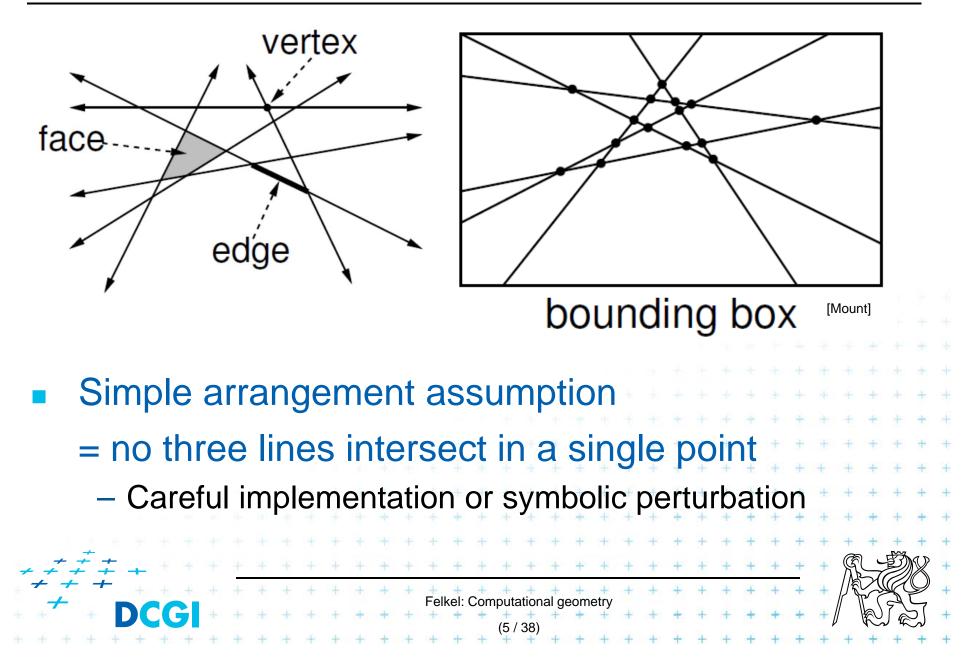


Line arrangement

- A finite set L of lines subdivides the plane into a cell complex, called arrangement A(L)
- Can be defined also for curves & surfaces...
- In plane, arrangement defines a planar graph
 - Vertices intersections of lines (2 or more)
 - Edges intersection free segments (or rays or lines)
 - Faces convex regions containing no line (possibly unbounded)
- Formal problem: graph must have bounded edges
 - Topological fix: vertex in infinity
 - Geometrical fix: BBOX, often enough as abstract with corners $\{-\infty, -\infty\}, \{\infty, \infty\}$

Felkel: Computational geometry

Line arrangement



Combinatorial complexity of line arrangement

- O(n²)
- Given n lines in general position, max numbers are - Vertices $\binom{n}{2} = \frac{n(n-1)}{2}$ - each line intersect n – 1 others - n-1 intersections create n edges - Edges n^2 on each of *n* lines - Faces $\frac{n(n+1)}{2} + 1 = {n \choose 2} + n + 1$ $f_0 = 1$ $f_n = f_{n-1} + n$ $f_{n} = f_{0} + \sum_{i=1}^{n} i = \frac{n(n+1)}{2} + 1$ n=1 n=2 f₁ = 2 $t_2 = 4$ $t_3 = 7$ Felkel: Computational geometry

Construction of line arrangement

(0. Plane sweep method)

- O(n² log n) time and O(n) storage
 plus O(n²) storage for the arrangement
 (log n heap access, n² vertices, edges, faces)
- 1. Incremental method
 - $O(n^2)$ time and $O(n^2)$ storage
 - Optimal method

after processing

- 2. Topological plane sweep
 - $O(n^2)$ time and O(n) storage only
 - Does not store the result arrangement
 - Useful for applications that may throw the arrangement

Felkel: Computational geometry

1. Incremental construction of arrangement

- O(n²) time, O(n²) space
 ~size of arrangement => it is an optimal algorithm
- Not randomized depends on n only, not on order
- Add line l_i one by one (i = 1 ... n)
 - Find the leftmost intersection with BBOX among 2(*i*-1)+4 edges on the BBOX ...O(i)
 - Trace the line through the arrangement $A(L_{i-1})$ and split the intersected facesO(i) – why? See later
 - Update the subdivision (cell split) ...O(1)
- Altogether O(n^2) • $\neq \neq \neq \neq = +$ • DCGI • Felkel: Computational geometry (8 / 38)

1. Incremental construction of arrangement

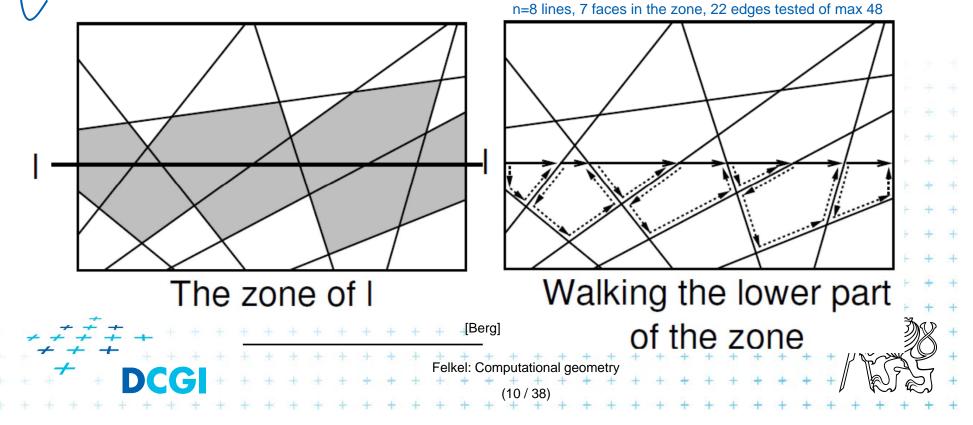
Arrangement(*L*)

Input: Set of lines *L* in general position (no 3 intersect in 1 common point) *Output:* Line arrangement A(L) (resp. part of the arrangement stored in BBOX B(L) containing all the vertices of A(L))

1.	Con	Compute the BBOX $B(L)$ containing all the vertices of $A(L)$																		$O(n^2)$												
2.	Construct DCEL for the subdivision induced by <i>B</i> (<i>L</i>)																			.O(1)												
3.																																
4.	4. find edge <i>e</i> , where line I_i intersects the BBOX of $2(i-1)+4$ edgesO(i)															-																
5.																																
<u>6</u> .	while f is in $B(L)$ (f = bounded face – in the BBOX) O(???)															+																
7.	7. split <i>f</i> and set <i>f</i> to be the next intersected face + + + + + + + +															+																
8.		update the DCEL (split the cell)O(1)															.0(1)	+++++++++++++++++++++++++++++++++++++++														
																			÷			+	÷	÷	+	÷	+	+	÷	÷	+ + +	+
																÷	+	+	+	+	+	t	+	+	+	+	+	+	+	+	+ + +	+
												+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + +	+
+	. 7 +							+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	++	+	+	+	+	ଜୀ	-Bhu	P +
<i>+ +</i> -	$ \stackrel{+}{\leftarrow} \stackrel{+}{\leftarrow} $	t.		+ +	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R	ZÇÇ	» ₊
+ +			G	+	+	+	+	+	+	+	+	+	⊢ell	kel:	el: Compu		outationa + + (0 / 38)				+	+ +		+	+	+	+	+	+	// W		+
+ + +	+ + +	+	+ +	+ +	+	+	÷	+	+	+	+	+	+	+	+	(97	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + +	+

Tracing the line through the arrangement

- Walk around edges of current face (face walking)
- Determine if the line *I_i* intersects this edge
- When intersection found, jump to the face on the other side of this edge



Tracing the line through the arrangement

- Number of traversed edges determines the insertion complexity
- Naïve estimation would be O(i²) traversed edges
 (*i* faces, *i* lines per face, i² edges)
- According to the Zone theorem, it is O(*i*) edges only!

Zone theorem

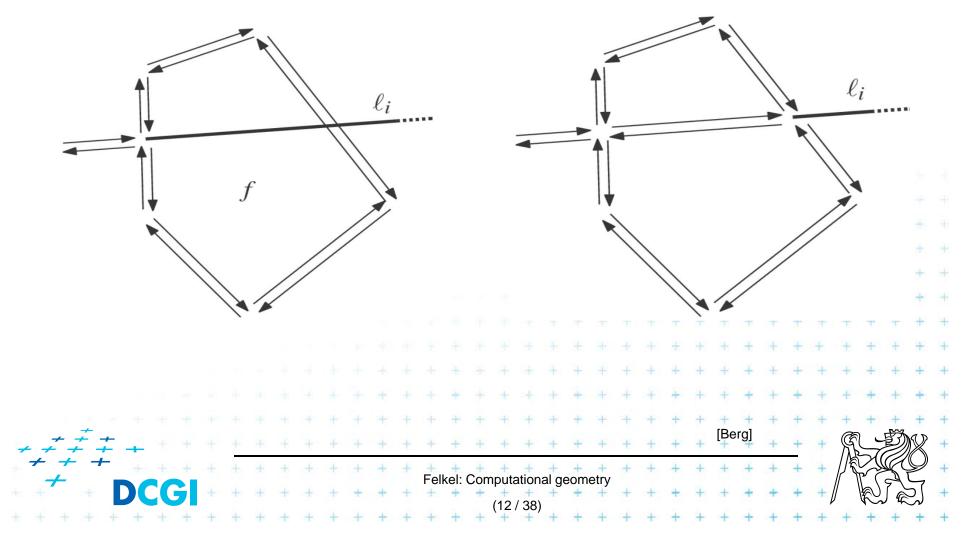
= given an arrangement A(L) of *n* lines in the plane and given any line *I* in the plane, the total number of edges in all the cells of the zone $Z_A(L)$ is at

Felkel: Computational geometry

MOST 6*n*. For proof see [Mount, page 69]

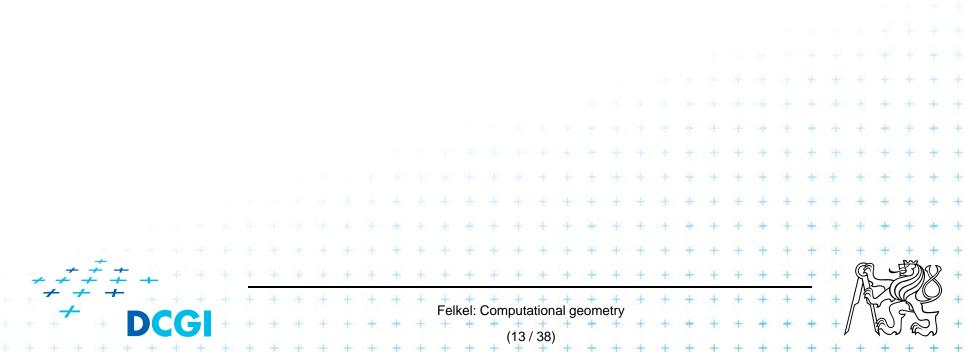
Cell split

 2 new face records, 1 new vertex, 2+2 new halfedges + update pointers ... O(1)



Complexity of incremental algorithm

- n insertions
- O(i) = O(n) time for one line insertion (Zone theorem)
- => Complexity: $O(n^2) + n.O(i) = O(n^2)$



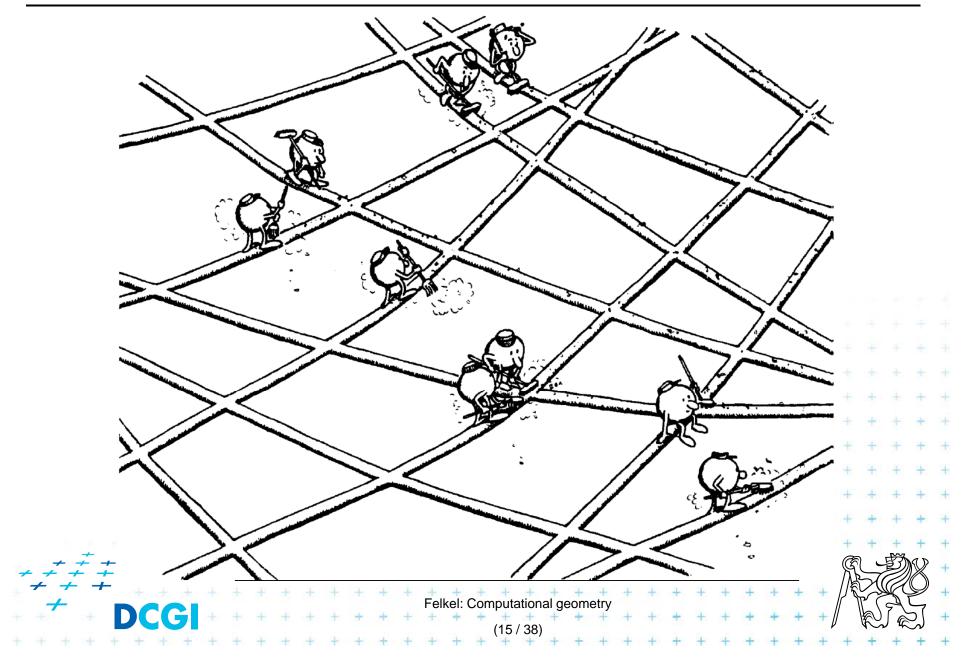
2. Topological plane sweep algorithm

- Complete arrangement needs $O(n^2)$ storage
- Often we need just to process each arrangement element just once – and we can throw it then
- Classical Sweep line algorithm
 - needs O(n) storage
 - needs log *n* for heap manipulation in $O(n^2)$ event points

Felkel: Computational geometr

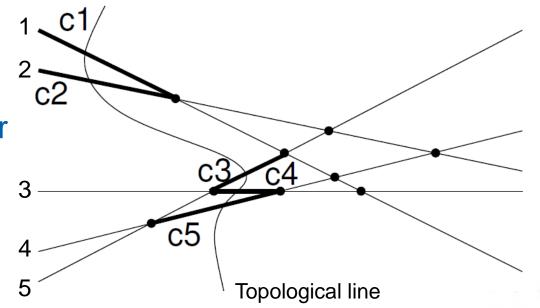
- => O(n² log n) algorithm
- Topological sweep line TSL
 - disperses O(log *n*) factor in time
 - array of neighbors and a stack of ready vertices
 - $\Rightarrow O(n^2)$ algorithm

Illustration from Edelsbrunner & Guibas



Topological line and cut

- Topological line (curve) (an intuitive notion)
- Monotonic line in y-dir
- intersects each line exactly once (as a sweep line)



Cut in an arrangement A

is a sequence of edges c₁, c₂,...,c_n in A (one taken from each line), such that for 1 ≤ i ≤ n-1, c_i and c_{i+1} are incident to the same face of A and c_i is above and c_{i+1} below the face
 Edges not necessarily connected

Topological plane sweep algorithm

Starts at the leftmost cut

- Consist of left-unbounded edges of A (ending at $-\infty$)
- Computed in O(n log n) time inverse order of slopes

ready vertex topological

sweep line

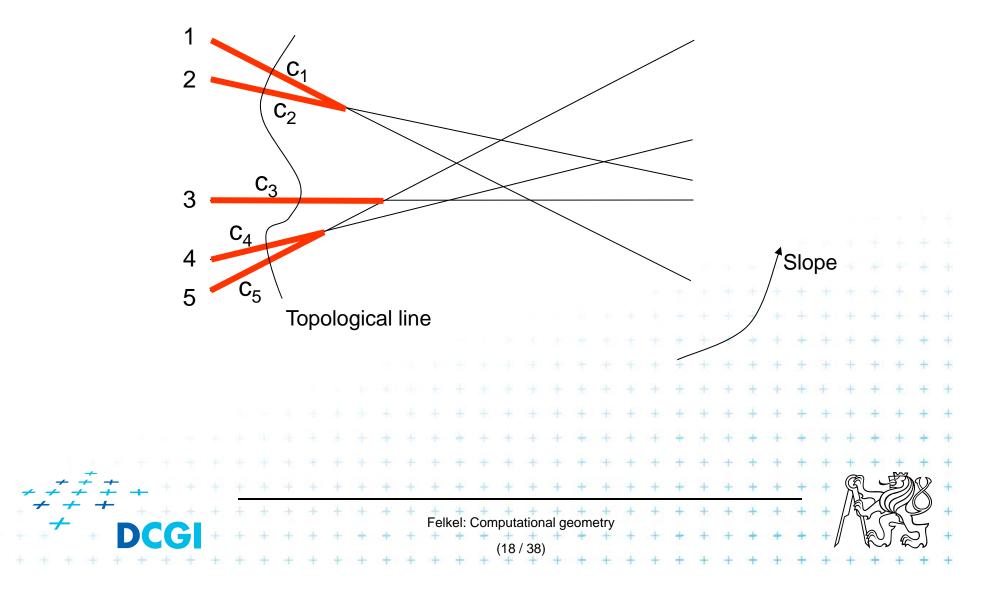
- The sweep line is
 - pushed from the leftmost cut to the rightmost cut
 - Advances in elementary steps

Elementary step

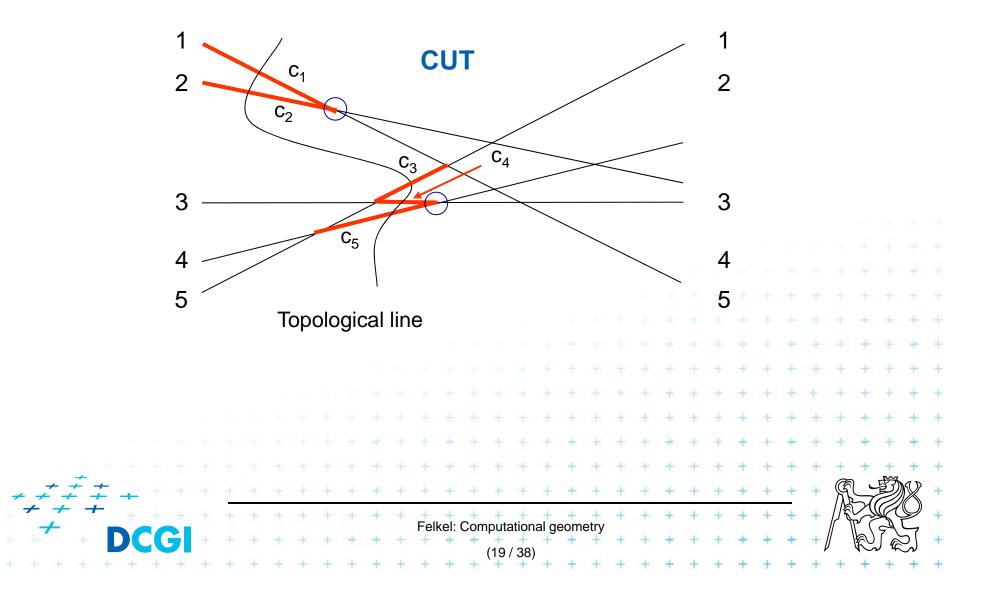
- = Processing of a *ready vertex* (intersection of consecutive edges at their right-point)
- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest x)
- Searching of smallest x would need O(log n) time

Felkel: Computational geometry

The leftmost cut



The cut during the topological plane sweep



How to determine the next right point?

- Elementary step (intersection at edges right-point)
 - Is always possible (e.g., the point with smallest x)
 - But searching the smallest x would need O(log n) time
 - We need O(1) time
- Right endpoint of the edge in the cut results from
 - a line of *smaller slope* intersecting it *from above* (traced from L to R) or
 - line of larger slope intersecting it from below.
- Use Upper and Lower Horizon Trees (UHT, LHT)
 - Common segments of UHT and LHT belong to the cut

Felkel: Computational geometry

Intersect the trees, find pairs of consecutive edges

 $\neq \pm$ use the right points as legal steps (push to stack)

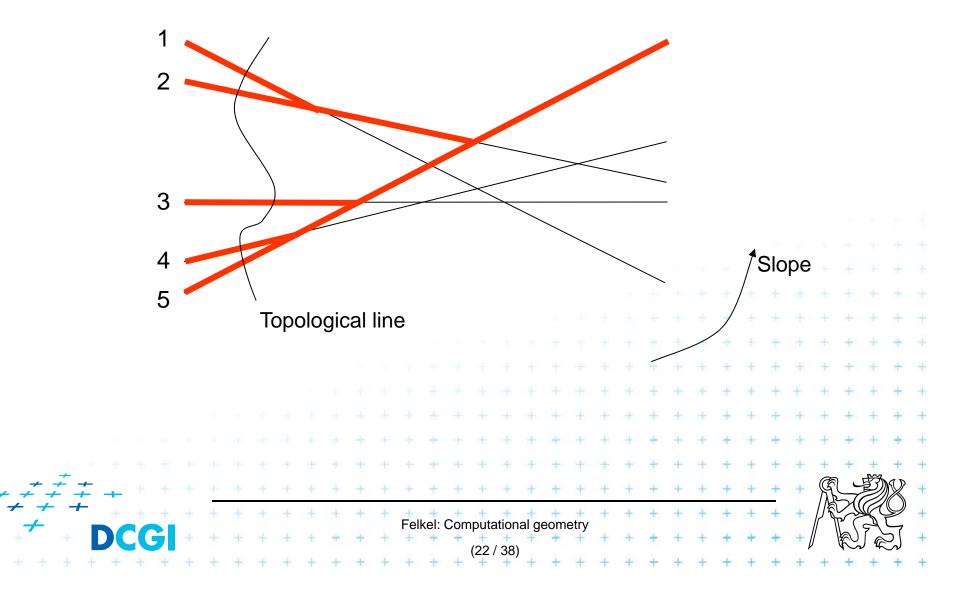
Upper and lower horizon tree

- Upper horizon tree (UHT)
 - Insert lines in order of decreasing slope
 - When two edges meet, keep the edge with higher slope and trim the edge with lower slope
 - To get one tree and not the forest of trees (if not connected) add vertical line in $+\infty$
 - Left endpoints of the edges in the cut do not belong to the tree
- Lower horizon tree (LHT) is symmetrical
- UHT and LHT serve for right endpts determination

Felkel: Computational geometry

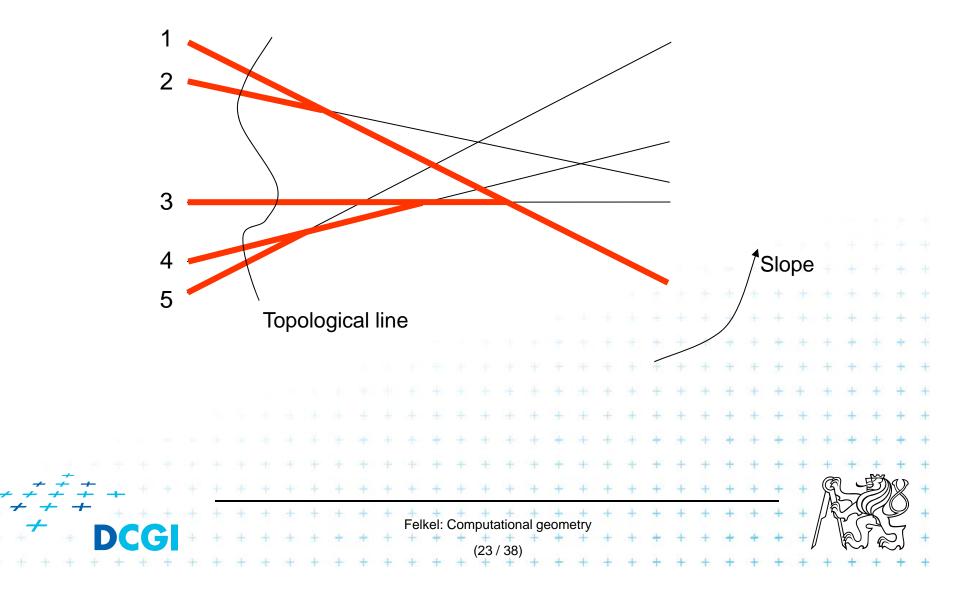
Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope



Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope



Upper horizon tree (UHT) – init. construction

Felkel: Computational geome

new line

- Insert lines in order of decreasing slope
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over segment
 - Such segment is no longer part of the upper chain
 - O(*n*) segments in UHT
 - => O(n) initial construction
 - (after n log n sorting of the lines)

Upper horizon tree (UHT) – update

- After the elementary step
- Two edges swap position along the sweep line
- Lower edge l
 - Reenter to UHT
 - Terminate at nearest edge of UHT
 - Start in edge below in the current cut
 - Traverse the face in CCW order
 - Intersection must exist, as *l* has lower slope than the other edge from *v* and both belong to the same face

Felkel: Computational geome

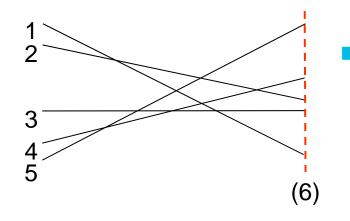
Ready vertex

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1. Line equation coefficients - E [1:n] 2. Upper horizon tree – UHT [1*:n*] 3. Lower horizon tree – LHT [1*:n*] 4. Order of lines cut by the sweep line – C [1:n] Edges along the sweep line - N [1:n] 5. 6. Stack for ready vertices (events) – S (*n* number of lines) Felkel: Computational geometry

1) Line equation coefficients *E* [1:*n*]



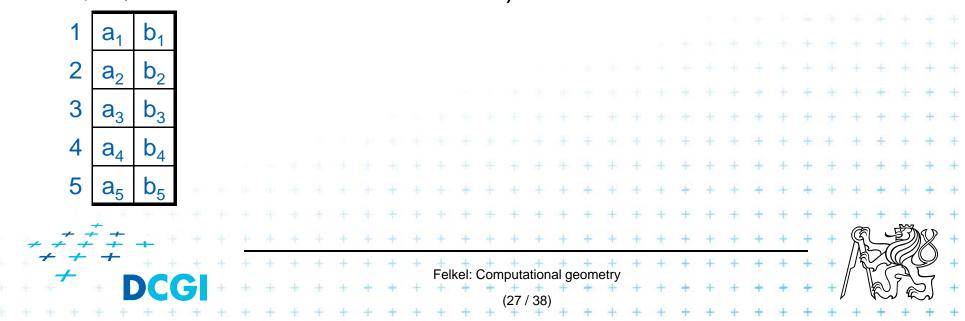
Array of line

equations E

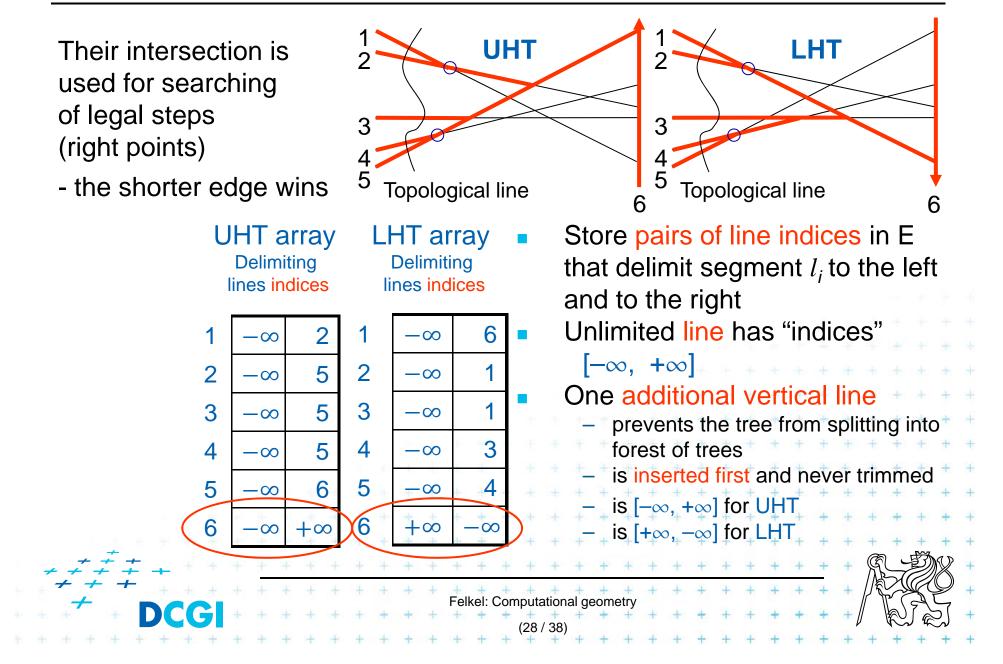
 $y = a_i x + b$

Array of line equation coefs. E

- Contains coefficients a_i and b_i of line equations $y = a_i x + b_i$
- E is indexed by the line index
- Lines are ordered according to their slope (angle from -90° to 90°)



2) and 3) – Horizon trees UHT and LHT



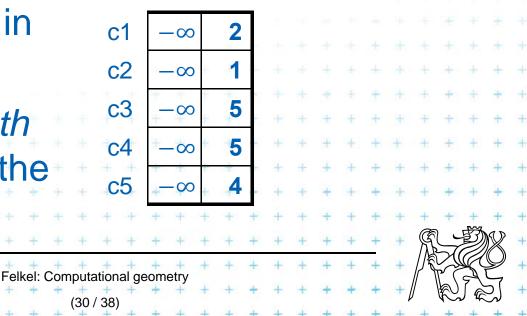
4) Order of lines cut by sweep line – C [1:n]

- The topological sweep line cuts each line once
- Order of these cuts (along the topological sweep line) is stored in array C as a sequence of line indices
- For the initial leftmost cut, CUT Lines C Indexes of supthe order is the same as in E porting lines Index *ci* addresses *i-th* line from top c2 along the sweep line c3 c4**c5** 5 Felkel: Computational geometry

5) Edges along the sweep line – N [1:*n*]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is the same as in C (this is the way used in the original paper)
- Index *ci* addresses *i-th* edge from top along the sweep line

CUT edges N Pairs of line indices delimiting the edge

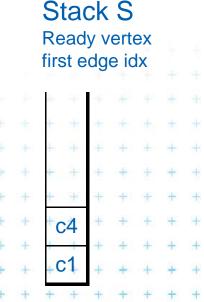


6) Stack S

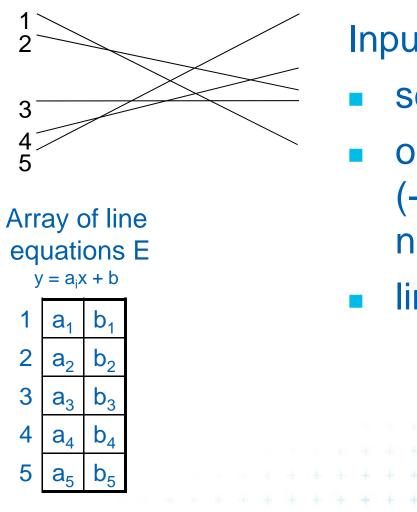
- The exact order of events is not important
- Alg. can process any of the "ready vertex"
- Event queue is therefore replaced by a stack (faster – O(1) instead of O(log n) of the queue)

Felkel: Computational geometry

- The stack stores just the upper edge c_i
- Intersection in the ready vertex is computed between stored c_i and c_{i+1}

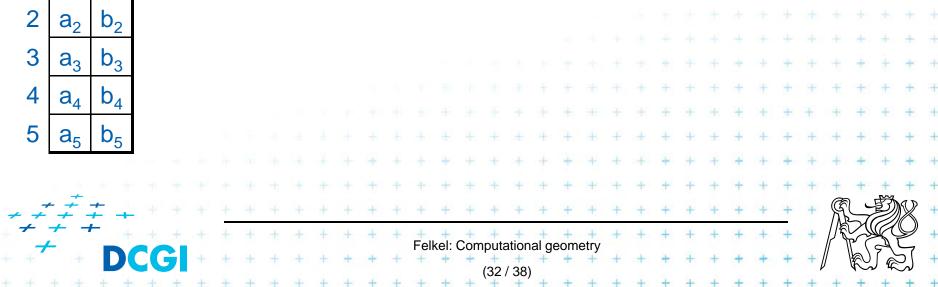


Topological sweep line demo

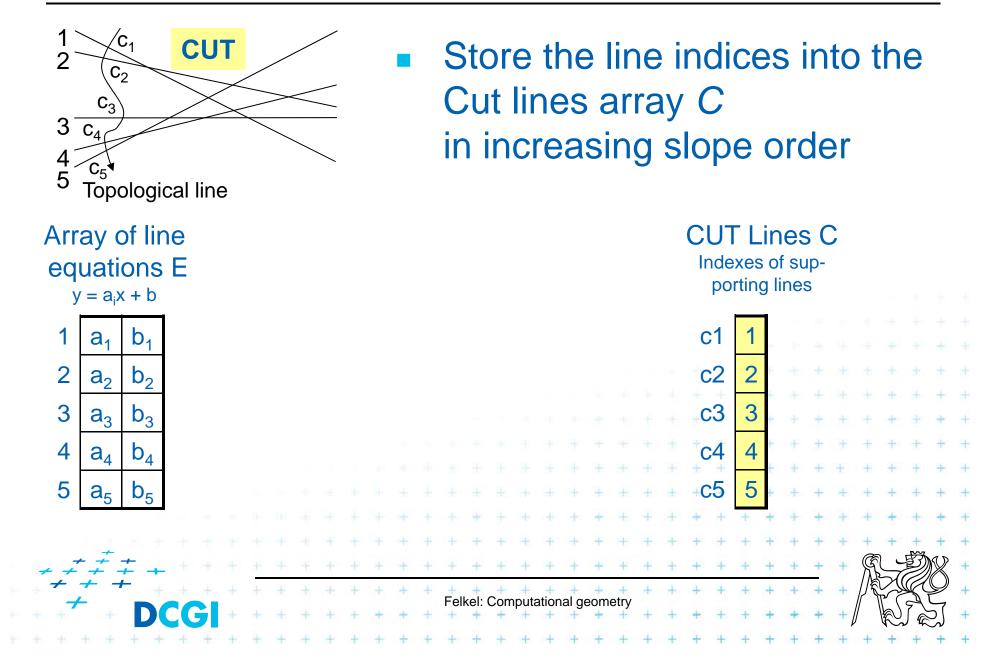


Input

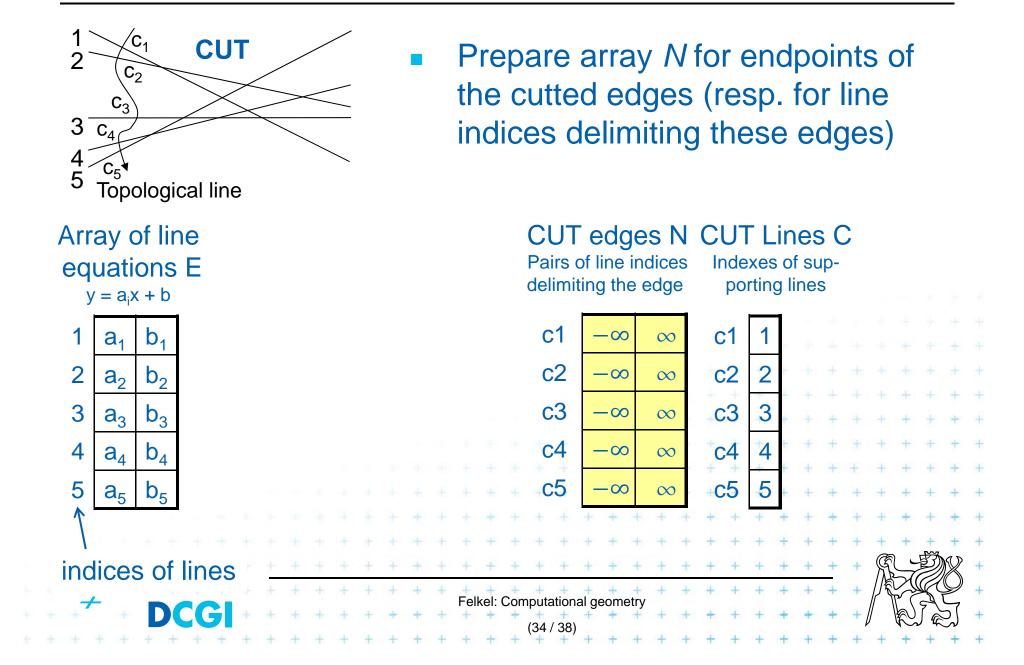
- set of lines L in the plane
- ordered in increasing slope $(-90^{\circ} \text{ to } 90^{\circ}), \text{ simple},$ not vertical
- line parameters in array E



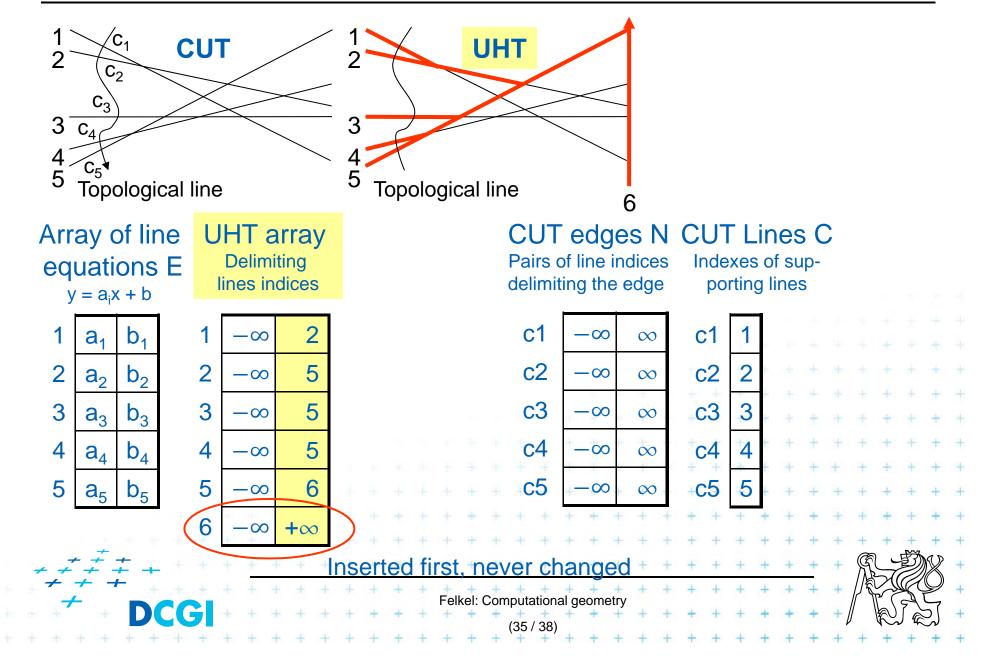
1. Initial leftmost cut - C



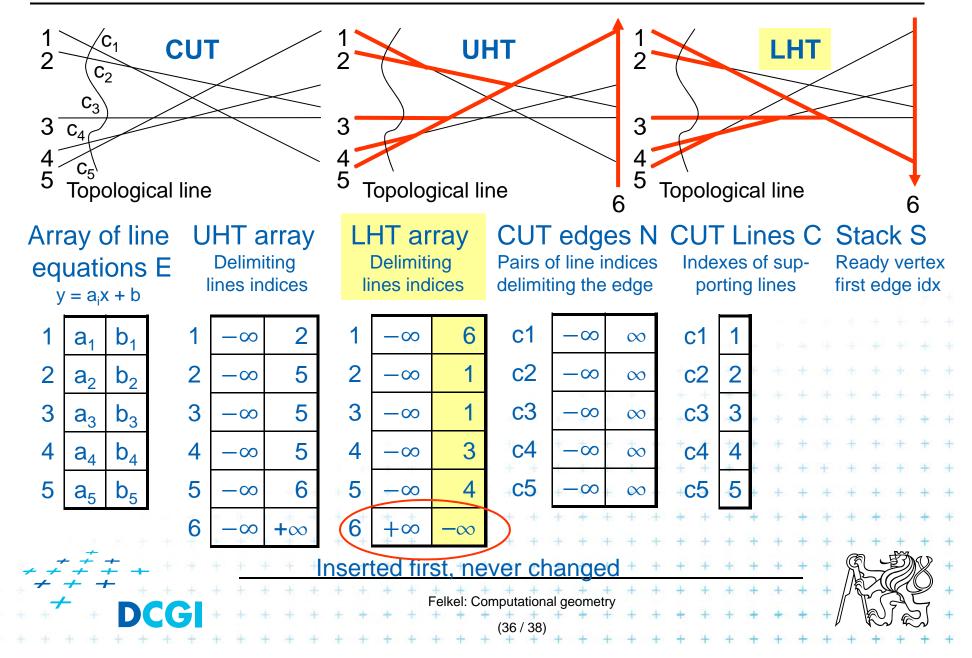
1. Initial leftmost cut - N



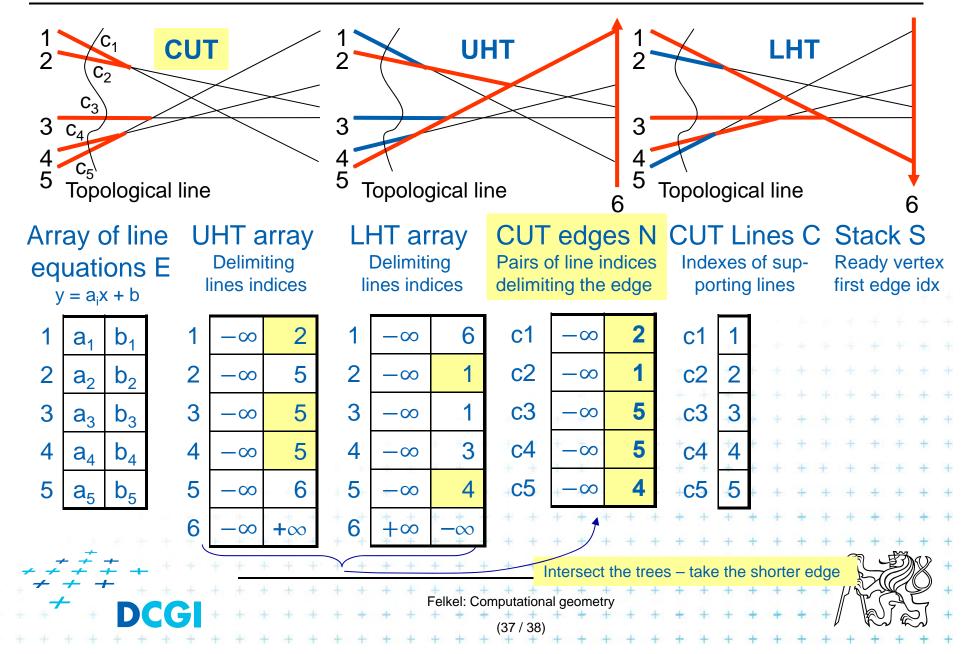
2a) Compute Upper Horizon Tree - UHT



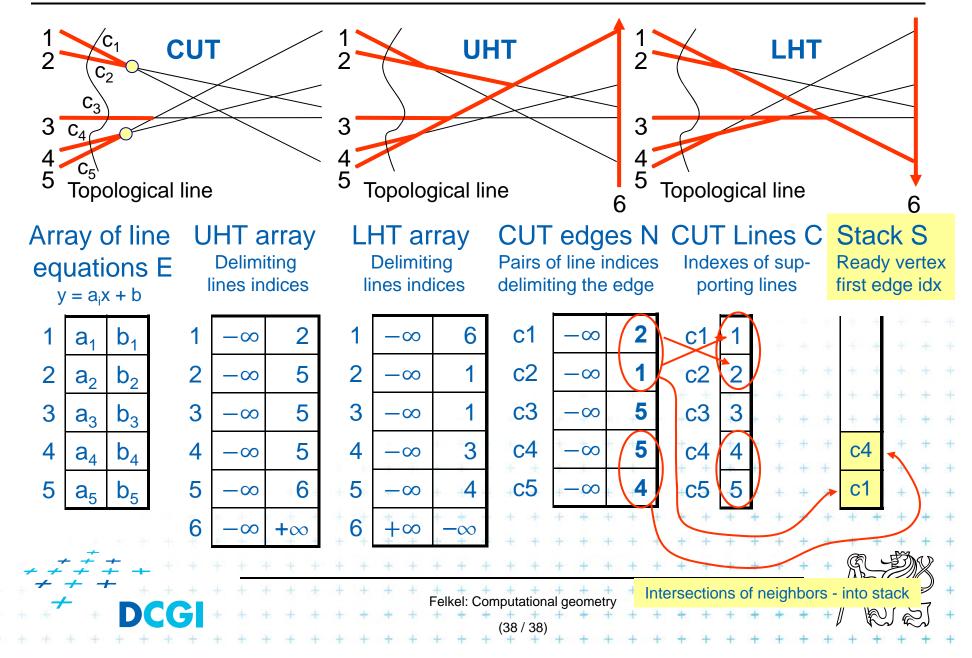
2b) Compute Lower Horizon Tree - LHT



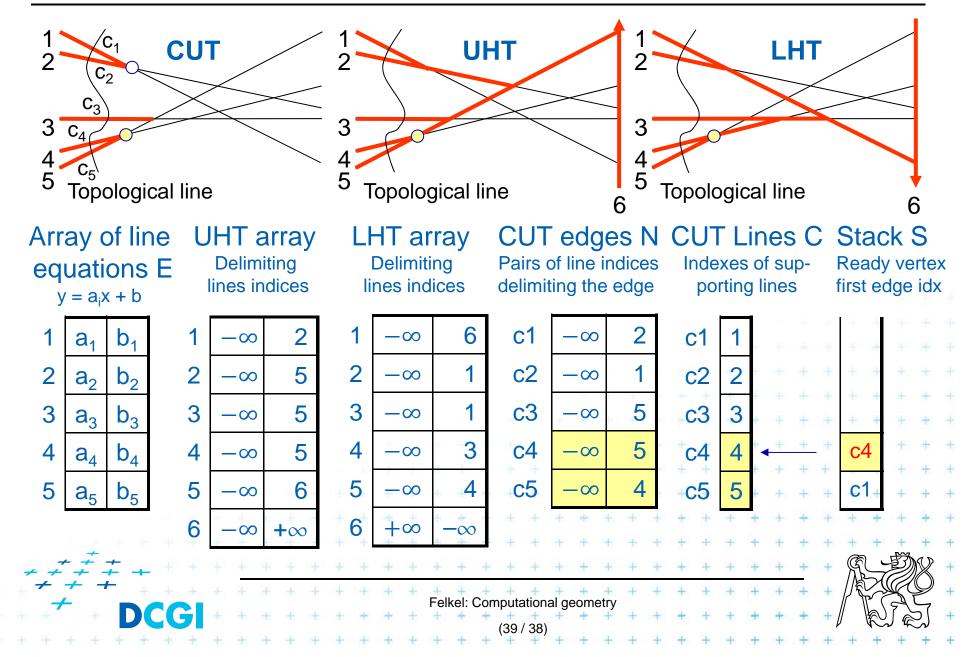
3a) Determine right delimiters of edges - N



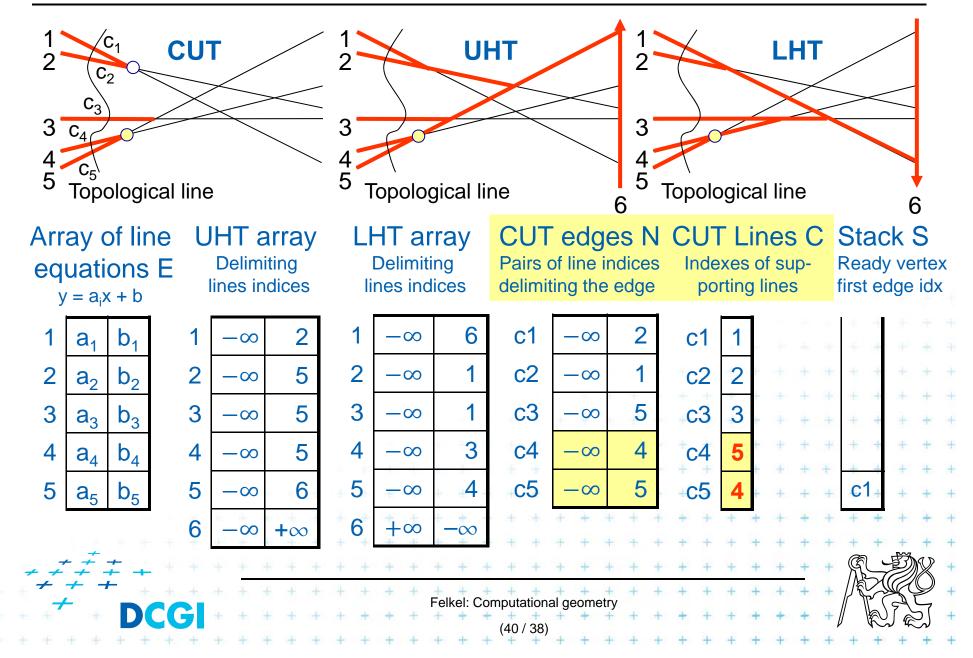
3b) Ready vertices = int. of neighbors – S



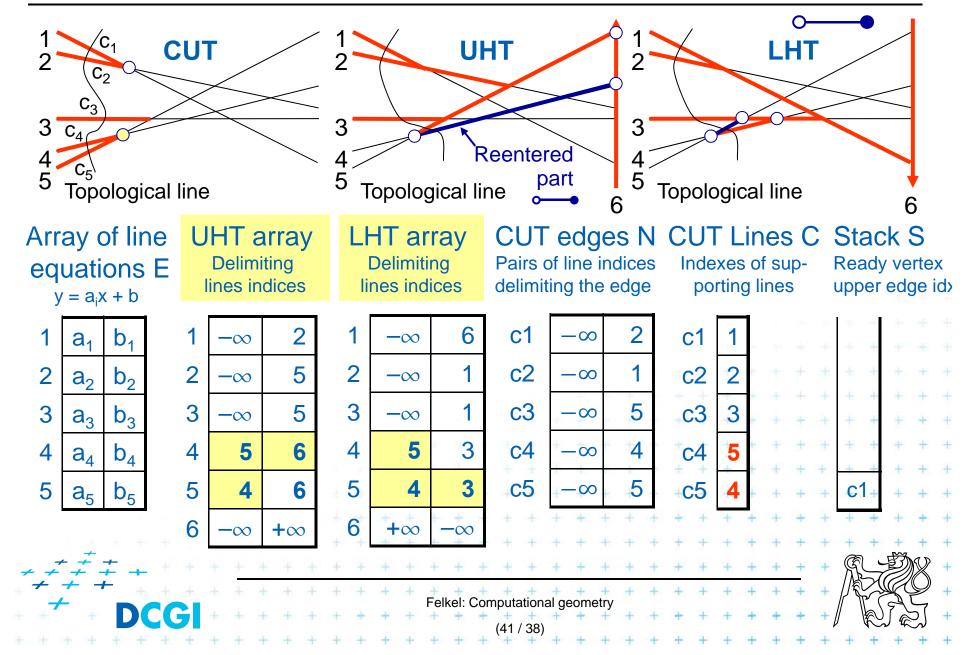
4a) Pop ready vertex from S – process c4



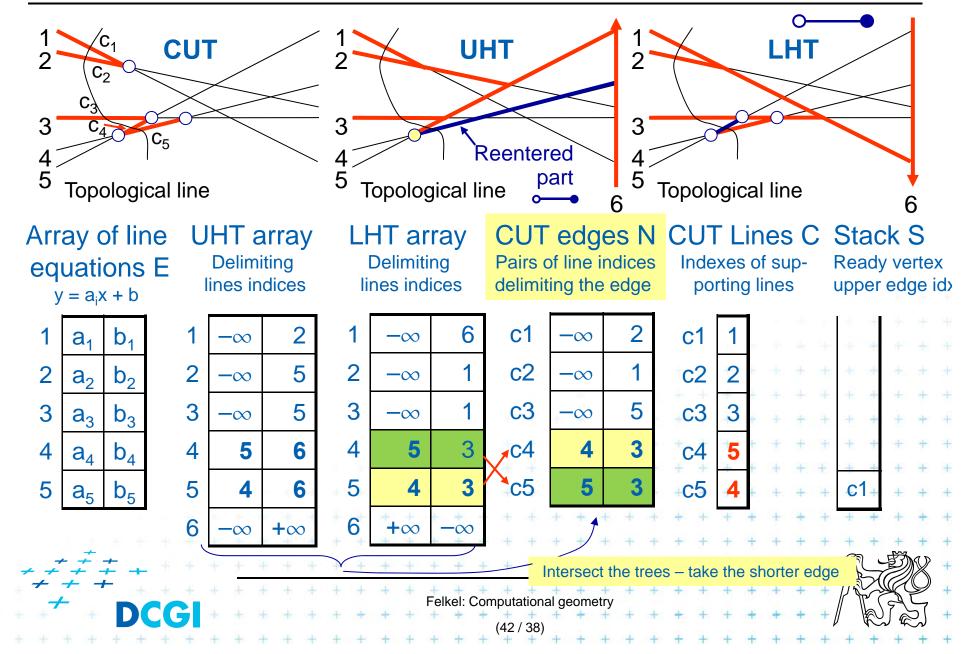
4b) Swap lines c4 and c5 – swap 4 and 5



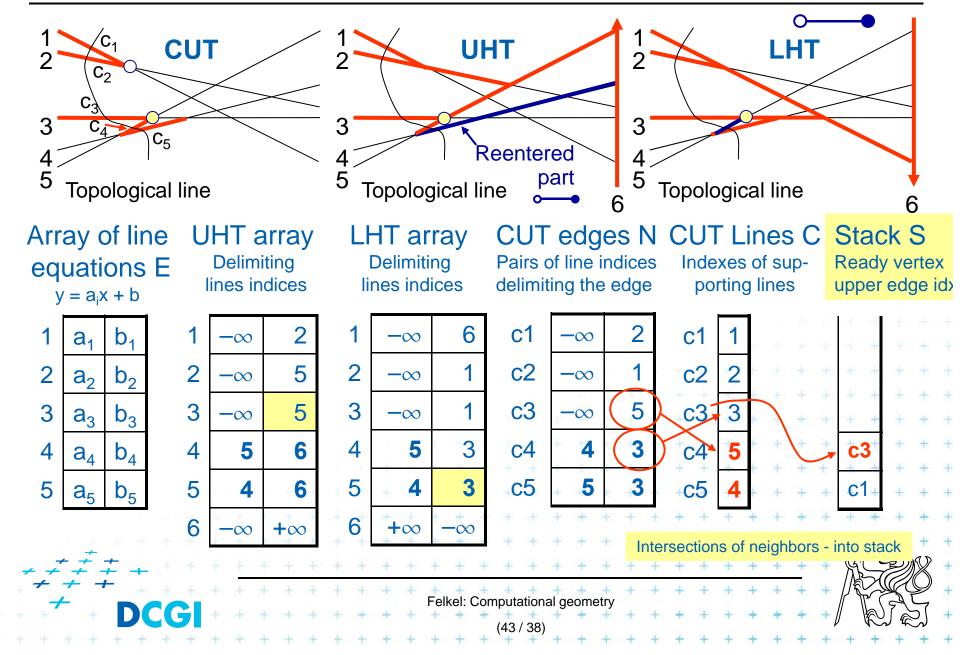
4c) Update the horizon trees – UHT and LHT



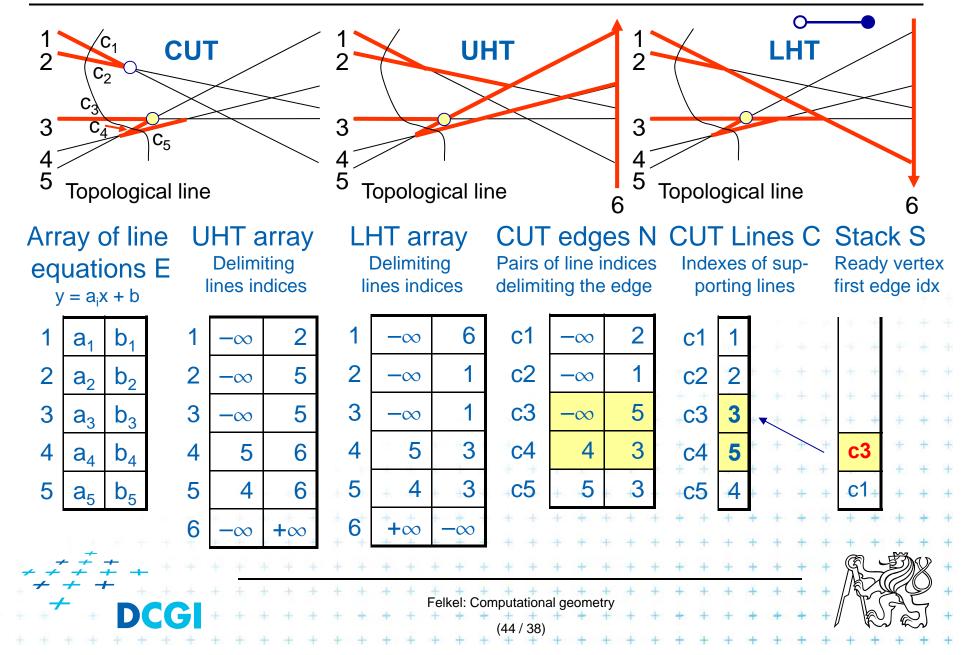
4d) Determine new cut edges endpoints – N



4e) Intersect with neighbors – push into S



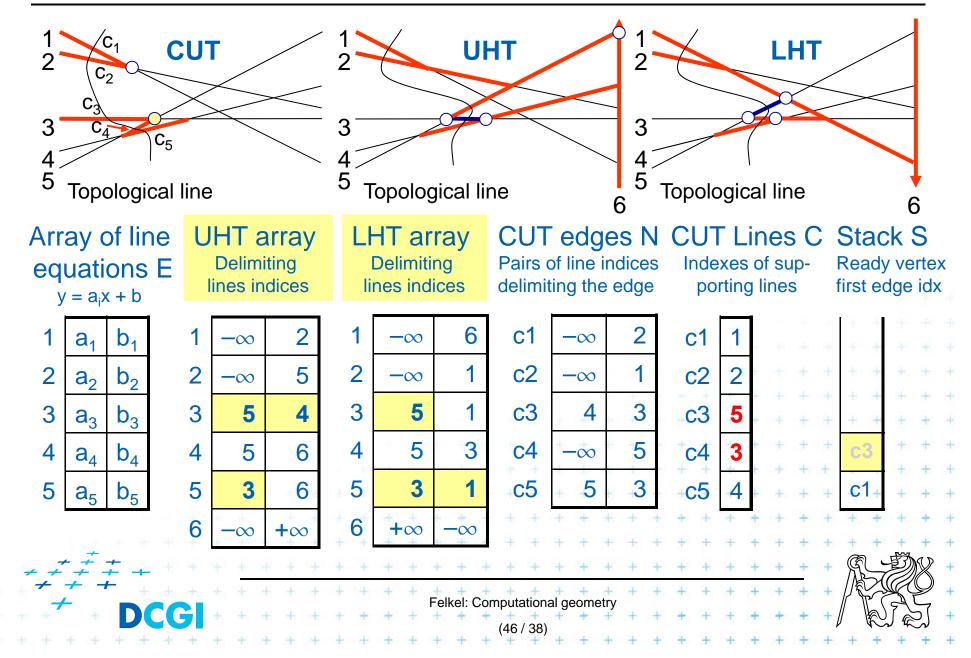
4a) Pop ready vertex from S – process c3



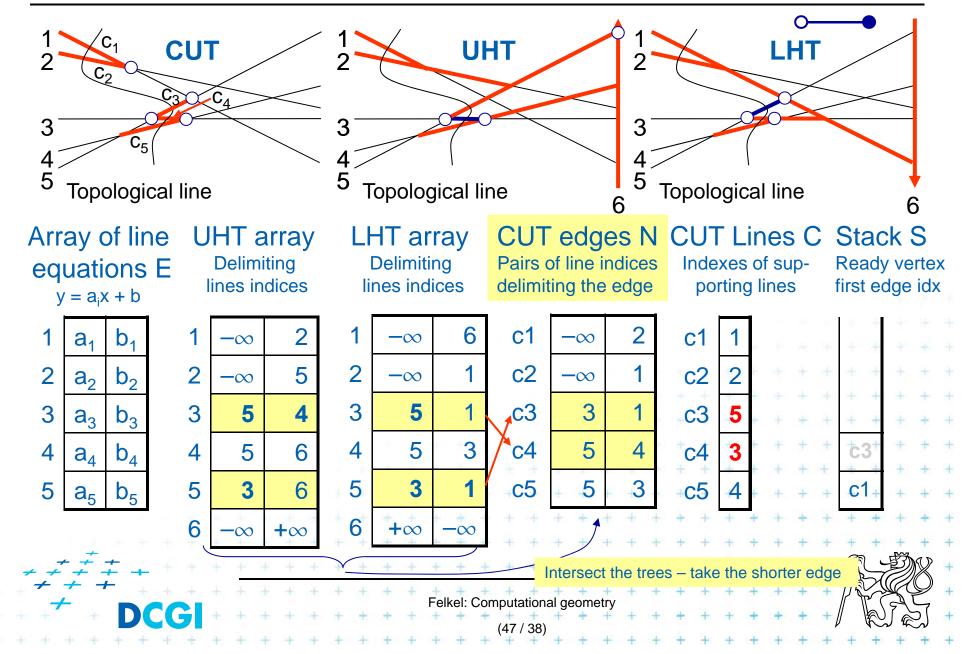
4b) Swap lines c4 and c5 – swap 4 and 5



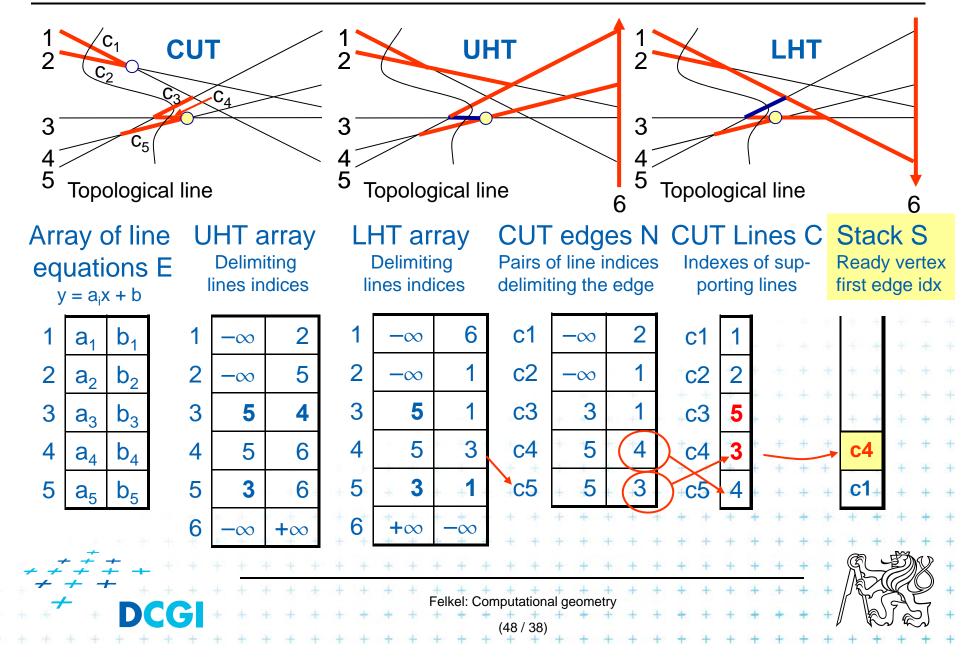
4c) Update the horizon trees – UHT and LHT



4d) Determine new cut edges endpoints



4e) Intersect with neighbors – push into S



Topological sweep algorithm

TopoSweep(L)

Input: Set of **lines** *L* **sorted by slope (-90° to 90°**), simple, not vertical *Output:* All parts of an **Arrangement** *A*(*L*) detected and then destroyed

- 1. Let C be the initial (leftmost) cut lines in increasing order of slope
- 2. Create the initial UHT and LHT incrementally:
 - a) UHT by inserting lines in decreasing order of slope
 - b) LHT by inserting lines in increasing order of slope
- 3. By consulting UHT and LHT
 - a) Determine the right endpoints N of all edges of the initial cut C
 - b) Store neighboring lines with common endpoints into stack S (ready vertices)
- 4. Repeat until stack not empty
 - a) Pop next ready vertex from stack S (its upper edge c_i)
 - b) Swap these lines within the cut C $(c_i < -> c_{i+1})$
 - c) Update the horizon trees UHT and LHT
 - d) Consulting UHT and LHT determine new cut edges endpoints N
 - e) If new neighboring edges share an endpoint -> push them or S

Felkel: Computational geometry

Getting of cut edges from UHT and LHT

- for lines i = 1 to n
 - Compare UHT and LHT edges on line *i*
 - Set the cut lying on edge *i* to the shorter edge of these
- Order of the cuts along the sweep line
 - Order changes at the intersection v only (neighbors)
 - Order of remaining cuts not incident with intersection v does not change
- After changes of the order, test the neighbors for intersections
 - Store intersections right from sweep line into the stack

Felkel: Computational geometry

Complexity

- O(n²) intersections
 => O(n²) events (elementary steps)
- O(1) amortized time for one step
 => O(n²) time for the algorithm

Amortized time

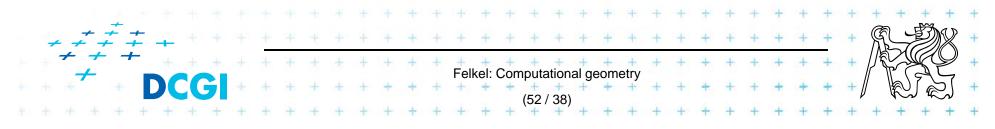
= even though a single elementary step can take more than O(1) time, the total time needed to perform $O(n^2)$ elementary steps is $O(n^2)$, hence the average time for each step is O(1).

Felkel: Computational geometry

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32. <u>http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml</u>
- [Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital <u>www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-9.pdf</u>

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-Verlag, Berlin, Germany, pages 155-156. <u>http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf</u>



OI-OPPA. European Social Fund Prague & EU: We invest in your future.