CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

ARRANGEMENTS (uspofadani)

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vg/start

Based on [Berg], [Mount]

Version from 10.12.2014

Talk overview

= Arrangements of lines
— Incremental construction
— Topological plane sweep

S A o~ == =

(2 1 55)

Arrangements

= The next most important structure in CG after
CH, VD, and DT

= Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

= We concentrate on arrangement of lines in plane

= Typical application: problems of point sets in dual
plane (collinear points, point on circles, ...)

EES %é '

- -+ 4 ! 4
-~

DCGI arsy) R

Line arrangement

= A finite set L of lines subdivides the plane into a
cell complex, called arrangement A(L)

= In plane, arrangement defines a planar graph
— Vertices - intersections of (2 or more) lines

— Edges - Intersection free segments (or rays or lines)
— Faces - convex regions containing no line
(possibly unbounded)

vertex

//

/
'
o e mone [Mount] (4/55) : b

Line arrangement

= Simple arrangement assumption

= no three lines intersect in a single point

— Can be solved by careful implementation or symbolic
perturbation

- -~ —+
-~
DCGI (5/55) _ Lo o1 3

Line arrangement

= Formal problem: graph must have bounded edges
— Topological fix: add vertex in infinity

— Geometrical fix: BBOX, often enough as abstract
with corners {—oo, —0o}, {co, 00}

bounding box ™"

* -~ -
+
DCGI (6 / 55) | | |

Combinatorial complexity of line arrangement

O O(nZ)
= Given n lines in general position, max numbers are

— Vertices | |= n(nz—l) - each Wn — 1 others
— Edges n? - n—1 Iintersections create n edges
on each of n lines
n
— Faces n(n+1)+l (j+n+1 f,=1 (cela rovina)
f =f +n

/ % % s N+
: 2
“ oo o

Construction of line arrangement

(0. Plane sweep method)

— O(n? log n) time and O(n) storage
plus O(n?) storage for the arrangement
(log n - heap & BVS access, n? vertices, edges, faces)

A. Incremental method
— O(n?) time and O(n?) storage
— Optimal method
B. Topological plane sweep
— O(n?) time and O(n) storage only
— Does not store the result arrangement
— Useful for applications that may throw out the

. -~ arrangement after processing %
DCGI _ el

(8/55)

A. Incremental construction of arrangement

= O(n?) time, O(n?) space
~sSize of arrangement => it is an optimal algorithm

= Not randomized — depends on n only, not on order

= Addlinel.onebyone (i=1..n)

— Find the leftmost intersection with BBOX
among 2(i-1)+4 edges on the BBOX ...O(l)

— Trace the line through the arrangement A(L; ;) and split
the intersected faces ...O(l) — why? See later

— Update the subdivision (cell split) ...0(1)
= Altogether O(ni) = O(n?)

- -~ —+
-~
DCGI (9/55) _ U T

A. Incremental construction of arrangement

Arrangement(L)

Input: Set of lines L in general position (no 3 intersect in 1 common point)

Output: Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L))

1. Compute the BBOX B(L) containing all the vertices of A(L) ...0(n?)
2. Construct DCEL for the subdivision induced by BBOX B(L) ...0(1)
3. fori=1tondo //insertlinel,
4. find edge e, where line |, intersects the BBOX of 2(i-1)+4 edges ...O(i)
5. f = bounded face incident to the edge e
6. while fisin B(L) (bounded face f = fis in the BBOX) .. O(??7?)
7. split f and set f to be the next intersected face

across the intersected edge
8. update the DCEL (split the cell) ...0(1)

See-later

-’ - -
s A =~ == .
-~ =] i

Tracing the line through the arrangement

= Walk around edges of current face (face walking)
= Determine if the line |, intersects current edge e

= When intersection found, jump to the face on the
\/ other side of this edge e

n=8 lines, 7 faces in the zone, 22 edges tested of max 48

The zone of | Walking the lower part

++:ff e it of the zone _ %
- DCGI (11/55) : / e e

Tracing the line through the arrangement

= Number of traversed edges determines the
iInsertion complexity

= Naive estimation would be O(i?) traversed edges
(i faces, ilines per face, i° edges)

= According to the Zone theorem, it is O(i) edges
only!

Zone theorem

= given an arrangement A(L) of n lines in the plane
and given any line | in the plane, the total number

. MOSt 6N. For proof see [Mount, page 69] % |
- | :
DCGI asy) RS

Cell split

s 2 hew face records, 1 new vertex, 2+2 new half-

edges + update pointers ... O(1)

N ____jlf,,/.&\ff

Complexity of incremental algorithm

= N iInsertions

= O() = O(n) time for one line insertion
(Zone theorem)

=> Complexity: O(n?) + n.O(i) = O(n?)

bbox edges walked

S A o~ == =

(14/55)

B. Topological plane sweep algorithm

= Complete arrangement needs O(n?) storage

= Often we need just to process each arrangement
element just once — and we can throw it out then

= Classical Sweep line algorithm
— needs O(n) storage
— needs log n for heap manipulation in O(n?) event points
=> O(n?log n) algorithm
= Topological sweep line - TSL
— disperses O(log n) factor in time
— array of neighbors and a stack of ready vertices

. ~=> 0(n?) algorithm |
” DCGI (15/55) | o o %

lllustration from Edelsbrunner & Guibas

Topological line and cut

. . 1
Topological line (curve)

(an intuitive notion) 202
= Monotonic curve in y-dir
= Intersects each line

exactly once

(as a sweep line) 4

Topological line

Cut in an arrangement A

= IS an ordered sequence of edges ¢4, C,,...,C,IN A
(one taken from each line), such thatfor 1 1 _ n-1,
c, and c,, are incident to the same face of A and
c; Is above and c,,, below the face

= Edges not necessarily connected (as.c, and c,)

o %
- + —+ 4
+ X
DCGI a0 R

Topological plane sweep algorithm

s Starts at the leftmost cut

— Consist of left-unbounded edges of A (ending at —)
— Computed in O(n log n) time — order of slopes

= The sweep lineis

— pushed from the leftmost cut to the rightmost cut topological

_ sweep line
— Advances in elementary steps
ready

vertex

= Elementary step

= Processing of any ready vertex
(intersection of consecutive edges at their right-point)

— Swaps the order of lines along the sweep line
— |Is always possible (e.g., the point with smallest x)
earching of smallest x would need O(log n) time ...

oo RS

—
—_

——
o~ o~ =~
- =

Step 0 — the leftmost cut

ready
vertex Slope

Topological line

c;, = ordered sequence of edges along the topological sweep line

- -~ —+
DCGI (19/55) _ Lo o1 3

Step 1 — after processing of c4 x ¢5

Slope
Topological line

- -~ —+
-~
DCGI 20155) | e

Step 2 — after processing of c3 x c4

4 Slope
)
Topological line

(211 55)

How to determine the next right point?

= Elementary step (intersection at edges right-point)
— |s always possible (e.g., the point with smallest x)
— But searching the smallest x would need O(log n) time
— We need O(1) time

= Right endpoint of the edge in the cut results from
" a line of smaller slope intersecting it from above (traced

from L to R) or
= line of larger slope intersecting it from below. //Sl:jpe

= Use Upper and Lower Horizon Trees (UHT, LHT)
— Common segments of UHT and LHT belong to the cut
— Intersect the trees, find pairs of consecutive edges
B = use the right points as legal steps (push to stack)

——
-/- =
DCGI @159

Upper and lower horizon tree

= Upper horizon tree (UHT)
— Insert lines in order of decreasing slope (cw)

— When two edges meet, keep the edge with higher slope
and trim the inserted edge (with lower slope)

— To get one tree and not the forest of trees (if not
connected) add a vertical line in +— (slope +90°)

— Left endpoints of the edges Iin the cut
do not belong to the tree O O

= Lower horizon tree (LHT) construction.symmetrical
= UHT and LHT serve for right endpts determination

- -~ —+
-~
DCGI @3155) | e

Upper horizon tree (UHT) — initial tree

= Insert lines in order of decreasing slope (“cw”)

1
2

4 JSIope
)
Topological line
+ |
DCGI ewrsy S ®e

Lower horizon tree (LHT) — initial tree

= Insert lines in order of increasing slope (“ccw”)

1
2

4 Slope
)
Topological line v
+ |
DCGI ey S ®e

Overlap UHT and LHT - detect ready vertices

UHT LHT
2 2
3 3
4 4
Topological line Topological line
1 6 |

3

. %
vertex

5

Topological line

DCGI (26/55)

o «

Upper horizon tree (UHT) — init. construction

= Insert lines in order of decreasing slope (cw)
= Each new line starts above all the current lines
= The uppermost face = convex polygonal chain

= Walk left to right along the chain
to determine the intersection

= Never walk twice over a segment

— Such segment is no longer part of
the upper chain

— O(n) segments in UHT
=> O(n) initial construction

new line

(27 1 55)

Upper horizon tree (UHT) — update

= After the elementary step

= Two edges swap position along
the sweep line

Ready vertex

= Lower edge | (lower slope, comes from above) | \
— Reenter to UHT
— Terminate at nearest edge of UHT
— Start in edge below in the current cut
— Traverse the face in CCW order /

— Intersection must exist, as | has lower--..
slope than the other edge from v
and both belong to the same face

- + —+
-~
DCGI (28 / 55) : gl i o |

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients — E [1:n]

2) Upper horizon tree — UHT [1:n]
3) Lower horizon tree — LHT [1:n]
4) Order of lines cut by the sweep line — C [1:n]

5) Edges along the sweep line — N [1:n]

6) Stack for ready vertices (events) —S

(n number of lines)

L omE %
+
DCGI eorsy R

Indices of lines

1) Line equation coefficients E [1:n]

%&é = Array of line equation coefs. E
: — Contains coefficients a, and b,
of line equations y = ax + b,

6) — E is indexed by the line index

A i — Lines are ordered according to

rray of line _ oo

equations E their slope (angle from -90° to
y=ax+bh 90°)

Slope
a, | by i
a, | b,
b
b
b
-+ %
DCGI (30/55) : I W

oaa A~ W N B
Q
W

2) and 3) — Horizon trees UHT and LHT

Their intersection is % UHT % LHT
used for searching
of legal steps 3 3
(right points) 4 4
- the shorter edge wins ®© Topological line 5 S Topological line g
UHT array LHT array = Store pairs of line indices in E
Delimiting Delimiting that delimit segment . to the left
lines indices lines indices :
and to the right
1|—o0o| 2|11 |-o| 6]|= Segments are half open o——e
>l 5] 2 [—| 1= Unlimited line has “indices”
3|-w| 5|3 |- 1 (—, == —]
= One additional vertical line
4 | -0 514 |—c0| 3 — prevents the tree from splitting into
5|—c| 6|5 |=0| 4 forest of trees
— T — _is inserted first and never trimmed
. @ Rl D L — is (— , +=] for UHT

s — s (+—, —] for LHT %
> -+ 4
DCGI (31/55) : L R &

4) Order of lines cut by sweep line — C [1:n]

= The topological sweep line cuts each line once

= Order of the cuts (along the topological sweep
line) is stored in array C as a sequence of line

Indices
= Array C “points” to the array E CUT Lines C
. . Indexes of sup-
of line equations porting ines.
= For the initial leftmost cut, cl|1
the order is the same as in E c2|2
. . . c3|3
= Index ci addresses I-th line fromtop 5
along the sweep line 55

+ i
DCGI @i) e

5) Edges along the sweep line — N [1:n]

= Edges intersected by the topological sweep line are
stored here (edges along the sweep line)

= Instead of endpoints themselves, we store the
iIndices of lines whose intersections delimit the edge

= Order of these edges IS CUT edges N

Pairs of line indices

the same as in C delimiting the edge T first edge
- " along the sweep line:
(both use the index ci) c1 [=oo] 2] ieson e cren
= Index cistores the index ~ ©2 | =L 1] -comeefonmny
of i-th edge from top along zz = :
the sweep line s ol 2

+
DCGI @y) e

6) Stack S

= The exact order of events is not important

(event = intersection in ready vertex)

= Alg. can process any of the “ready vertex”

= Event queue is therefore replaced by a stack
(faster: O(1) instead of O(log n) for queue) .. s

Ready vertex

= The stack stores just the upper edge c; first edge id
from the pair intersecting in ready vertex

= Intersection Iin the ready vertex
IS computed between stored ¢; and ¢,

c4 xc5

c4
cl

v

\ 4

c1xc2

R T %
+ L
DCGI (34/55) - P

Topological sweep line demo

Indices of lines

3/
4
5

Array of line

equations E
y=ax+b

a, | by

2

Indices of lines
g b W DN -
QD
w
O |0 |O|OC
w

S A o~ == =

/ .
Slope

Input

%&é .

set of lines L in the plane

ordered In increasing slope

(£ -90° to 90°), simple,
not vertical

line parameters in array E

(35 / 55)

Indices of lines

1) Initial leftmost cut - C

>—& curt = Store the indices of lines in E

Co

;-5 Into the Cut lines array C

C, - . .

4% in increasing slope order
C

5 _5 N
Topological line

Array of line CUT Lines C
equations E Indexes of sup-
y=ax+b porting lines
1la,|b, ‘§ cl|1
2ay|b, §,C2 2
3|a| by ‘_E c3|3
41a,|b, é c4 |4
5|85 | bs £ ¢5|5

- -~ —+
-~
DCGI (36 /55) : _ | T S

1) Initial leftmost cut - N

1 CUT

Co
Cs3

4C

5 _5 N
Topological line

Array of line

equations E
y=ax+b

b,

2

w

N

b
b
b
b

5

>0 A W N P

indices of lines

+

DCGI

Prepare array N for endpoints of
the cutted edges (resp. for line
Indices delimiting these edges)

Init it by line “ends” —oo, 40
CUT edges N CUT Lines C

Pairs of line indices
delimiting the edge

cl
c2
c3
c4
CS

cl
c2
c3
c4
CS

Indexes of sup-
porting lines

G~ |W|IN|PF

(37 /55)

%

2a) Compute Upper Horizon Tree - UHT

1 C 1
2 G cut 2

Co
Cs3

UHT

4C

5 _5 N
Topological line

b~ W

Array of line UHT array
equatlons E Delimiting

y=ax+b lines indices

1|a;|b; 1|—ocof 2|A

2|a,|b, 2|—oc| 5

3|as| b, 3| —oo| 5| |Orderof

t[afor] [o8] o

S5|ag|bs 5| —c| 6
@:} Inserted first

Topological line

CUT edges N

Pairs of line indices
delimiting the edge

6

cl | —
c2 | —oo
c3 | —oo
c4 | —o0
CO | —o

, hever changed

CUT Lines C

Indexes of sup-
porting lines

cl
c2
c3
c4
CS

G~ |W|IN|PF

(38/55)

R

2b) Compute Lower Horizon Tree - LHT

&% cut 2 UHT > LHT
C,
C3
3¢, 3 3
4 < 4 4
5 75 . 5 . 5 i v
Topological line Topological line 6 Topological line 6
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices “ lines indices delimiting the edge porting lines first edge idx
1(a;|by 1|—oco| 2|||1]|—=c| 6] €l |—co| —| cl]|1
2 |a,|b, 2| —oo| 5]|||2|—c0| 1| c2 |- —] c2]|2
3|a;|b; 3|—c| 5][||3|—| 1] c3 |- — | c3|3
4la,|b,| 4|-| 5|||4]|-0]| 3| c4 |- —| c4|4
6| —oo| +— 6 | +0 | — | Dinserted first, never changed

e Ordlerof&/
= " insertion
DCGI into LHT (39 /55) | : | o o2 2w

3a) Determine right delimiters of edges - N

& cut 2 UHT > LHT
Co
C3
3¢, 3 3
4 G 4 4
5 Topological line 5 Topological line 6 S Topological line 6
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-o| 2| 1]|-| 6| cl |- 2| c1]|1
2|a,|b,| 2|-ow| 5| 2|-| 1| c2|—c| 1] c2]|2
3las|b; 3|—o| 5| 3|—-o| 1] c3|—»| 3| c3|3
4|a,|b,| 4|-oo| 5| 4|-0o| 3| c4 |- 5| c4|4
S5|ag|bs 5(—w| 6| 5|—c| 4] ¢S5 |- 4| c5|5
6| —oo|+— 6|+ | —
-~ = -+ 9 T P
P Intersect the trees — take the shorter edgﬂ

DCGI (40 / 55) | _ | / e i

3b) Ready vertices = inters. of neighbors — S

18 curt 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 z 4 451

5 5 N
Topological line

Array of line UHT array

equations E Delimiting
y=ax+b lines indices

1|a;|b; 1| —o0| 2
2|a,|b, 2|—o| 5
3|a;|b; 3|—o| 5
41a,|by, 4|—oo| 5
S5|ag|bs S|—o| 6
6| —oo| +—

5 Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

O O A W DN P

Pairs of line indices

delimiting the edge

Delimiting
lines indices
—oo | 6] cl
—oco | 1| c2
—oco | 1] c3
—oo | 3| c4
—o | 4] ¢S
400 | —

[2

\1,
5

\ 4

Indexes of sup-

porting lines
C 1)
C2 \2
c3|3
/5\/;) c4 (/4\>

Ready vertex
first edge idx

c4

)%

Compute intersections of neighbors — push into stack

R

(41 55)

4a) Pop ready vertex from S — process c4

1 Cy

1

1

5 > CUT 5 UHT 2
Cs

3%3/ 3 3

4 ~£ 4 451

5 5 o
Topological line

Array of line UHT array

S Topological line

6

LHT

Topological line

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-

equations E -Delir-niti-ng -Delir-niti-ng
y=ax+b lines indices lines indices

1|a;|b; 1|—w| 2| 1|—c| 6
2 |a,|b, 2|—o| 5] 2|-w| 1
3|ag|b; 3|—w| 5] 3|—-»| 1
41a,|b, 4|—co| 5 4|—c| 3
5|ag|bs 5| —c0| 6 5| —o0 4

6| —oo| +— 6| +o0 | —

Pairs of line indices

cl
c2
c3
c4

delimiting the edge porting lines
—oo| 2| c1]|1
— c2|2
—©| 5| c3|3
—oof S| c4|b]|+—
—o| 4] c5(5

ch

(42 / 55)

Ready vertex
first edge idx

c4
cl

R

4b) Swap lines c4 and ¢S5 -swap 4 and 5

1 Cy

1

1

5 > CUT 5 UHT 2
Cs

3%3/ 3 3

4 ~£ 4 451

5 5 N
Topological line

Array of line UHT array

equations E Delimiting
y=ax+b lines indices

1|a;|b; 1| —oo| 2
2|a,|b, 2| —| 5
3|a;|b; 3|—o| 5
41a,|by, 4|—o0| 5
S5|ag|bs S| —| 6
6| —oo| +—

S Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

O O A W DN P

Delimiting
lines indices

AW [IRP[IFP O

Pairs of line indices
delimiting the edge

cl
c2
c3
c4
CS

a|lb~r|O01|F

cl
c2
c3
c4
CS

AlOA[W|IN]|PF

(43 / 55)

Ready vertex
first edge idx

cl

%

4c) Update the horizon trees — UHT and LHT

3 ¢,
47

5 5 N
Topological line

Array of line UHT array

equations E
y=ax+Db

a, | by

2

w

N

o B~ W N B
Q
W

b
b
b
b

5

Note: o—e Edges are half open to prevent the tree after reinsertion

O O A WO DN B

Delimiting
lines indices

L NS

OO0 DN

Reentered

5 Topological line

part

6

N

o~ W

LHT

Topological line

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

O O A W DN P

Pairs of line indices
delimiting the edge

Delimiting
lines indices

— 6] cl

— 1| c2

— 1] c3
5| 3| c4
4| 3| c5

W L

—oo| 2
—o| 1
—w| 5§
—o| 4
—o| 5

cl
c2
c3
c4
CS

AW |IN]|PF

\"TT 1 Iy

Ready vertex
upper edge id

cl

L

4d) Determine new cut edges endpoints — N

1
5 LHT
3
Reentered 4
5 Topological line 5 Topological line opart‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines upper edge id
1la, b, | 2]—]| 2| 2| —| 6] c1|— | 2| c1|1
2la,|b,| 2|— | 5| 2| —| 1| c2|— | 1| c2]|2
3|as| b, 3| — 5 3| — 1] c3 |— 5] c313
4a,|b, 4|1 5| 6| 4 53><c443c45
5lac|bs| 5| 4| 6] 5| 4| 3[*5| 5| 3| c5|4 cl
6|— |+— 6| +— |—
Y ¥ j

- \Z
e R
A A A A Intersect the trees — take the shorter edge %
- == /a
DCGI - |

4e) Intersect with neighbors — push into S

1 o—=o
5 LHT
3
Reentered 4
5 Topological line 5 Topological line OFEI‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir-niti-ng Pai_rs'o_fline indices Index_esofsup- Readyvertgx
y=ax+b lines indices lines indices delimiting the edge porting lines upper edge id»
1la, b 1|— 1| 2] 1| —] 6 ct|—| 2] c1|1
2|a,|b, 2| — 5 2| — 1] c2 | — ‘1 c2 |2
3(a,|b,| 3|— | 5] 3| —| 1| 3|—|(5)c3i3
4la,|b,| 4| 5| 6| 4| 5| 3| c4 4(3‘c5\/c3
5la.|b,| 5| 4| 6| 5| 4| 3| 5| 5| 3| 5|4 cl
6|— |+— 6| +— |—

Intersections of neighbors - into stack

- -~ —+
DCGI (46 / 55) : _ | T S

4a) Pop ready vertex from S — process c3

1
UHT > LHT

3

4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+h lines indices lines indices delimiting the edge porting lines first edge idx
1la, b, | 1|— | 2| 1| —| 6] c1|—| 2| c1|1
2la,|b,| 2|— | 5] 2| —| 1| c2|— | 1] c2|2
41a,|b, 41 5| 6| 4 5| 3| c4| 4| 3| c4|5 c3
5|ag | bsg 5(4| 6| 5 3] 5|+ 5} 3} «c5|4 cl

6|— |+ | 6|+ |—

- -~ —+
DCGI (471 55) : _ | U T

4b) Swap lines c4 and ¢S5 -swap 4 and 5

o——o
UHT > LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir-niti-ng Pai_rs'o_fline indices Index_eso_fsup- Readyvertex
y=ax+h lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|— | 2] 1| —| 6] ct|—| 2] c1]|1
2la,|b,| 2|— | 5] 2| —| 1] c2|— | 1| c2|2
3|a;z|bs 3|— | 5] 3| — 1] c3| 4| 3| c3|5
4la,|b,| 4| 5| 6| 4| 5| 3| c4|— | 5| ca|3
5|ag | bsg 5(4| 6| 5 3] 5|+ 5} 3} «c5|4 cl
6| — |+ 6| +— |—

- -~ —+
DCGI (481/55) : _ | U T

4c) Update the horizon trees — UHT and LHT

UHT > LHT

3

4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la, b, | 1|— | 2| 1| —| 6] c1|—| 2| c1|1
2la,|b,| 2|— | 5| 2| —| 1| c2|— | 1| c2]|2
3|as| b, 3| 5| 4| 3 5| 1] c3| 4| 3| c3|5
4la,|b,| 4| 5| 6] 4| 5| 3| c4|— | 5| c4|3
5|ag|bs 5(3| 6| 5 3| 1] c5| 5| 3| c5|4 cl

6|— |+~]| 6| +— |—

- -~ —+
DCGI (49/55) : _ | U T

4d) Determine new cut edges endpoints

1
UHT 5 LHT

3

4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la, b, | 1|— | 2| 1| —| 6] c1|—| 2| c1|1
2la,|b,| 2|— | 5| 2| —| 1| c2|— | 1| c2]|2
3|az| by 3| 5| 4| 3| S| 1f.3| 3| 1| c3|5
4la,|b,l 4| 5| 6] 4| 5 3?‘C4 S| 4| c4]3
5|ag|bs 5(3| 6| 5 3| 1] c5| 5| 3| c5|4 cl

6|— |+~]| 6| +— |—
=V j

- \Z 7 =
- o —f— 3
A A A A Intersect the trees — take the shorter edge %
- == /:
DCGI (50155) | |

4e) Intersect with neighbors — push into S

UHT > LHT
3
4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir-niti-ng Pai_rs'o_fline indices Index_esofsup- Readyvertex
y=ax+h lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|— | 2] 1| —| 6] ct|—| 2] c1]|1
2la,|b,| 2|— | 5] 2| —| 1] c2|— | 1| c2|2
3|asg|b; 3| 5| 4| 3 5| 1| c3| 3| 1| c3|5
ala,|b,| 4| 5| 6| 4| 5| 3| c4a| 5|4 cal3|—_+ c4
sla.|b;| 5| 3| 6| 5| 3 1] s Sé%gi c1
6| — |+ 6| +— |— |

- -~ —+
DCGI (51/55) : _ | T S

Topological sweep algorithm

TopoSweep(L) Slope
Input: Set of lines L sorted by slope (-90° to 90°), simple, not vertical
Output: All parts of an Arrangement A(L) detected and then destroyed
1. Let C be the initial (leftmost) cut — lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:
a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope
3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoints into stack S
(ready vertices)
4. Repeat until stack not empty
a) Pop next ready vertex from stack S (its upper edge c;)
b) Swap these lines within the cut C (¢, <->c;,,)
c) Update the horizon trees UHT and LHT (reenter edge parts)
d) Consulting UHT and LHT determine new cut edges endpoints N

_ _~~e) If new neighboring edges share an endpoint -> push them %

- + —+

7 DCGI

Determining cut edges from UHT and LHT

= forlinesi=1ton
— Compare UHT and LHT edges on line |
— Set the cut lying on edge I to the shorter edge of these

= Order of the cuts along the sweep line
— Order changes at the intersection v only (neighbors)

— Order of remaining cuts not incident with intersection v
does not change

= After changes of the order, test the new neighbors
for intersections

— Store Iintersections right from sweep line into the stack

- -~ —+
-~
DCGI (53/55) _ Lo o1 3

Complexity

= O(n?) intersections
=> O(n?) events (elementary steps)

= O(1) amortized time for one step -4
=> O(n?) time for the algorithm

Amortized time

even though a single elementary step can take
more than O(1) time, the total time needed to
perform O(n?) elementary steps is O(n?), hence
the average time for each step is O(1).

LR %
+ i
DCGI (54/55) - R

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapters 8., http://www.cs.uu.nl/gecbook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for
Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement.
TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-
9.pdf

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate
cases", in Proceedings of the 4th international workshop on Algorithm
Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-
Verlag, Berlin, Germany, pages 155-156.
http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf

o . :
> S~ o~ 4 |
DCGI e R

(55 / 55) | e /R |

