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Talk overview

= Arrangements of lines
— Incremental construction
— Topological plane sweep
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Arrangements

= The next most important structure in CG after
CH, VD, and DT

= Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

= We concentrate on arrangement of lines in plane

= Typical application: problems of point sets in dual
plane (collinear points, point on circles, ...)
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Line arrangement

= A finite set L of lines subdivides the plane into a
cell complex, called arrangement A(L)

= In plane, arrangement defines a planar graph
— Vertices - intersections of (2 or more) lines

— Edges - Intersection free segments (or rays or lines)
— Faces - convex regions containing no line
(possibly unbounded)

vertex
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Line arrangement

= Simple arrangement assumption

= no three lines intersect in a single point

— Can be solved by careful implementation or symbolic
perturbation
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Line arrangement

= Formal problem: graph must have bounded edges
— Topological fix: add vertex in infinity

— Geometrical fix: BBOX, often enough as abstract
with corners {—oo, —0o}, {co, 00}

bounding box ™"
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Combinatorial complexity of line arrangement

O O(nZ)
= Given n lines in general position, max numbers are

— Vertices | |= n(nz—l) - each Wn — 1 others
— Edges n? - n—1 Iintersections create n edges
on each of n lines
n
— Faces n(n+1)+l ( j+n+1 f,=1 (cela rovina)
f =f +n

/ % % s N+
: 2
“ oo o




Construction of line arrangement

(0. Plane sweep method)

— O(n? log n) time and O(n) storage
plus O(n?) storage for the arrangement
(log n - heap & BVS access, n? vertices, edges, faces)

A. Incremental method
— O(n?) time and O(n?) storage
— Optimal method
B. Topological plane sweep
— O(n?) time and O(n) storage only
— Does not store the result arrangement
— Useful for applications that may throw out the

. -~ arrangement after processing %
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A. Incremental construction of arrangement

= O(n?) time, O(n?) space
~sSize of arrangement => it is an optimal algorithm

= Not randomized — depends on n only, not on order

= Addlinel.onebyone (i=1..n)

— Find the leftmost intersection with BBOX
among 2(i-1)+4 edges on the BBOX ...O(l)

— Trace the line through the arrangement A(L; ;) and split
the intersected faces ...O(l) — why? See later

— Update the subdivision (cell split) ...0(1)
= Altogether O(ni) = O(n?)
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A. Incremental construction of arrangement

Arrangement( L )

Input:  Set of lines L in general position (no 3 intersect in 1 common point)

Output: Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L) )

1. Compute the BBOX B(L) containing all the vertices of A(L) ...0(n?)
2. Construct DCEL for the subdivision induced by BBOX B(L) ...0(1)
3. fori=1tondo //insertlinel,
4. find edge e, where line |, intersects the BBOX of 2(i-1)+4 edges ...O(i)
5. f = bounded face incident to the edge e
6. while fisin B(L) (bounded face f = fis in the BBOX) .. O(??7?)
7. split f and set f to be the next intersected face

across the intersected edge
8. update the DCEL (split the cell) ...0(1)

See-later
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Tracing the line through the arrangement

= Walk around edges of current face (face walking)
= Determine if the line |, intersects current edge e

= When intersection found, jump to the face on the
\/ other side of this edge e

n=8 lines, 7 faces in the zone, 22 edges tested of max 48

The zone of | Walking the lower part

++:ff e it of the zone _ %
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Tracing the line through the arrangement

= Number of traversed edges determines the
iInsertion complexity

= Naive estimation would be O(i?) traversed edges
(i faces, ilines per face, i° edges)

= According to the Zone theorem, it is O(i) edges
only!

Zone theorem

= given an arrangement A(L) of n lines in the plane
and given any line | in the plane, the total number

. MOSt 6N.  For proof see [Mount, page 69] % |
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Cell split

s 2 hew face records, 1 new vertex, 2+2 new half-

edges + update pointers ... O(1)
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Complexity of incremental algorithm

= N iInsertions

= O() = O(n) time for one line insertion
(Zone theorem)

=> Complexity: O(n?) + n.O(i) = O(n?)

bbox edges walked
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B. Topological plane sweep algorithm

= Complete arrangement needs O(n?) storage

= Often we need just to process each arrangement
element just once — and we can throw it out then

= Classical Sweep line algorithm
— needs O(n) storage
— needs log n for heap manipulation in O(n?) event points
=> O(n?log n) algorithm
= Topological sweep line - TSL
— disperses O(log n) factor in time
— array of neighbors and a stack of ready vertices

. ~=> 0(n?) algorithm |
” DCGI (15/55) | o o %




lllustration from Edelsbrunner & Guibas




Topological line and cut

. . 1
Topological line (curve)

(an intuitive notion) 202
= Monotonic curve in y-dir
= Intersects each line

exactly once

(as a sweep line) 4

Topological line

Cut in an arrangement A

= IS an ordered sequence of edges ¢4, C,,...,C,IN A
(one taken from each line), such thatfor 1 1 _ n-1,
c, and c,, are incident to the same face of A and
c; Is above and c,,, below the face

= Edges not necessarily connected (as.c, and c,)

o %
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Topological plane sweep algorithm

s Starts at the leftmost cut

— Consist of left-unbounded edges of A (ending at —)
— Computed in O(n log n) time — order of slopes

= The sweep lineis

— pushed from the leftmost cut to the rightmost cut topological

_ sweep line
— Advances in elementary steps
ready

vertex

= Elementary step

= Processing of any ready vertex
(intersection of consecutive edges at their right-point)

— Swaps the order of lines along the sweep line
— |Is always possible (e.g., the point with smallest x)
earching of smallest x would need O(log n) time ...
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Step 0 — the leftmost cut

ready
vertex Slope

Topological line

c;, = ordered sequence of edges along the topological sweep line
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Step 1 — after processing of c4 x ¢5

Slope
Topological line
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Step 2 — after processing of c3 x c4

4 Slope
)
Topological line
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How to determine the next right point?

= Elementary step (intersection at edges right-point)
— |s always possible (e.g., the point with smallest x)
— But searching the smallest x would need O(log n) time
— We need O(1) time

= Right endpoint of the edge in the cut results from
" a line of smaller slope intersecting it from above (traced

from L to R) or
= line of larger slope intersecting it from below. //Sl:jpe

= Use Upper and Lower Horizon Trees (UHT, LHT)
— Common segments of UHT and LHT belong to the cut
— Intersect the trees, find pairs of consecutive edges
B = use the right points as legal steps (push to stack)

——
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Upper and lower horizon tree

= Upper horizon tree (UHT)
— Insert lines in order of decreasing slope (cw)

— When two edges meet, keep the edge with higher slope
and trim the inserted edge (with lower slope)

— To get one tree and not the forest of trees (if not
connected) add a vertical line in +— (slope +90°)

— Left endpoints of the edges Iin the cut
do not belong to the tree O O

= Lower horizon tree (LHT) construction.symmetrical
= UHT and LHT serve for right endpts determination
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Upper horizon tree (UHT) — initial tree

= Insert lines in order of decreasing slope (“cw”)

1
2

4 JSIope
)
Topological line
+ |
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Lower horizon tree (LHT) — initial tree

= Insert lines in order of increasing slope (“ccw”)

1
2

4 Slope
)
Topological line v
+ |
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Overlap UHT and LHT - detect ready vertices

UHT LHT
2 2
3 3
4 4
Topological line Topological line
1 6 |

3

. %
vertex

5

Topological line

DCGI (26/55)
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Upper horizon tree (UHT) — init. construction

= Insert lines in order of decreasing slope (cw)
= Each new line starts above all the current lines
= The uppermost face = convex polygonal chain

= Walk left to right along the chain
to determine the intersection

= Never walk twice over a segment

— Such segment is no longer part of
the upper chain

— O(n) segments in UHT
=> O(n) initial construction

new line
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Upper horizon tree (UHT) — update

= After the elementary step

= Two edges swap position along
the sweep line

Ready vertex

= Lower edge | (lower slope, comes from above) | \
— Reenter to UHT
— Terminate at nearest edge of UHT
— Start in edge below in the current cut
— Traverse the face in CCW order /

— Intersection must exist, as | has lower--..
slope than the other edge from v
and both belong to the same face

- + —+
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Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients — E [1:n]

2) Upper horizon tree — UHT [1:n]
3) Lower horizon tree — LHT [1:n]
4) Order of lines cut by the sweep line — C [1:n]

5) Edges along the sweep line — N [1:n]

6) Stack for ready vertices (events) —S

(n number of lines)

L omE %
+
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Indices of lines

1) Line equation coefficients E [1:n]

%&é = Array of line equation coefs. E
: — Contains coefficients a, and b,
of line equations y = ax + b,

6) — E is indexed by the line index

A i — Lines are ordered according to

rray of line _ oo

equations E their slope (angle from -90° to
y=ax+bh 90°)

Slope
a, | by i
a, | b,
b
b
b
-+ %
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2) and 3) — Horizon trees UHT and LHT

Their intersection is % UHT % LHT
used for searching
of legal steps 3 3
(right points) 4 4
- the shorter edge wins  ®© Topological line 5 S Topological line g
UHT array LHT array =  Store pairs of line indices in E
Delimiting Delimiting that delimit segment . to the left
lines indices lines indices :
and to the right
1|—o0o| 2|11 |-o| 6]|= Segments are half open o——e
>l 5] 2 [ —| 1= Unlimited line has “indices”
3|-w| 5|3 |- 1 (—, == —]
= One additional vertical line
4 | -0 514 |—c0| 3 — prevents the tree from splitting into
5|—c| 6|5 |=0| 4 forest of trees
— T — _is inserted first and never trimmed
. @ Rl D L — is (— , +=] for UHT

s — s (+—, — ] for LHT %
> -+ 4
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4) Order of lines cut by sweep line — C [1:n]

= The topological sweep line cuts each line once

= Order of the cuts (along the topological sweep
line) is stored in array C as a sequence of line

Indices
= Array C “points” to the array E CUT Lines C
. . Indexes of sup-
of line equations porting ines.
= For the initial leftmost cut, cl|1
the order is the same as in E c2|2
. . . c3|3
= Index ci addresses I-th line fromtop 5
along the sweep line 55
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5) Edges along the sweep line — N [1:n]

= Edges intersected by the topological sweep line are
stored here (edges along the sweep line)

= Instead of endpoints themselves, we store the
iIndices of lines whose intersections delimit the edge

= Order of these edges IS  CUT edges N

Pairs of line indices

the same as in C delimiting the edge T first edge
- " along the sweep line:
(both use the index ci) c1 [=oo] 2] ieson e cren
= Index cistores the index ~ ©2 | =L 1] -comeefonmny
of i-th edge from top along zz = :
the sweep line s ol 2

+
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6) Stack S

= The exact order of events is not important

(event = intersection in ready vertex)

= Alg. can process any of the “ready vertex”

= Event queue is therefore replaced by a stack
(faster: O(1) instead of O(log n) for queue) .. s

Ready vertex

= The stack stores just the upper edge c; first edge id
from the pair intersecting in ready vertex

= Intersection Iin the ready vertex
IS computed between stored ¢; and ¢,

c4 xc5

c4
cl

v

\ 4

c1xc2

R T %
+ L
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Topological sweep line demo

Indices of lines

3/
4
5

Array of line

equations E
y=ax+b

a, | by

2

Indices of lines
g b W DN -
QD
w
O |0 |O|OC
w

S A o~ == =

/ .
Slope

Input

%&é .

set of lines L in the plane

ordered In increasing slope

(£ -90° to 90°), simple,
not vertical

line parameters in array E
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Indices of lines

1) Initial leftmost cut - C

>—&  curt = Store the indices of lines in E

Co

;-5 Into the Cut lines array C

C, - . .

4% in increasing slope order
C

5 _5 N
Topological line

Array of line CUT Lines C
equations E Indexes of sup-
y=ax+b porting lines
1la,|b, ‘§ cl|1
2ay|b, §,C2 2
3|a| by ‘_E c3|3
41a,|b, é c4 |4
5|85 | bs £ ¢5|5

- -~ —+
-~
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1) Initial leftmost cut - N

1 CUT

Co
Cs3

4C

5 _5 N
Topological line

Array of line

equations E
y=ax+b

b,

2

w

N

b
b
b
b

5

>0 A W N P

indices of lines

+

DCGI

Prepare array N for endpoints of
the cutted edges (resp. for line
Indices delimiting these edges)

Init it by line “ends” —oo, 40
CUT edges N CUT Lines C

Pairs of line indices
delimiting the edge

cl
c2
c3
c4
CS

cl
c2
c3
c4
CS

Indexes of sup-
porting lines

G~ |W|IN|PF

(37 /55)
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2a) Compute Upper Horizon Tree - UHT

1 C 1
2 G  cut 2

Co
Cs3

UHT

4C

5 _5 N
Topological line

b~ W

Array of line UHT array
equatlons E Delimiting

y=ax+b lines indices

1|a;|b; 1|—ocof 2|A

2|a,|b, 2|—oc| 5

3|as| b, 3| —oo| 5| |Orderof

t[afor] [ o8] o

S5|ag|bs 5| —c| 6
@:} Inserted first

Topological line

CUT edges N

Pairs of line indices
delimiting the edge

6

cl | —
c2 | —oo
c3 | —oo
c4 | —o0
CO | —o

, hever changed

CUT Lines C

Indexes of sup-
porting lines

cl
c2
c3
c4
CS

G~ |W|IN|PF

(38/55)
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2b) Compute Lower Horizon Tree - LHT

&% cut 2 UHT > LHT
C,
C3
3¢, 3 3
4 < 4 4
5 75 . 5 . 5 i v
Topological line Topological line 6 Topological line 6
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices  Indexes of sup- Ready vertex
y=ax+b lines indices “ lines indices  delimiting the edge porting lines first edge idx
1(a;|by 1|—oco| 2|||1]|—=c| 6] €l |—co| —| cl]|1
2 |a,|b, 2| —oo| 5]|||2|—c0| 1| c2 |- —] c2]|2
3|a;|b; 3|—c| 5][||3|—| 1] c3 |- — | c3|3
4la,|b,| 4|-| 5|||4]|-0]| 3| c4 |- —| c4|4
6| —oo| +— 6 | +0 | — | Dinserted first, never changed

e Ordlerof&/
= " insertion
DCGI into LHT (39 /55) | : | o o2 2w



3a) Determine right delimiters of edges - N

& cut 2 UHT > LHT
Co
C3
3¢, 3 3
4 G 4 4
5 Topological line 5 Topological line 6 S Topological line 6
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-o| 2| 1]|-| 6| cl |- 2| c1]|1
2|a,|b,| 2|-ow| 5| 2|-| 1| c2|—c| 1] c2]|2
3las|b; 3|—o| 5| 3|—-o| 1] c3|—»| 3| c3|3
4|a,|b,| 4|-oo| 5| 4|-0o| 3| c4 |- 5| c4|4
S5|ag|bs 5(—w| 6| 5|—c| 4] ¢S5 |- 4| c5|5
6| —oo|+— 6|+ | —
-~ = -+ 9 T P
P Intersect the trees — take the shorter edgﬂ
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3b) Ready vertices = inters. of neighbors — S

18 curt 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 z 4 451

5 5 N
Topological line

Array of line UHT array

equations E  Delimiting
y=ax+b lines indices

1|a;|b; 1| —o0| 2
2|a,|b, 2|—o| 5
3|a;|b; 3|—o| 5
41a,|by, 4|—oo| 5
S5|ag|bs S|—o| 6
6| —oo| +—

5 Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

O O A W DN P

Pairs of line indices

delimiting the edge

Delimiting
lines indices
—oo | 6] cl
—oco | 1| c2
—oco | 1] c3
—oo | 3| c4
—o | 4] ¢S
400 | —

[2

\1,
5

\ 4

Indexes of sup-

porting lines
C 1)
C2 \2
c3|3
/5\/;) c4 (/4\>

Ready vertex
first edge idx

c4

)%

Compute intersections of neighbors — push into stack

R

(41 55)



4a) Pop ready vertex from S — process c4

1 Cy

1

1

5 > CUT 5 UHT 2
Cs

3%3/ 3 3

4 ~£ 4 451

5 5 o
Topological line

Array of line UHT array

S Topological line

6

LHT

Topological line

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-

equations E -Delir-niti-ng -Delir-niti-ng
y=ax+b lines indices lines indices

1|a;|b; 1|—w| 2| 1|—c| 6
2 |a,|b, 2|—o| 5] 2|-w| 1
3|ag|b; 3|—w| 5] 3|—-»| 1
41a,|b, 4|—co| 5 4|—c| 3
5|ag|bs 5| —c0| 6 5| —o0 4

6| —oo| +— 6| +o0 | —

Pairs of line indices

cl
c2
c3
c4

delimiting the edge porting lines
—oo| 2| c1]|1
— c2|2
—©| 5| c3|3
—oof S| c4|b]|+—
—o| 4] c5(5

ch

(42 / 55)

Ready vertex
first edge idx

c4
cl

R




4b) Swap lines c4 and ¢S5 -swap 4 and 5

1 Cy

1

1

5 > CUT 5 UHT 2
Cs

3%3/ 3 3

4 ~£ 4 451

5 5 N
Topological line

Array of line UHT array

equations E  Delimiting
y=ax+b lines indices

1|a;|b; 1| —oo| 2
2|a,|b, 2| —| 5
3|a;|b; 3|—o| 5
41a,|by, 4|—o0| 5
S5|ag|bs S| —| 6
6| —oo| +—

S Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

O O A W DN P

Delimiting
lines indices

AW [IRP[IFP O

Pairs of line indices
delimiting the edge

cl
c2
c3
c4
CS

a|lb~r|O01|F

cl
c2
c3
c4
CS

AlOA[W|IN]|PF

(43 / 55)

Ready vertex
first edge idx

cl
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4c) Update the horizon trees — UHT and LHT

3 ¢,
47

5 5 N
Topological line

Array of line UHT array

equations E
y=ax+Db

a, | by

2

w

N

o B~ W N B
Q
W

b
b
b
b

5

Note: o—e Edges are half open to prevent the tree after reinsertion

O O A WO DN B

Delimiting
lines indices

L NS

OO0 DN

Reentered

5 Topological line

part

6

N

o~ W

LHT

Topological line

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

O O A W DN P

Pairs of line indices
delimiting the edge

Delimiting
lines indices

— 6] cl

— 1| c2

— 1] c3
5| 3| c4
4| 3| c5

W L

—oo| 2
—o| 1
—w| 5§
—o| 4
—o| 5

cl
c2
c3
c4
CS

AW |IN]|PF

\"TT 1 Iy

Ready vertex
upper edge id

cl

L




4d) Determine new cut edges endpoints — N

1
5 LHT
3
Reentered 4
5 Topological line 5 Topological line opart‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines upper edge id
1la, b, | 2]— ]| 2| 2| —| 6] c1|— | 2| c1|1
2la,|b,| 2|— | 5| 2| —| 1| c2|— | 1| c2]|2
3|as| b, 3| — 5 3| — 1] c3 |— 5] c313
4a,|b, 4|1 5| 6| 4 53><c443c45
5lac|bs| 5| 4| 6] 5| 4| 3[*5| 5| 3| c5|4 cl
6|— |+— 6| +— |—
Y ¥ j

- \Z
e R
A A A A Intersect the trees — take the shorter edge %
- == /a
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4e) Intersect with neighbors — push into S

1 o—=o
5 LHT
3
Reentered 4
5 Topological line 5 Topological line OFEI‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir-niti-ng Pai_rs'o_fline indices Index_esofsup- Readyvertgx
y=ax+b lines indices lines indices  delimiting the edge porting lines upper edge id»
1la, b 1|— 1| 2] 1| —] 6 ct|—| 2] c1|1
2|a,|b, 2| — 5 2| — 1] c2 | — ‘1 c2 |2
3(a,|b,| 3|— | 5] 3| —| 1| 3|—|(5)c3i3
4la,|b,| 4| 5| 6| 4| 5| 3| c4 4(3‘c5\/c3
5la.|b,| 5| 4| 6| 5| 4| 3| 5| 5| 3| 5|4 cl
6|— |+— 6| +— |—

Intersections of neighbors - into stack

- -~ —+
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4a) Pop ready vertex from S — process c3

1
UHT > LHT

3

4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+h lines indices lines indices  delimiting the edge porting lines first edge idx
1la, b, | 1|— | 2| 1| —| 6] c1|—| 2| c1|1
2la,|b,| 2|— | 5] 2| —| 1| c2|— | 1] c2|2
41a,|b, 41 5| 6| 4 5| 3| c4| 4| 3| c4|5 c3
5|ag | bsg 5( 4| 6| 5 3] 5|+ 5} 3} «c5|4 cl

6|— |+ | 6|+ |—

- -~ —+
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4b) Swap lines c4 and ¢S5 -swap 4 and 5

o——o
UHT > LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir-niti-ng Pai_rs'o_fline indices Index_eso_fsup- Readyvertex
y=ax+h lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|— | 2] 1| —| 6] ct|—| 2] c1]|1
2la,|b,| 2|— | 5] 2| —| 1] c2|— | 1| c2|2
3|a;z|bs 3|— | 5] 3| — 1] c3| 4| 3| c3|5
4la,|b,| 4| 5| 6| 4| 5| 3| c4|— | 5| ca|3
5|ag | bsg 5( 4| 6| 5 3] 5|+ 5} 3} «c5|4 cl
6| — |+ 6| +— |—

- -~ —+
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4c) Update the horizon trees — UHT and LHT

UHT > LHT

3

4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices  Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la, b, | 1|— | 2| 1| —| 6] c1|—| 2| c1|1
2la,|b,| 2|— | 5| 2| —| 1| c2|— | 1| c2]|2
3|as| b, 3| 5| 4| 3 5| 1] c3| 4| 3| c3|5
4la,|b,| 4| 5| 6] 4| 5| 3| c4|— | 5| c4|3
5|ag|bs 5( 3| 6| 5 3| 1] c5| 5| 3| c5|4 cl

6|— |+~ ]| 6| +— |—
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4d) Determine new cut edges endpoints

1
UHT 5 LHT

3

4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la, b, | 1|— | 2| 1| —| 6] c1|—| 2| c1|1
2la,|b,| 2|— | 5| 2| —| 1| c2|— | 1| c2]|2
3|az| by 3| 5| 4| 3| S| 1f.3| 3| 1| c3|5
4la,|b,l 4| 5| 6] 4| 5 3?‘C4 S| 4| c4]3
5|ag|bs 5( 3| 6| 5 3| 1] c5| 5| 3| c5|4 cl

6|— |+~ ]| 6| +— |—
=V j

- \Z 7 =
- o —f— 3
A A A A Intersect the trees — take the shorter edge %
- == /:
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4e) Intersect with neighbors — push into S

UHT > LHT
3
4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir-niti-ng Pai_rs'o_fline indices Index_esofsup- Readyvertex
y=ax+h lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|— | 2] 1| —| 6] ct|—| 2] c1]|1
2la,|b,| 2|— | 5] 2| —| 1] c2|— | 1| c2|2
3|asg|b; 3| 5| 4| 3 5| 1| c3| 3| 1| c3|5
ala,|b,| 4| 5| 6| 4| 5| 3| c4a| 5|4 cal3|—_+ c4
sla.|b;| 5| 3| 6| 5| 3 1] s Sé%gi c1
6| — |+ 6| +— |— |

- -~ —+
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Topological sweep algorithm

TopoSweep(L) Slope
Input:  Set of lines L sorted by slope (-90° to 90°), simple, not vertical
Output: All parts of an Arrangement A(L) detected and then destroyed
1. Let C be the initial (leftmost) cut — lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:
a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope
3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoints into stack S
(ready vertices)
4. Repeat until stack not empty
a) Pop next ready vertex from stack S (its upper edge c;)
b) Swap these lines within the cut C (¢, <->c;,,)
c) Update the horizon trees UHT and LHT (reenter edge parts )
d) Consulting UHT and LHT determine new cut edges endpoints N

_ _~~e) If new neighboring edges share an endpoint -> push them %

- + —+
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Determining cut edges from UHT and LHT

= forlinesi=1ton
— Compare UHT and LHT edges on line |
— Set the cut lying on edge I to the shorter edge of these

= Order of the cuts along the sweep line
— Order changes at the intersection v only (neighbors)

— Order of remaining cuts not incident with intersection v
does not change

= After changes of the order, test the new neighbors
for intersections

— Store Iintersections right from sweep line into the stack

- -~ —+
-~
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Complexity

= O(n?) intersections
=> O(n?) events (elementary steps)

= O(1) amortized time for one step -4
=> O(n?) time for the algorithm

Amortized time

even though a single elementary step can take
more than O(1) time, the total time needed to
perform O(n?) elementary steps is O(n?), hence
the average time for each step is O(1).

LR %
+ i
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