

ARRANGEMENTS (uspořádání)

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

http://service.felk.cvut.cz/courses/X36VGE

Based on [Berg], [Mount]

Version from 16.12.2011

Talk overview

- Arrangements of lines
 - Incremental construction
 - Topological plane sweep

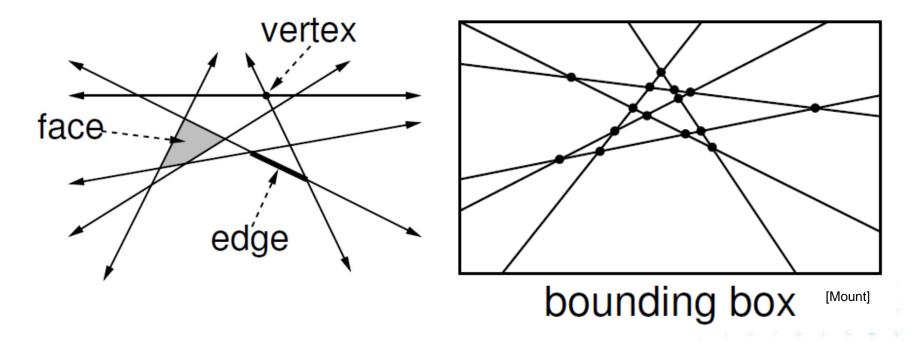
Line arrangement

- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on lines in the plane
- Defined on terms of set of lines (set of points up to now) but
- Typical application is solving problems of point sets in dual plane

Line arrangement

- A finite set L of lines subdivides the plane into a cell complex, called arrangement A(L)
- Can be defined also for curves & surfaces...
- In plane, arrangement defines a planar graph
 - Vertices intersections of lines (2 or more)
 - Edges intersection free segments (or rays or lines)
 - Faces convex regions containing no line (possibly unbounded)
- Formal problem: graph must have bounded edges
 - Topological fix: vertex in infinity
 - Geometrical fix: BBOX, often enough as abstract with corners $\{-\infty, -\infty\}, \{\infty, \infty\}$

Line arrangement



- Simple arrangement assumption
 - = no three lines intersect in a single point
 - Careful implementation or symbolic perturbation

Combinatorial complexity of line arrangement

- O(n²)
- Given n lines in general position, max numbers are

- Vertices
$$\binom{n}{2} = \frac{n(n-1)}{2}$$
 - each line intersect n – 1 others

- Edges n^2

- *n*–1 intersections create *n* edges
- on each of *n* lines

- Faces
$$\frac{n(n+1)}{2} + 1 = \binom{n}{2} + n + 1$$
 $f_0 = 1$ $f_n = f_{n-1} + n$

$$f_n = f_0 + \sum_{i=1}^n i = \frac{n(n+1)}{2} + 1$$

$$f_1 = 2$$

$$f_2 = 4$$

$$f_3 = 7$$

Construction of line arrangement

(0. Plane sweep method)

O(n² log n) time and O(n) storage
 plus O(n²) storage for the arrangement
 (log n - heap access, n² vertices, edges, faces)

1. Incremental method

- $O(n^2)$ time and $O(n^2)$ storage
- Optimal method

2. Topological plane sweep

- $O(n^2)$ time and O(n) storage only
- Does not store the result arrangement
- Useful for applications that may throw the arrangement
- after processing

1. Incremental construction of arrangement

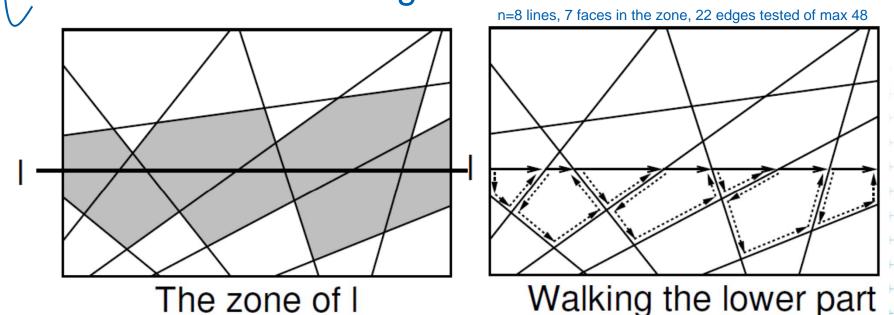
- $O(n^2)$ time, $O(n^2)$ space ~size of arrangement => it is an optimal algorithm
- Not randomized depends on n only, not on order
- Add line l_i one by one (i = 1 ... n)
 - Find the leftmost intersection with BBOX
 among 2(i-1)+4 edges on the BBOX
 ...O(i)
 - Trace the line through the arrangement $A(L_{i-1})$ and split the intersected faces ...O(i) why? See later
 - Update the subdivision (cell split) ...O(1)
- Altogether $O(n^2)$

1. Incremental construction of arrangement

```
Arrangement( L )
         Set of lines L in general position (no 3 intersect in 1 common point)
Input:
Output: Line arrangement A(L) (resp. part of the arrangement stored in
         BBOX B(L) containing all the vertices of A(L))
    Compute the BBOX B(L) containing all the vertices of A(L)
                                                                      ...O(n^2)
    Construct DCEL for the subdivision induced by B(L)
                                                                      ...O(1)
    for i = 1 to n do // insert line I_i
      find edge e, where line l_i intersects the BBOX of 2(i-1)+4 edges ...O(i)
       f = bounded face incident to e
      while f is in B(L) (f = bounded face – in the BBOX)
             split f and set f to be the next intersected face
             update the DCEL (split the cell)
8.
```


Tracing the line through the arrangement

- Walk around edges of current face (face walking)
- Determine if the line I_i intersects this edge
- When intersection found, jump to the face on the other side of this edge



+ + + + + +

Felkel: Computational geometry

of the zone

Tracing the line through the arrangement

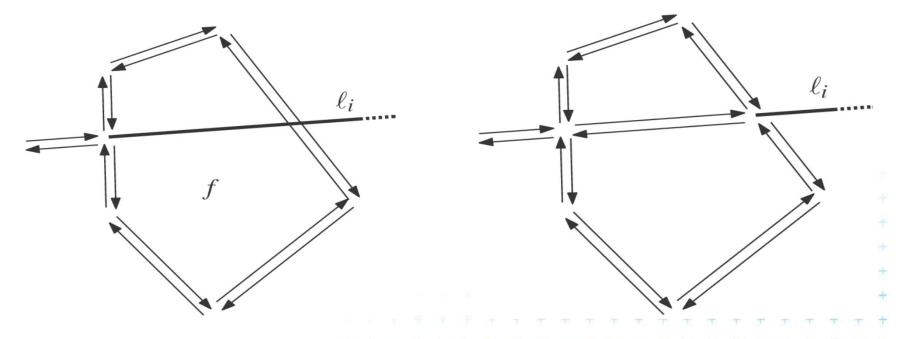
- Number of traversed edges determines the insertion complexity
- Naïve estimation would be O(i²) traversed edges
 (i faces, i lines per face, i² edges)
- According to the Zone theorem, it is O(i) edges only!

Zone theorem

= given an arrangement A(L) of n lines in the plane and given any line l in the plane, the total number of edges in all the cells of the zone $Z_A(L)$ is at most 6n. For proof see [Mount, page 69]

Cell split

 2 new face records, 1 new vertex, 2+2 new halfedges + update pointers ... O(1)



Complexity of incremental algorithm

- n insertions
- O(i) = O(n) time for one line insertion (Zone theorem)

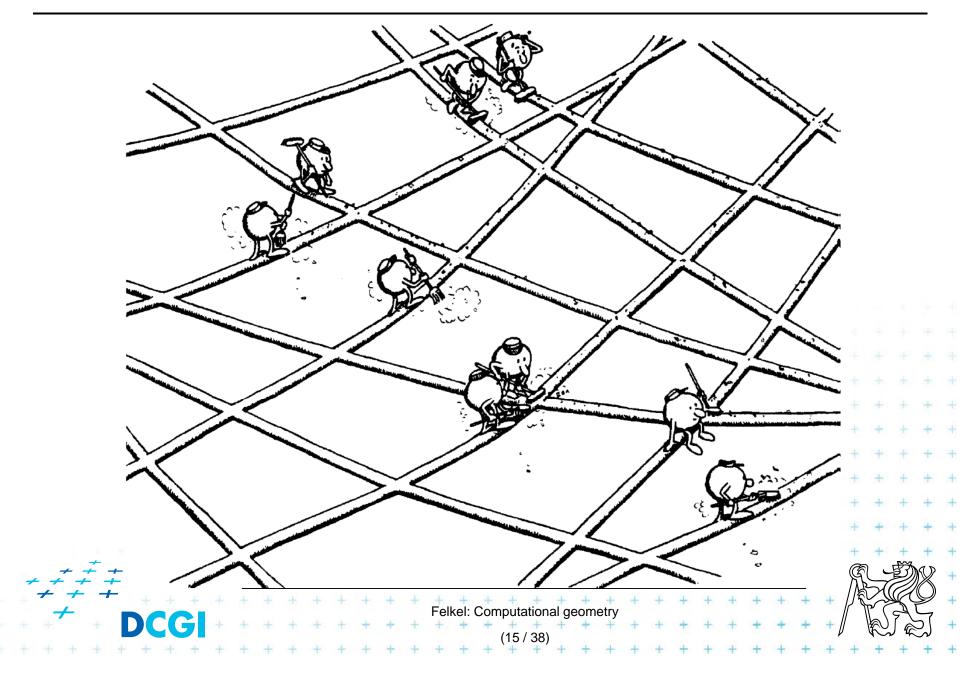
 \Rightarrow Complexity: $O(n^2) + n.O(i) = O(n^2)$

bbox edges walked

2. Topological plane sweep algorithm

- Complete arrangement needs O(n²) storage
- Often we need just to process each arrangement element just once – and we can throw it then
- Classical Sweep line algorithm
 - needs O(n) storage
 - needs $\log n$ for heap manipulation in $O(n^2)$ event points
 - $=> O(n^2 \log n)$ algorithm
- Topological sweep line TSL
 - disperses O(log n) factor in time
 - array of neighbors and a stack of ready vertices
 - \Rightarrow O(n^2) algorithm

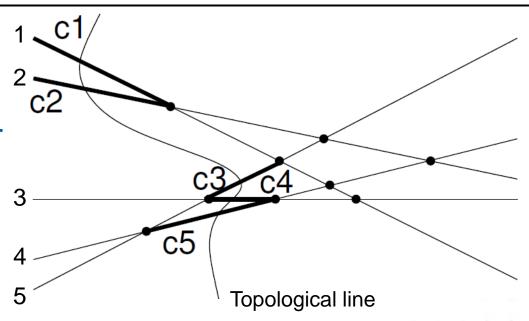
Illustration from Edelsbrunner & Guibas



Topological line and cut

Topological line (curve) (an intuitive notion)

- Monotonic line in y-dir
- intersects each line exactly once (as a sweep line)



Cut in an arrangement A

- is a sequence of edges $c_1, c_2, ..., c_n$ in A (one taken from each line), such that for $1 \le i \le n-1$, c_i and c_{i+1} are incident to the same face of A and c_i is above and c_{i+1} below the face
- Edges not necessarily connected

Topological plane sweep algorithm

Starts at the leftmost cut

- Consist of left-unbounded edges of A (ending at $-\infty$)
- Computed in $O(n \log n)$ time inverse order of slopes

The sweep line is

pushed from the leftmost cut to the rightmost cut

ready vertex topological sweep line

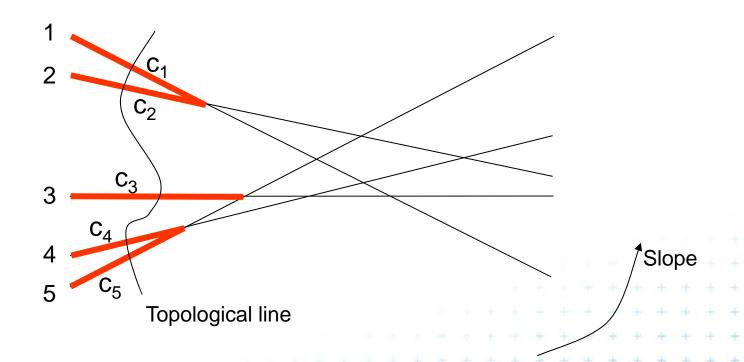
Advances in elementary steps

Elementary step

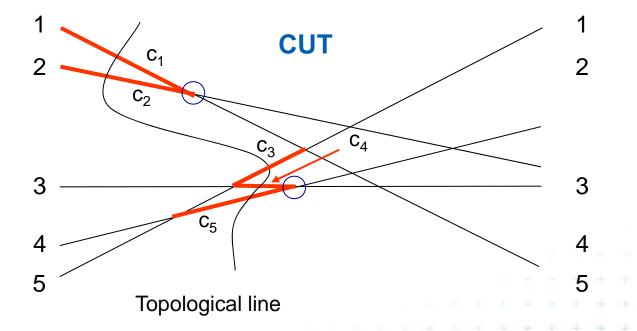
= Processing of a *ready vertex* (intersection of consecutive edges at their right-point)

- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest x)
- Searching of smallest x would need O(log n) time

The leftmost cut



The cut during the topological plane sweep



How to determine the next right point?

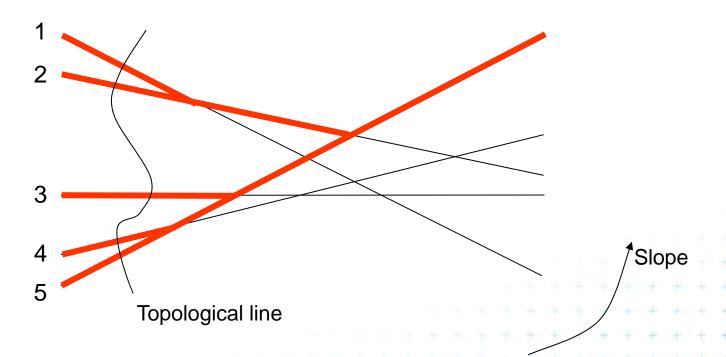
- Elementary step (intersection at edges right-point)
 - Is always possible (e.g., the point with smallest x)
 - But searching the smallest x would need O(log n) time
 - We need O(1) time
- Right endpoint of the edge in the cut results from
 - a line of smaller slope intersecting it from above (traced from L to R) or
 - line of larger slope intersecting it from below.
- Use Upper and Lower Horizon Trees (UHT, LHT)
 - Common segments of UHT and LHT belong to the cut
 - Intersect the trees, find pairs of consecutive edges
 - use the right points as legal steps (push to stack)

Upper and lower horizon tree

- Upper horizon tree (UHT)
 - Insert lines in order of decreasing slope
 - When two edges meet, keep the edge with higher slope and trim the edge with lower slope
 - To get one tree and not the forest of trees (if not connected) add vertical line in +∞
 - Left endpoints of the edges in the cut do not belong to the tree
- Lower horizon tree (LHT) is symmetrical
- UHT and LHT serve for right endpts determination

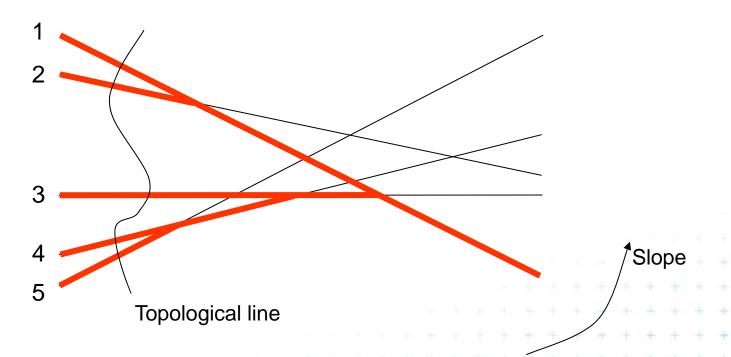
Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope



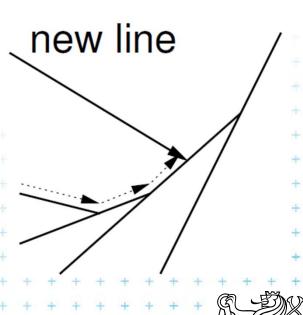
Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope



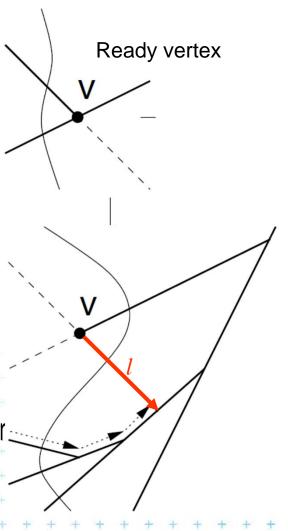
Upper horizon tree (UHT) – init. construction

- Insert lines in order of decreasing slope
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over segment
 - Such segment is no longer part of the upper chain
 - O(n) segments in UHT
 - => O(n) initial construction (after n log n sorting of the lines)



Upper horizon tree (UHT) – update

- After the elementary step
- Two edges swap position along the sweep line
- Lower edge l
 - Reenter to UHT
 - Terminate at nearest edge of UHT
 - Start in edge below in the current cut
 - Traverse the face in CCW order
 - Intersection must exist, as l has lower, slope than the other edge from v and both belong to the same face



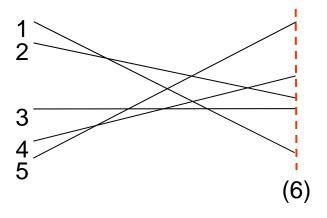
Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

- 1. Line equation coefficients -E[1:n]
- 2. Upper horizon tree UHT [1*:n*]
- 3. Lower horizon tree LHT [1:n]
- 4. Order of lines cut by the sweep line C [1:n]
- 5. Edges along the sweep line N [1:n]
- 6. Stack for ready vertices (events) − S

(n number of lines)

1) Line equation coefficients *E* [1:*n*]



Array of line equation coefs. E

- Contains coefficients a_i and b_i of line equations $y = a_i x + b_i$
- E is indexed by the line index
- Lines are ordered according to their slope (angle from -90° to 90°)

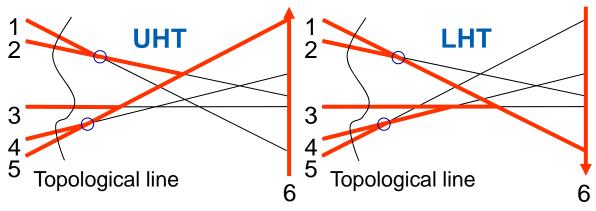
Array of lir	ne
equations	E
$v = a_i x + b$	

1	a_1	b_1
2	\mathbf{a}_2	b_2
3	a_3	b_3
4	a_4	b ₄
5	a ₅	b_5

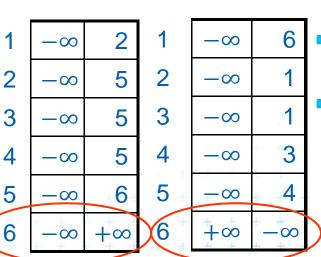
2) and 3) – Horizon trees UHT and LHT

Their intersection is used for searching of legal steps (right points)

- the shorter edge wins



UHT array
Delimiting
lines indices



LHT array

Delimiting
lines indices

Store pairs of line indices in E that delimit segment l_i to the left and to the right

Unlimited line has "indices"

$$[-\infty, +\infty]_+$$

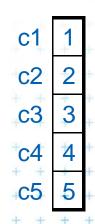
One additional vertical line

- prevents the tree from splitting into forest of trees
- is inserted first and never trimmed
- is [$-\infty$, $+\infty$] for UHT
- is [+∞, $-\infty$] for LHT

4) Order of lines cut by sweep line – C [1:n]

- The topological sweep line cuts each line once
- Order of these cuts (along the topological sweep line) is stored in array C as a sequence of line indices
- For the initial leftmost cut,
 the order is the same as in E
- Index ci addresses i-th line from top along the sweep line

CUT Lines C Indexes of supporting lines



5) Edges along the sweep line – N [1:n]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is the same as in C (this is the way used in the original paper)
- Index ci addresses i-th edge from top along the sweep line

CUT edges N
Pairs of line indices
delimiting the edge

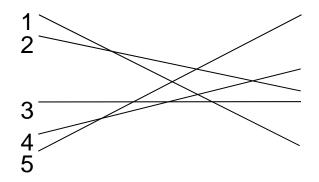
c1	-8	2
c2	8	- 1
c3	-8	5
c4	8	5
с5	8	4

6) Stack S

- The exact order of events is not important
- Alg. can process any of the "ready vertex"
- Event queue is therefore replaced by a stack (faster – O(1) instead of O(log n) of the queue)
- The stack stores just the upper edge c_i
- Intersection in the ready vertex is computed between stored c_i and c_{i+1}

Stack S
Ready vertex
first edge idx

Topological sweep line demo



Array of line equations E

$$y = a_i x + b$$

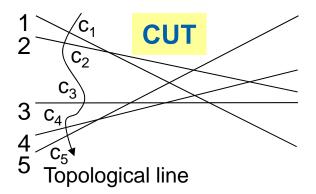
a_1	b ₁
a_2	b_2
a_3	b_3
a_4	b ₄
	L

3

Input

- set of lines L in the plane
- ordered in increasing slope (-90° to 90°), simple, not vertical
- line parameters in array E

1. Initial leftmost cut - C



 Store the line indices into the Cut lines array C in increasing slope order

Array of line equations E

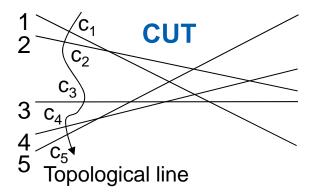
$$y = a_i x + b$$

1	a₁	b ₁
2	a_2	b ₂
3	a_3	b_3
4	a_4	b ₄

CUT Lines C

Indexes of supporting lines

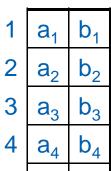
1. Initial leftmost cut - N



Prepare array N for endpoints of the cutted edges (resp. for line indices delimiting these edges)

Array of line equations E

$$y = a_i x + b$$



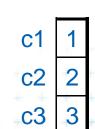
 a_5

CUT edges N CUT Lines C

Pairs of line indices Indexes of supdelimiting the edge porting lines

 $-\infty$

 $-\infty$



 ∞

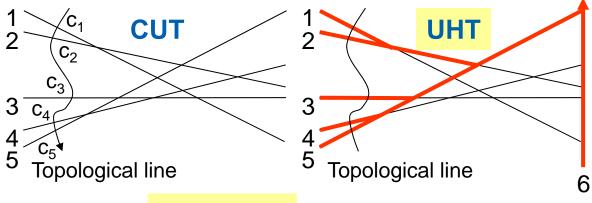
 ∞

indices of lines

Felkel: Computational geometry

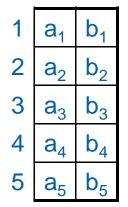
C1

2a) Compute Upper Horizon Tree - UHT



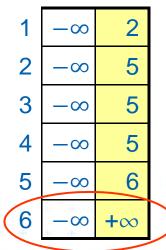
Array of line equations E

$$y = a_i x + b$$



UHT array

Delimiting
lines indices



CUT edges N CUT Lines C

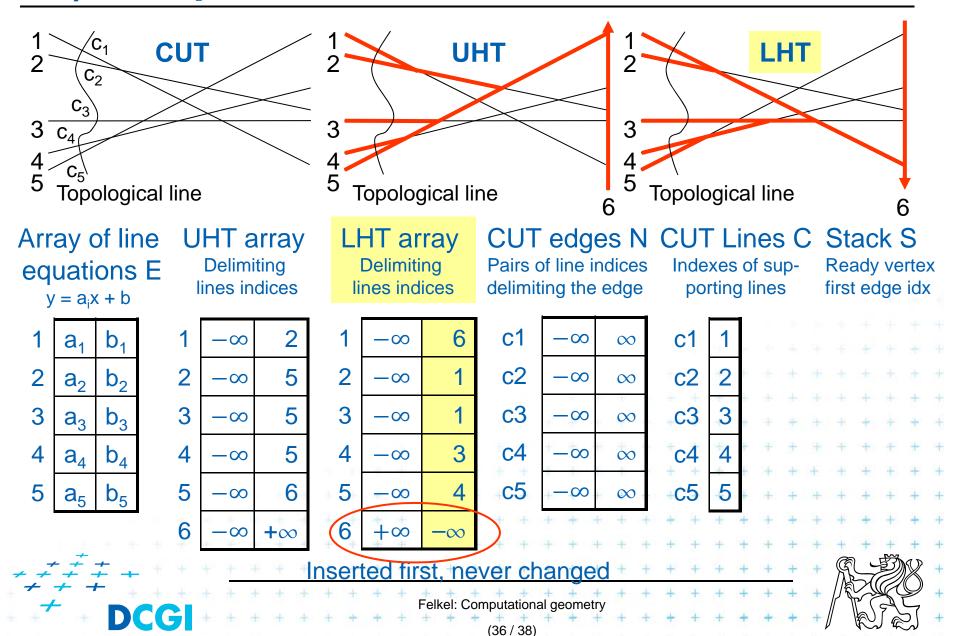
Pairs of line indices Indexes of supdelimiting the edge porting lines

	1			
c1	-8	∞	c1	1
c2	-∞	∞	c2	2
c3	8	∞	c 3	3
c4	8	∞	c4	4
c 5		- 00	-c5	5

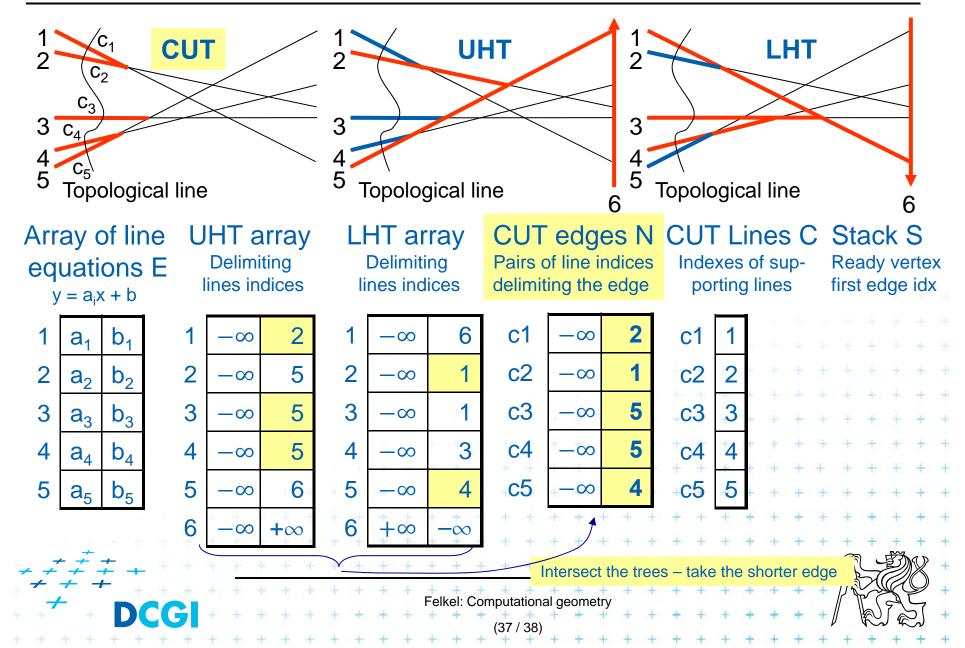
Inserted first, never changed

Felkel: Computational geometry

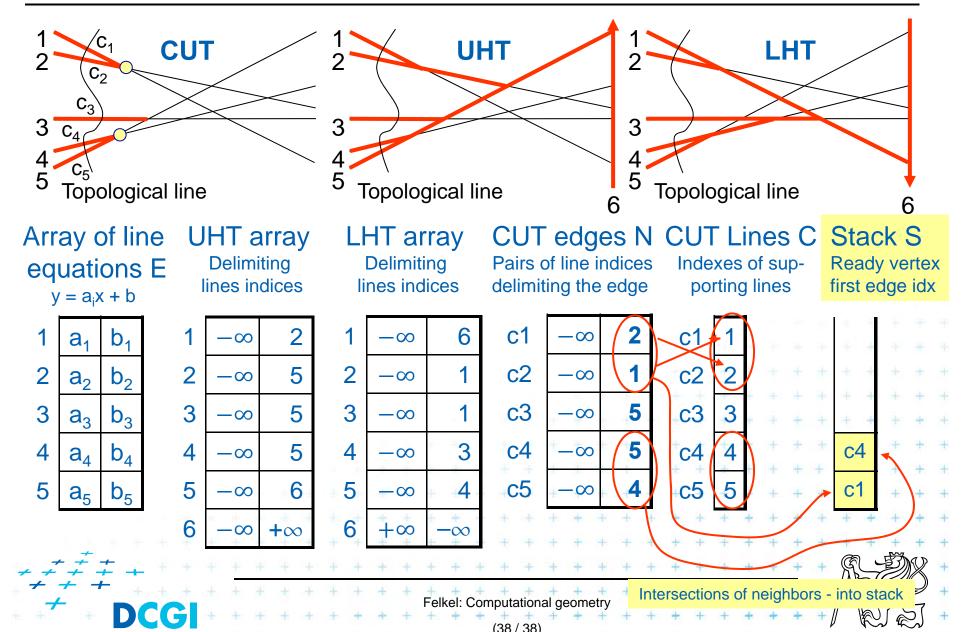
2b) Compute Lower Horizon Tree - LHT



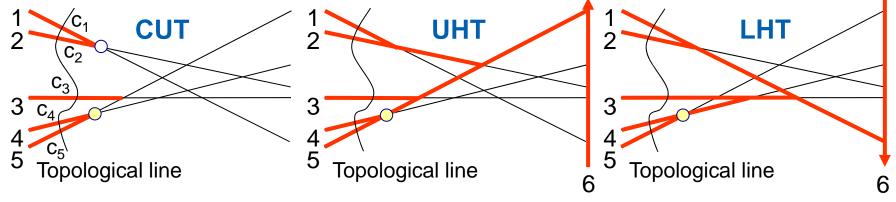
3a) Determine right delimiters of edges - N



3b) Ready vertices = int. of neighbors – S



4a) Pop ready vertex from S – process c4



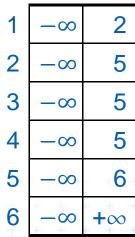
Array of line equations E

 $y = a_i x + b$

1	a_1	b_1
2	a_2	b_2
3	a_3	b_3
4	a_4	b_4
5	a ₅	b ₅

UHT array

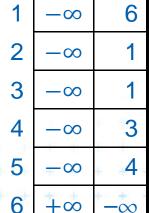
Delimiting lines indices



LHT array

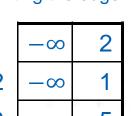
Delimiting

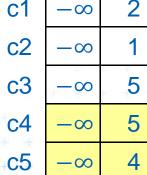
lines indices



Pairs of line indices

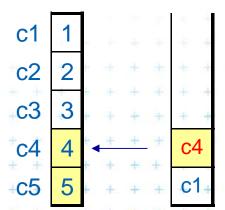
delimiting the edge





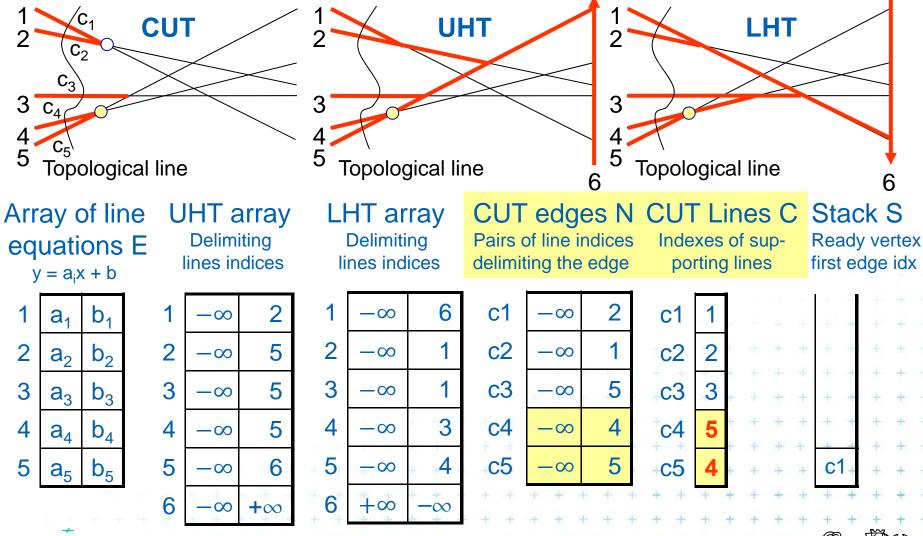
CUT edges N CUT Lines C Stack S Indexes of sup-

Ready vertex porting lines first edge idx



Felkel: Computational geometry

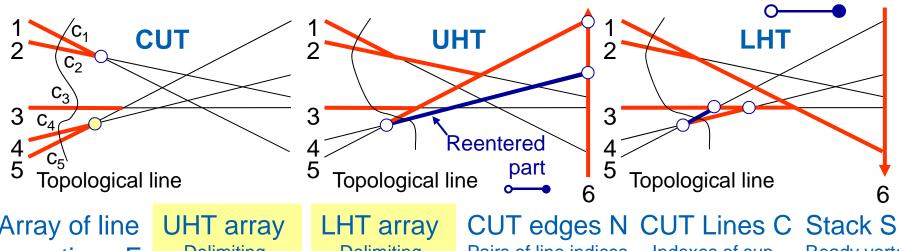
4b) Swap lines c4 and c5 – swap 4 and 5



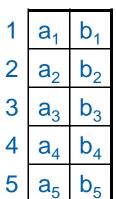
Felkel: Computational geometry

40 / 38)

4c) Update the horizon trees – UHT and LHT



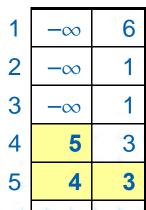
Array of line equations E



Delimiting

lines indices

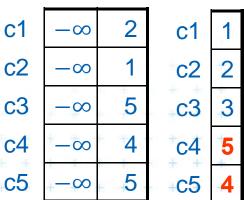
Delimiting lines indices



2	-∞	1
3	-∞	_1
4	5	3
5	4	3
6	+∞	-∞
+	+ +	+ + -

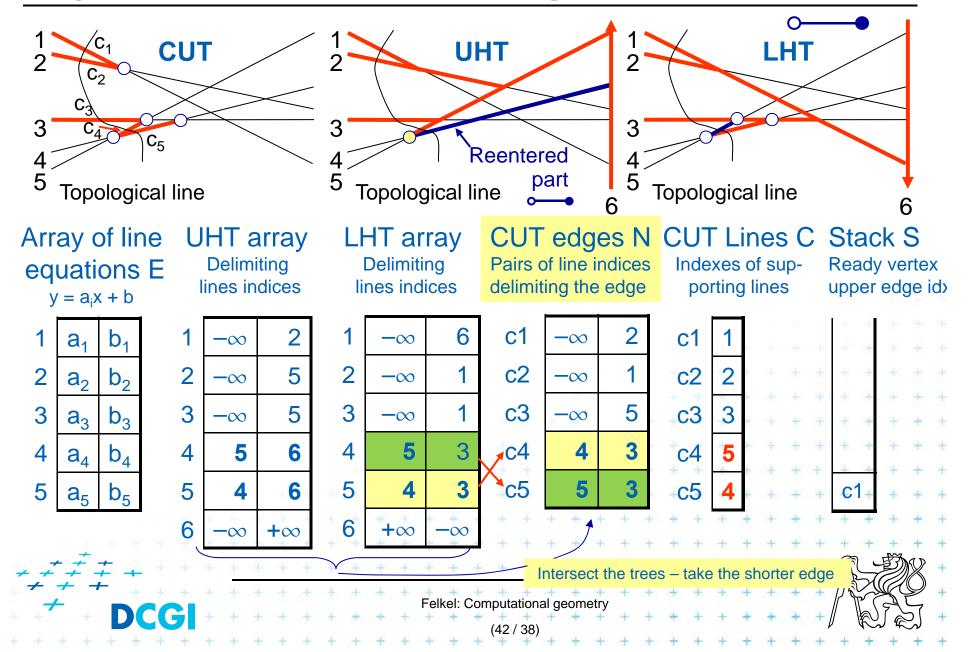
Pairs of line indices delimiting the edge

Ready vertex upper edge id>

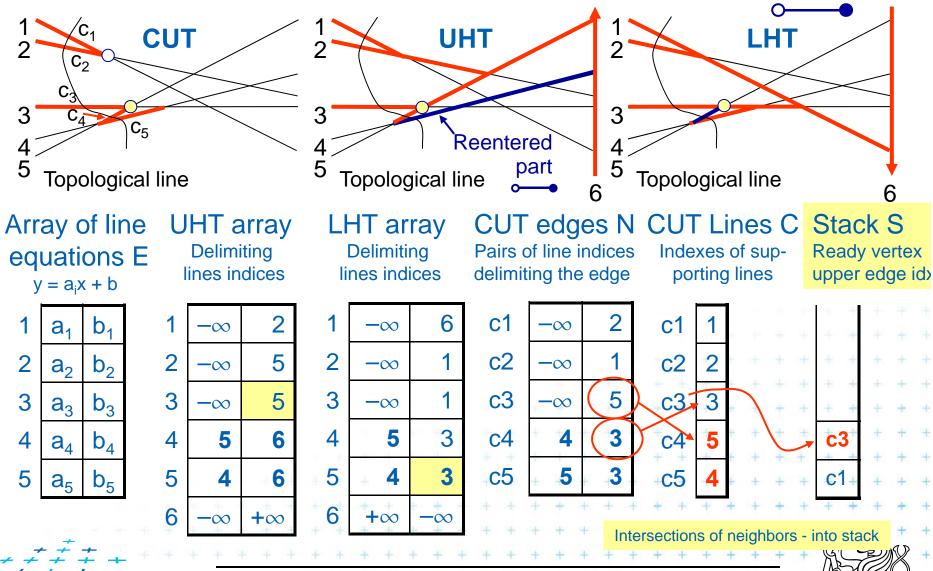


Felkel: Computational geometry

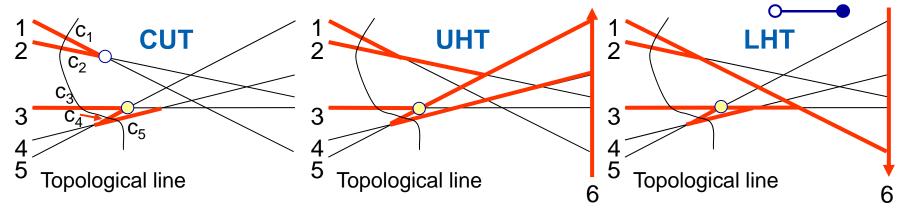
4d) Determine new cut edges endpoints - N



4e) Intersect with neighbors – push into S



4a) Pop ready vertex from S – process c3



Array of line equations E

 $y = a_i x + b$

1	a_1	b ₁
2	\mathbf{a}_2	b_2
3	a_3	b_3
4	a_4	b ₄
5	a_5	b_5

UHT array

Delimiting lines indices

4	5	6
5	4	6
6	-∞	+∞

LHT array

Delimiting lines indices

6 $-\infty$

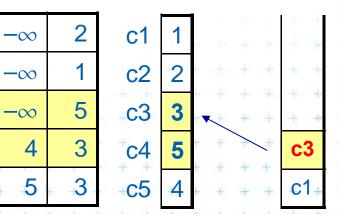
_	\sim	
3	-∞	_1
4	5	3
5	4	3
		. 60

CUT edges N CUT Lines C Stack S

Pairs of line indices delimiting the edge

Indexes of supporting lines

Ready vertex first edge idx



Felkel: Computational geometry

C1

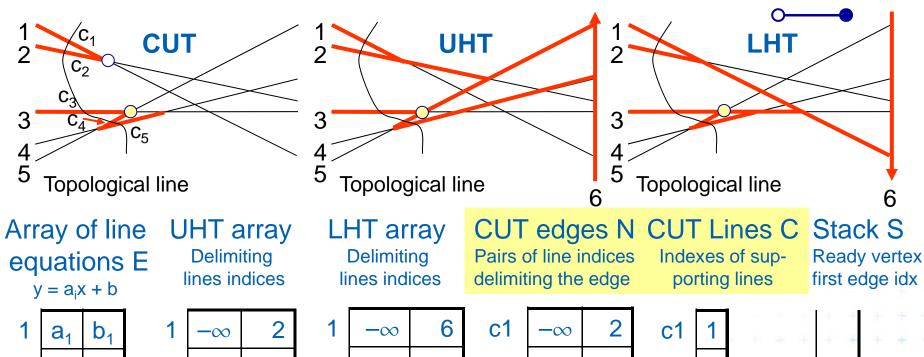
c2

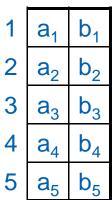
c3

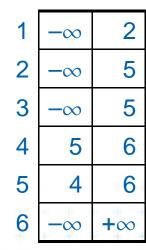
c4

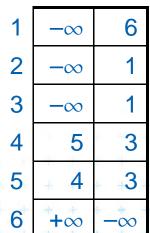
c5

4b) Swap lines c4 and c5 - swap 4 and 5

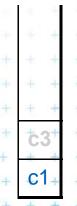






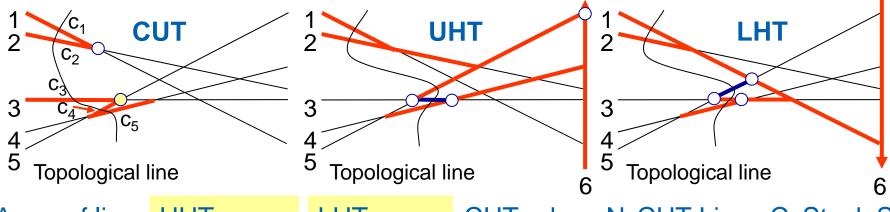


1			
-∞	2	c1	1
-∞	1	c2	2
4	3	c 3	5
-∞	5	c4	3
+ 5	3	-c5	4
	-∞ -∞ 4 -∞ + 5	-∞ 1 4 3	-∞ 1 c2 4 3 c3 -∞ 5 c4



Felkel: Computational geometry

4c) Update the horizon trees – UHT and LHT



Array of line equations E

 $y = a_i x + b$

a₁

 a_2

	_
b_1	
b_2	

3 a_3 b_3

 a_4 b_4 b_5 **UHT** array **Delimiting**

lines indices

2 $-\infty$

LHT array

Delimiting lines indices

6 $-\infty$ $-\infty$

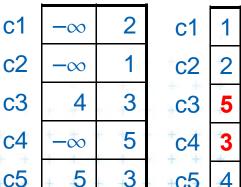
5

 $+\infty$ $-\infty$ CUT edges N CUT Lines C Stack S

Pairs of line indices delimiting the edge

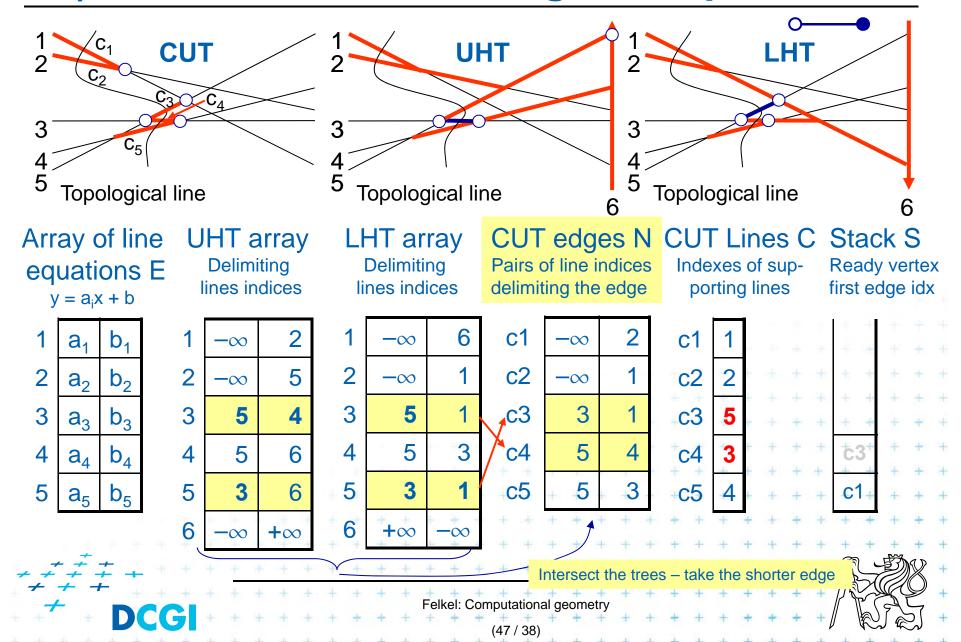
Indexes of supporting lines

Ready vertex first edge idx

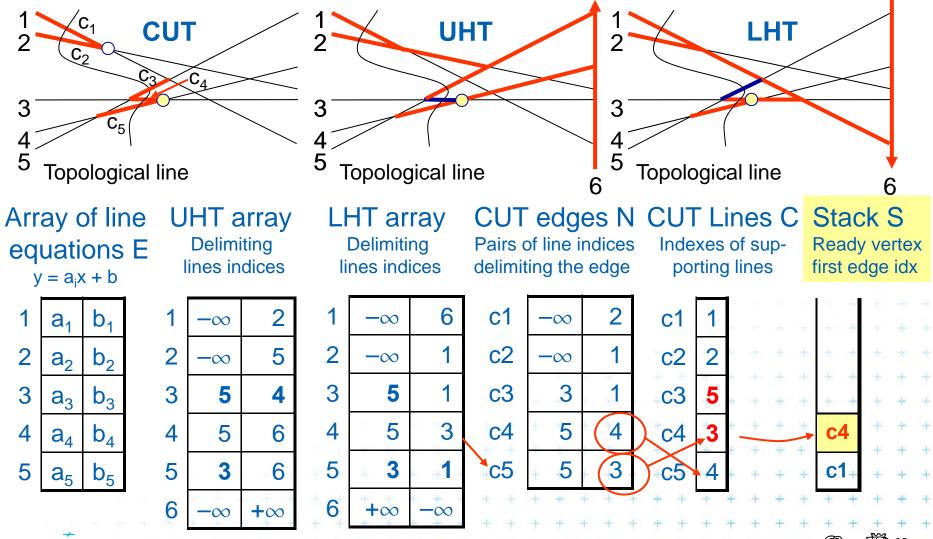


c5

4d) Determine new cut edges endpoints



4e) Intersect with neighbors – push into S



Topological sweep algorithm

TopoSweep(*L*)

Input: Set of lines L sorted by slope (-90° to 90°), simple, not vertical Output: All parts of an Arrangement A(L) detected and then destroyed

- 1. Let C be the initial (leftmost) cut lines in increasing order of slope
- 2. Create the initial UHT and LHT incrementally:
 - a) UHT by inserting lines in decreasing order of slope
 - b) LHT by inserting lines in increasing order of slope
- 3. By consulting UHT and LHT
 - a) Determine the right endpoints N of all edges of the initial cut C
 - Store neighboring lines with common endpoints into stack S (ready vertices)
- 4. Repeat until stack not empty
 - a) Pop next ready vertex from stack S (its upper edge c_i)
 - b) Swap these lines within the cut C $(c_i < -> c_{i+1})$
 - c) Update the horizon trees UHT and LHT
 - d) Consulting UHT and LHT determine new cut edges endpoints N
 - (e) If new neighboring edges share an endpoint -> push them or S

Getting of cut edges from UHT and LHT

- for lines i = 1 to n
 - Compare UHT and LHT edges on line i
 - Set the cut lying on edge i to the shorter edge of these
- Order of the cuts along the sweep line
 - Order changes at the intersection v only (neighbors)
 - Order of remaining cuts not incident with intersection v does not change
- After changes of the order, test the neighbors for intersections
 - Store intersections right from sweep line into the stack

Complexity

- O(n²) intersections
 > O(n²) events (elementary steps)
- O(1) amortized time for one step
 => O(n²) time for the algorithm

Amortized time

= even though a single elementary step can take more than O(1) time, the total time needed to perform O(n²) elementary steps is O(n²), hence the average time for each step is O(1).

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., http://www.cs.uu.nl/geobook/
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
- [Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-9.pdf
- [Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-Verlag, Berlin, Germany, pages 155-156.

http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf

