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Talk overview

= |ncremental construction

= Voronoi diagram of line segments
= VD of order k
= Farthest-point VD
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Incremental construction — bounded cell
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Incremental construction —unbounded cell
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Incremental construction algorithm

InsertPoint(S, Vor(S),y) ...y =anew site
Input: Point set S, its Voronoi diagram, and inserted point y¢S
Output: VD after insertion of y

1.
2.

3.
4.

o o

Find the cell V(x) in which y falls ...O(log n)
Detect the intersections {a,b} of bisector L(x,y) with boundary of cell V(x)
=> * first edge e = ab on the border of cells of sites xand y ...O(n)
P = a, site z = neighbor site across the border with pointa ...O(1)
while( exists(p) and z + a) // trace the bisectors from a in one direction
a. Detect the intersection c of bisector L(z,y) with V(z)
b. Report Voronoi edge pc ...0(n?)
C. p=cC
if(c+a)thenp=>b ...0(1)
while( exists(p) and z + a) // trace the bisectors from b in other direction
1. Detect the intersection c of bisector L(z,y) with V(z)
2. Report Voronoi edge pc ...0(n?)
3. p=cC

.~ 7+ 0(n?) worst-case, O(n) expected time for some distribution
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Voronoi diagram of line segments

Input: S ={s,, ..., s} = set of n disjoint line segments (sites)
VD: -line segments

— parabolic arcs

Type 1

Type 3

Distance measured
perpendicularly to the object
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VD of line segments with bounding box

BBOX
=>
standard
DCEL
\\ |
~ [Berg] |
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Bisector of 2 l[ine-segments in detall

= Consists of line segments and parabolic arcs

Distance from point-to-object is measured to the closest point on the object
(perpendicularly to the object silhouette)

— Line segment — bisector of end-points or of
— Parabolic arc — of point and interior of a line segment

. L Type 1
Bisector of two disjoint
line segments has <7 parts

Type 3

Input line segments
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Bisector in greater details

Type 3
| \ 1 - - T
l {_:} \.\\ !
|
! [ ) L°
} | /
.4 ’:‘3\ | .p/'
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el .\ |
L _
i [Reiberg]
Bisector of two Bisector of (end-)point and
line segment interiors line segment interior

(in intersection of perpendicular slabs only)
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Voronoi diagram of line segments

= More complex bisectors of line segments
— line segments and parabolic arcs

= Still combinatorial complexity of O(n)
= Assumptions on the input line segments:
— non-crossing
— strictly disjoint end-points (slightly shorten the segm.)
\ if(we allow touching segments)
' Shared endpoints cause complication:

The whole region is equally close
to two line segments

[Berg]
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Voronoi diagram of line segments

= Variant with touching segments in their end-points

= Two types of Voronol vertices:

— Type 3 — three different objects

— Type 2 — two objects
(segment and one
of its end-points)

s Contains also 2D areas

— Not only 1D line segments
and parabolic arcs
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VD of points and line segments examples

2 points Point & segment 2 line segments

E,

= —:_ -
+++++
> -~ -+ -
—~ DCGI Felkel: Computational geometry _
(121743) s



Beach line Note: site = line segment

Points with distance to the closest site above sweep line |
equal to the distance to |

= Beach line contains
— parabolic arcs when closest to a site end-point

— straight line segments when closest to a site interior
(or just the part of the site interior above | if the site s intersects |)

s (This is the shape of the beach line) %
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Beach line breakpoints types

= Point p is equidistant from | and
(equidistant and closest to)

1. two site end-points => traces a VD line segment
2. two site interiors => traces a VD line segment
3. end-point and interior => traces a VD parabolic arc
4. one site end-point => traces a line segment
(border of the slab
perpendicular to the site)
5. site interior intersects => Intersection traces a line
the scan line | segment

Cases 4 and 5 involve only one site and therefore do
~ not form a Voronoi diagram edge (are used by alg.oné)
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Breakpoints types and what they trace

Parabolic arc on the Traced parabolicarc — "\ ~~_ 4
) \/ ‘
beach line \ ‘

[Berg]

= 1,2 trace a Voronoi line segment (part of VD edge)  oraw
= 3 traces a Voronoi parabolic arc (part of VD edge)  oraw
= 4,5trace aline segment (used only by the algorithm) wovwe

— 4 limits the slab perpendicular to the line segment
— 5 traces the intersection of input segment with a sweep line

e F (This is the shape of the traced VD arcs) %
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Site event — sweep line reaches an endpoint
4

. At upper endpoint of &\ \'

S dangling Pt
— Arc above is split into two S ey AT
/ 1 (1 3 2
_ 4 new arcs are created 4 — (1 or 3 or even

depending on
mutual positions)

(2 segments + 2 parabolas) -~

— Breakpoints for 2 segments
are of type 4-5-4

— Breakpoints for parabolas
depend on the surrounding
sites

* Type 1 for two end-points
* Type 3 for endpoint and interior
- efc...
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Site event — sweep line reaches an endpoint

Il. At lower endpoint of &

— Intersection with interior
(breakpoint of type 5)

— Is replaced by two breakpoints
(of type 4) N
with parabolic arc between them
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Circle event — lower point of circle of 3 sites

= Two breakpoints meet (on the beach-line)

= Solution depends on their type

— Any of first three types meet
— 3 sites involved — Voronoi vertex created

— Type 4 with something else
— two sites involved — breakpoint changes its type

— Voronoi vertex not created
(Voronoi edge may change its shape)

— Type 5 with something else
— never happens for disjoint segments
(meet with type 4 happens before)
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Summary of the terms

= Site = input point, line segment, ...
= Cell = area around the site, in VD, the nearest to
site
= Edge, arc = part of Voronoi diagram
(border between cells)

= Vertex = intersection of VD edges
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Motion planning example - retraction rugeninran

Find path for a circular robot of radius r from Ostart to Qend

[Berg]
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Motion planning example - retraction rugeninran

Find path for a circular robot of radius r from Q. to Q

= Create Voronoi diagram of line segments,
take it as a graph

= Project Qg to Py, 0N VD and Q. 410 Pg4

= Remove segments with distance to sites smaller than
radius r of a robot

= Depth first search if path from P, to P4 exists
= Report path Qg Psart---Path... Pggt0 Qgng

end

= O(nlog n) time using O(n) storage
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Order-2 Voronol diagram

V(p;,p;) : the set of points
of the plane closer
to each of p; and p,
than to any other site

V(5,7)

V(1,2)

Property
The order-2 VVoronoi
regions are convex

V(1,3)

V(1.4)

- [Nandy]
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Construction of V(3,5) = V(5,3)

Intersection of all halfplanes ﬂ h(3 X) ~ ﬂ h(5

except H(3,5) and H( 5 (5,3) 5 * g3
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Order-2 Voronol edges

- - _ V(5,7)
edge : set of centers of L& R
circles passing through ;o \
2 sites s and t and : '
containing one site p " . ,
=> Cp(S,t) . o !

Question

°6
’ . 4
=>V(p,s) and V(p,t)

Which are the regions
- ++5 - [Nandy]
-~
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Order-2 Voronoil vertices

vertex : center of a circle
passing through at least
3 sites and containing
either 1 or O site p

=> up(Q) or ug(Q U p)

(circle circumscribed to Q)

- [Nandy]
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Types of order-2 Voronoi vertices...

V25 [feen V(5,7)
vertex : center of a circle V(2,3) 3 c.ea Jue2,3.7)
passing through at least ° o 5§ " |
3 sites and containing \ o)
either 1 or O site v(d.2) VG
) v/
= 3 !
> Up(Q) or U@(Q U p) \ \\ u@(3:’6,,],’1§)7
: : . o 3.6) "/ I
(circle circumscribed to Q) i VO’@ g . %6 M
v(1.3) SN
V(3.4)
° 4
V(1.4) V(4,6)

[Nandy]
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Order-k Voronoi Diagram

Theorem vsta
The size of the order-k
diagrams is O(k(n-k))
V(1,2,3)

Theorem vsta
The order-k diagrams
can be constructed from
the order-(k-1) diagrams
in O(k(n-k)) time

Corollary dusledek
The order-k diagrams can
be iteratively constructed
in O(n log n + k?(n-k)) time

- [Nandy]
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Order n-1 = Farthest-point Voronoi diagram

cell V4(7) =V, 4({1,2,3,4,5,6})
= set of points in the
plane farther from p=7
than from any other
site

V_1(6)

Vor_,(P) = Vor,_(P)

= partition of the plane
formed by the farthest
point Voronoi regions,
their edges, and
vertices

V_105)

°4
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Farthest-point Voronol diagrams example

Roundness of manufactured objects
= |nput: set of measured points in 2D

= Output: width of the smallest-width annulus
(region between two concentric circles C; .., and C_ ;)

Three cases to test — one will win:

_ ~.Aa)A pointin — 3 out b) 3in -1 out 2 in—2 out ) %
> -+ —+ [Berg]
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Smallest width annulus — cases with 3 pts

b) C..er CONtains at least 3 points

s Center is the vertex of normal Voronoi -
diagram (1st order VD)

= The remaining pointon C_ ., in O(n) for
eaCh Ve rteX => not the largest (inscribed) empty circle - Seminar [13]

as we must test all vertices in combination with point on C outer . [Berg]
3in—1 out
a) Couter

= Center is the vertex of the
farthest Voronoi diagram

= [he remaining pointon C

O(n ) => not the smallest enclosing circle - Seminar [12]
as we must test all vertices in combination with point on C

inner
Felkel: Computational geometry | -
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Smallest width annulus — case with 2+2 pts

c) C,,ner @nd C_ i, CONtain 2 points each

= Generate vertices of overlay of Voronoi ()
and farthest-point Voronoi (- - -)diagrams
=> O(n?) candidates for cen’ /
(we need vertices, notth
whole overlay)

= annulus computed in O(1)
from center and 4 points
(same for all 3 cases)
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S

mallest width annulus

Smallest-Width-Annulus
Input:  Set P of n points in the plane
Output: Smallest width annulus center and radii r and R (roundness)

1.

2.

O(n?) time using O(n) storage

Compute

and farthest-point Voronoi diagram Vor_,(P) of P

For each vertex of Vor_,(P) (R) determine the closest point (r) from P
=> O(n) sets of four points defining candidate annuli

For each vertex of (r) determine the farthest point (R) from P
=> O(n) sets of four points defining candidate annuli
For every pair of edges and Vor_,(P) test if they intersect
=> another set of four points defining candidate annulus 1. - O(nlogn)
For all candidates of all three types 2. 0(n?)
chose the smallest-width annulus 3. O(n?)

4. 0O(n?)

5. 0(n?)
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Farthest-point Voronol diagram

V.i(py) cell

= set of points in the
plane farther from p,
than from any other
site

Vor_,(P) diagram

= partition of the plane
formed by the farthest
point Voronoi regions,
their edges, and
vertices

V_1(6)

V_105)

°4
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Farthest-point Voronoi region (cell)

Computed as intersection
of halfplanes, but we take
“other sides” of bisectors

Construction of V_4(7)
V—l = Llh(y,x),yix

Property
The farthest point Voronoi
regions are convex
and unbounded

+ [Nandy]
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Farthest-point Voronoi region

Properties:

= Only vertices of the convex hull have their cells in farthest
Voronoi diagram

= [he farthest point
Voronoi regions
are unbounded

= [he farthest point
Voronoi edges and
vertices form a tree ‘ 6
(in the graph sense)

4 V.12)

o [Nandy]
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Farthest point Voronoi edges and vertices

= V,(2)
l 1
edge : set of points equidistant vertex : point equidistant from
from 2 sites and closer to at least 3 sites and closer to
all the other sites all the other sites

— [Nandy]
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Application of Vor_(P) : Smallest enclosing circle

= Construct Vor_,(P) and find minimal circle with
centerin Vor_(P) vertices or on edges
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Modified DCEL for farthest-point Voronoi d

= Half-infinite edges -> we adapt DCEL
= Half-edges with origin in infinity
— Special vertex-like record for origin in infinity

— Store direction instead of coordinates
— Next(e) or Prev(e) pointers undefined

= For each inserted site p; o
— store a pointer to the most .
CCW half-infinite half-edge  p; - - - cell of p;

of its cell in DCEL
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ldea of the algorithm

1. Create the convex hull
and number the CH points randomly

2. Remove the points in this random order and
store cw(p;) and ccw(p;) points at the time of
removal.

3. Include the points back and compute V _,

P1 P1

Ps -9 7T D5
D3 pgv/ P1 % Ps
P4 Pa Ps P3 P4
Ps Ps
P2 P2
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Farthest-point Voronoi d. construction

Farthest-pointVoronoi O(nlog n) time in O(n) storage

Input:  Set of points P in plane

Output: Farthest-point VD Vor_,(P)

1. Compute convex hull of P

2. Put points in CH(P) of P in random order p,,...,p;,

3. Remove py, ... ,p, from the cyclic order (around the CH).

When removing p;, store the neighbors: cw(p;) and ccw(p;) at the time of

removal. (This is done to know the neighbors needed in step 6.)

Compute Vor_(( { p;, P,, P3} ) as init

for i=4 tohdo

Add site p; to Vor_,({ p;, P,---» Pi.1 }) between site cw(p;) and ccw(p;)

- start at most CCW edge of the cell ccw(p;)
- continue CW to find intersection with bisector( ccw(p;), p;)
- trace borders of Voronoi cell p, in CCW order, add edges

0. - remove invalid edges inside of Voronoi cell p,

. . . .
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Farthest-point Voronoi d. construction

Insertion of site p;
Start with site ccw(p;)

"4 ew(Pi) and cow edge of its cell

cell of
cew(p;)

/
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Farthest-point Voronoi d. construction

@i After insertion of site p

cw(pi)

cw(pi) cell of p;
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