

CONVEX HULLS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 19.10.2014

Talk overview

- Motivation and Definitions
- Graham's scan - incremental algorithm
- Divide \& Conquer
- Quick hull
- Jarvis's March - selection by gift wrapping
- Chan's algorithm - optimal algorithm

Convex hull (CH) - why to deal with it?

- Shape approximation of a point set or complex shapes (other common approximations include: minimal area enclosing rectangle, circle, and ellipse,...) - e.g., for collision detection
- Initial stage of many algorithms to filter out irrelevant points, e.g.:
- diameter of a point set

- minimum enclosing convex shapes (such as rectangle, circle, and ellipse) depend only on points on CH

Convexity

- A set S is convex
- if for any points $\mathrm{p}, \mathrm{q} \in S$ the lines segment $\overline{p q} \subseteq S$, or
- if any convex combination of p and q is in S
- Convex combination of points p, q is any point that can be expressed as
$(1-\alpha) p+\alpha q$, where $0 \leq \alpha \leq 1$

- Convex hull $\mathrm{CH}(\mathrm{S})$ of set S - is (similar definitions)
- the smallest set that contains S (convex)
- or: intersection of all convex sets that contain S
- Or in 2D for points: the smallest convex polygon containing all given points

Definitions from topology in metric spaces

- Metric space - each two of points have defined a distance,
- r-neighborhood of a point p and radius $r>0$ $=$ set of points whose distance to p is strictly less than r (open ball of diameter r centered about p)
- Given set S, point p is
- Interior point of S - if (r-neighborhood about p of radius r) $\subset S$
- Exterior point - if it lies in interior of the complement of S
- Border point - is neither interior neither exterior

Definitions from topology in metric spaces

- Set S is Open (otevrěná)

$-\forall p \in S \exists(r$-neighborhood about p of radius $r) \subseteq S$
- it contains only interior points, none of its border points
- Closed (uzavǐená)
- If it is equal to its closure \bar{S} (uzávěr $=$ smallest closed set containing S in topol. space) $\forall(r$-neighborhood about p of radius $r) \cap S \neq \emptyset$)
- Clopen (otevěená i uzavěená) - Ex. Empty set ϕ, finite set of disjoint components
- if it is both closed and open space $\mathrm{Q}=$ rational numbers
($S=$ all positive rational numbers whose square is bigger than 2) $S=(\sqrt{ } 2, \infty)$ in $Q, \sqrt{ } 2 \notin Q, S=\bar{S}$
- Bounded (ohraničená)

- if it can be enclosed in a ball of finite radius
- Compact (kompaktni)

Definitions from topology in metric spaces

- Convex set S may be bounded or unbounded

Bounded

- Convex hull $\mathrm{CH}(\mathrm{S})$ of a finite set S of points in the plane
= Bounded, closed, (= compact) convex polygon

Convex hull representation

- CCW enumeration of vertices
- Contains only the extreme points ("endpoints" of collinear points)

- Simplification for this semester Assume the input points are in general position,
- no two points have the same x-coordinates and
- no three points are collinear
-> We avoid problem with non-extreme points on x (solution may be simple - e.g. lexicographic ordering)

Online x offline algorithms

- Incremental algorithm
- Proceeds one element at a time (step-by-step)
- Online algorithm (must be incremental)
- is started on a partial (or empty) input and
- continues its processing as additional input data becomes available (comes online, thus the name).
- Ex.: insertion sort
- Offline algorithm (may be incremental)
- requires the entire input data from the beginning
- than it can start
- Ex.: selection sort

Felkel: Computational geometry

Graham's scan

- Incremental $\mathrm{O}(n \log n)$ algorithm
- Objects (points) are added one at a time
- Order of insertion is important
- Random insertion
\rightarrow we need to test: is-point-inside-the-hull(p)
- Ordered insertion

Sort points according to x and add them left to right - it guarantees, that just added point is outside current hull

- Original algorithm sorted the angles around the point with minimal y
- Sorting x-coordinates is simpler to implement than sorting of angles

Graham's scan

- $\mathrm{O}(n \log n)$ for unsorted points, $\mathrm{O}(n)$ for sorted pts.
- Upper hull, then lower hull. Merge.
- Minimum and maximum on x belong to CH

Graham's scan - incremental algorithm

GrahamsScan(points p)
Input: points p

1. sort points according to increasing x-coord $->\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ Stack H
2. push $\left(p_{1}, H\right), \operatorname{push}\left(p_{2}, H\right)$
upper hull
3. for $i=3$ to n do
4. while($\operatorname{size}(\mathrm{H}) \geq 2$ and orient $\left(\operatorname{sos}\right.$, tos, $\left.\mathrm{p}_{\mathrm{i}}\right) \geq 0$) // skip left turns
5. : pop H // (back-tracking)
6. $\operatorname{push}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{H}\right)$ // store right turn
7. store H to the output (in reverse order) // upper hull
8. Symmetrically the lower hull

Position of point in relation to segment

$\operatorname{orient}(p, q, r) \begin{cases}>0 & r \text { is left from } p q, \text { CCW orient } \\ =0 & \text { if }(p, q, r) \text { are collinear } \\ <0 & r \text { is right from } p q, \text { CW orient }\end{cases}$
 on segment $p q$ right from $p q$

Convex polygon with edges pq and qr or

Triangle pqr: is CCW oriented

degenerated to line
is CW oriented

Geometric meaning: Area of Triangle ABC

- Position of point C in relation to segment $A B$ is given by the sign of the triangle ABC area
- $T=1 / 2|\overrightarrow{A B} \times \overrightarrow{A C}|$
- $\mathbf{a}=\mathrm{B}-\mathrm{A}$

- $\mathbf{b}=\mathrm{C}-\mathrm{A}$
- $T=1 / 2\left(\mathbf{a}_{x} \mathbf{b}_{y}-\mathbf{a}_{\mathrm{y}} \mathbf{b}_{\mathrm{x}}\right)$

Can be computed as vector product

$$
=>2 T=A_{x} B_{y}+B_{x} C_{y}+C_{x} A_{y}-A_{x} C_{y}-B_{x} A_{y}-C_{x} B_{y}
$$

$2 T=\left|\begin{array}{lll}A_{x} & A_{y} & 1 \\ B_{x} & B_{y} & 1 \\ C_{x} & C_{y} & 1\end{array}\right|=A_{x} B_{y}+B_{x} C_{y}+C_{x} A_{y}-A_{x} C_{y}-B_{x} A_{y}-C_{x} B_{y}$

Geometric meaning: Area of Triangle ABC

Equal to size of Vector product of vectors $\mathrm{AB} \times \mathrm{AC}$
$=$ Vector perpendicular to both vectors $A B$ and $A C$

- If vectors in plane
- it is perpendicular to the plane (normal vector of the plane)
- only z-coordinate is non-zero
- $|\overrightarrow{A B} \times \overrightarrow{A C}|=$ z-coordinate of the normal vector
= area of parallelopid
$=2 x$ area T of triangle ABC

Is Graham's scan correct?

- Stack H at any stage contains upper hull of the points $\left\{p_{1}, \ldots, p_{j}, p_{i}\right\}$, processed so far
- For induction basis $H=\left\{p_{1}, p_{2}\right\} \ldots$ true
- $p_{i}=$ last added point to $\mathrm{CH}, \mathrm{p}_{\mathrm{j}}=$ its predecessor on CH
- Each point p_{k} that lies between p_{j} and p_{i} lies below $p_{j} p_{i}$ and should not be part of UH after addition of $p_{i}=>$ is removed before push p_{i}. [orient $\left(p_{j}, p_{k}, p_{i}\right)>0, p_{i}$ is left from $p_{j} p_{k}=>p_{k}$ is removed from UH]
- Stop if 2 points in the stack or after construction of the upper hull

Complexity of Graham's scan

- Sorting according $x \quad-O(n \log n)$
- Each point pushed once -O(n)
- Some ($\mathrm{d}_{\mathrm{i}} \leq \mathrm{n}$) points deleted while processing p_{i}

$$
-\mathrm{O}(n)
$$

- The same for lower hull -O(n)
- Total $\mathrm{O}(n \log n)$ for unsorted points O(n) for sorted points

Divide \& Conquer

- $\Theta(n \log (n))$ algorithm
- Extension of mergesort
- Principle
- Sort points according to x-coordinate,
- recursively partition the points and solve CH .

Convex hull by D\&C

ConvexHullD\&C(points P)

Input: points p
Output: CCW points on the convex hull

1. Sort points P according to x
2. return hull(P)
3. hull(points \mathbf{P})
4. if $|P| \leq 3$ then
5. compute CH by brute force,

6. return
7. Partition P into two sets L and R (with lower \& higher coords x)
8. Recursively compute $\mathrm{H}_{\mathrm{L}}=$ hull $(\mathrm{L}), \mathrm{H}_{\mathrm{R}}=\operatorname{hull}(\mathrm{R})$
9. $\mathrm{H}=$ Merge hulls $\left(\mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}\right)$ by computing

Upper_tangent $\left(H_{L}, H_{R}\right) / /$ find nearest points, $H_{L} C C W, H_{R} C W$
11. Lower_tangent $\left(H_{L}, H_{R}\right) / /\left(H_{L} \mathrm{CW}, \mathrm{H}_{R} \mathrm{CCW}\right)$
12. discard points between these two tangents
13. return H

Search for upper tangent (lower is symmetrical)

Upper_tangent $\left(\mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}\right)$
Input: two non-overlapping CH's
Output: upper tangent $a b$

1. $\mathrm{a}=$ rightmost H_{L}
2. $b=$ leftmost H_{R}
3. while(ab is not the upper tangent for $\mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}$) do
4. while(ab is not the upper tangent for H_{L}) $a=$ a.succ // move CCW
5. while($a b$ is not the upper tangent for H_{R}) $b=$ b.pred // move CW
6. Return $a b$

Where: (ab is not the upper tangent for $\left.\mathrm{H}_{\mathrm{L}}\right)=>\operatorname{orient}(a, b, a$. succ $) \geq 0$ which means a.succ is left from line $a b$

Convex hull by D\&C complexity

- Initial sort $\mathrm{O}(n \log (n))$
- Function hull()
- Upper and lower tangent
- Merge hulls

- Overall complexity
- Recursion

$$
\mathrm{T}(n)= \begin{cases}1 & \ldots \text { if } n \leq 3 \\ 2 \mathrm{~T}(n / 2)+\mathrm{O}(n) & \ldots \text { otherwise }\end{cases}
$$

- Overall complexity of CH by D\&C: $=>\mathrm{O}(n \log (n))$

DCGI

Quick hull

- A variant of Quick Sort
- O($n \log n$) expected time, max $O\left(n^{2}\right)$
- Principle
- in praxis, most of the points lie in the interior of CH
- E.g., for uniformly distributed points in unit square, we expect only $\mathrm{O}(\log n)$ points on CH
- Find extreme points (parts of CH) quadrilateral, discard inner points
- Add 4 edges to temp hull T
- Process points outside 4 edges

Process each of four groups of points outside

- For points outside $a b$ (left from $a b$ for clockwise $C H$)
- Find point c on the hull - max. perpend. distance to $a b$
- Discard points inside triangle abc (right from the edges)
- Split points into two subsets
- outside ac (left from ac) and outside cb (left from cb)
- Process points outside $a c$ and $c b$ recursively
- Replace edge $a b$ in T by edges $a c$ and $c b$

Quick hull complexity

- n points remain outside the hull
- $T(n)=$ running time for such n points outside
$-\mathrm{O}(n)$ - selection of splitting point c
$-\mathrm{O}(n)$ - point classification to inside \& $\left(n_{1}+n_{2}\right)$ outside
$-n_{1}+n_{2} \leq n$
- The running time is given by recurrence

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T\left(n_{1}\right)+T\left(n_{2}\right) & \text { where } n_{1}+n_{2} \leq n\end{cases}
$$

- If evenly distributed that $\max \left(n_{1}, n_{2}\right) \leq \alpha n, 0 \leq \alpha \leq 1$ then solves as QuickSort to $\mathrm{O}(\mathrm{c} n \log n)$ where $\mathrm{c}=\mathrm{f}(\alpha)$ else $\mathrm{O}\left(n^{2}\right)$ for unbalanced splits

Jarvis's March - selection by gift wrapping

- Variant of $\mathrm{O}\left(\mathrm{n}^{2}\right)$ selection sort
- Output sensitive algorithm
- O(nh) ... $h=$ number of points on convex hull

Jarvis's March

JarvisCH (points P)
Input: points p
Output: CCW points on the convex hull

p_{0}

1. Take point p_{1} with minimum y-coordinate, $\begin{array}{ll}p_{1} & p_{2}\end{array}$ $/ / p_{1}$ will be the first point in the hull
2. Take a horizontal line, i.e., create temporary point $p_{0}=\left(-\infty, p_{1} . y\right)$
3. $i=1$
4. repeat
5. I Rotate the line around p_{i} until bounces to the nearest point q I // compute the smallest angle by the smallest orient $\left(p_{i-1}, p_{i}, q\right)$
6. i++
$p_{i}=$ the bounced nearest point q
7. until $\left(q \neq p_{1}\right)$

Complexity: $\mathrm{O}(n)+\mathrm{O}(n)^{*} h \Rightarrow \mathrm{O}\left(h^{*} n\right)$ good for low number of points on convex hull-

Output sensitive algorithm

- Worst case complexity analysis analyzes the worst case data
- Presumes, that all (const fraction of) points lie on the CH
- The points are ordered along CH
=> We need sorting $=>\Omega(n \log n)$ of CH algorithm
- Such assumption is rare
- usually only much less of points are on CH
- Output sensitive algorithms
- Depend on: input size n and the size of the output h
- Are more efficient for small output sizes
- Reasonable time for CH is $\mathrm{O}(n \log h), \quad n=$ Number of points on the CH

Chan's algorithm

- Cleverly combines Graham's scan and Jarvis's march algorithms
- Goal is $\mathrm{O}(n \log h)$ running time
- We cannot afford sorting of all points $-\Omega(n \log n)$
=> Idea: work on parts, limit the part sizes to polynomial h^{c} the complexity does not change $=>\log h^{c}=\log h$
$-h$ is unknown - we get the estimation later
- Use estimation m, better not too high $=>h \leq m \leq h^{2}$
- 1. Partition points P into r-groups of size $m, r=n / m$
- Each group take $\mathrm{O}\left(m \log m\right.$) time + - $^{\text {- sort }+ \text { Graham }}$
- r-groups take $\mathrm{O}(r m \log m)=O(n \log m)$ - Jarvis

Merging of m parts in Chan's algorithm

- 2. Merge r-group CHs as "fat points"
- Tangents to convex m-gon can be found in $\mathrm{O}(\log m)$

Chan's algorithm complexity

- h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
- each step computes r-tangents, $\mathrm{O}(\log m$) each
- merging together $\mathrm{O}(h r \log m)$
- Complete algorithm $O(n \log h)$
- Graham's scan on partitions $\mathrm{O}(r . m \log m)=\mathrm{O}(n \log m)$
- Jarvis Merging: $\mathrm{O}(h r \log m)=O(h n / m \log m), \quad . .4 a)$
$h \leq m \leq h^{2}$
- Altogether
$=\mathrm{O}(n \log m)$
$\underline{O(n \log m)}$
- How to guess m ? Wait!

Chan's algorithm for known m

PartialHull(P, m)
Input: points P
Output: group of size m

1. Partition P into $r=\lceil n / m\rceil$ disjoint subsets $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ of sizie at most m
2. for $i=1$ to $r d o$
a) Convex hull by GrahamsScan $\left(\mathrm{P}_{\mathrm{i}}\right)$, store vertices in ordered array
3. let $p_{1}=$ the bottom most point of P and $p_{0}=\left(-\infty, p_{1} \cdot y\right)$
4. for $k=1$ to m do // compute merged hull points
a) for $i=1$ to r do $/ /$ angle to all r subsets $=>$ points q_{i}

Compute the point $q_{i} \in P$ that maximizes the angle $\angle p_{k-1}, p_{k}, q_{i}$
b) let p_{k+1} be the point $q \in\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$ that maximizes $\angle p_{k-1}, p_{k}, q$ (p_{k+1} is the new point in CH)
c) if $p_{k+1}=p_{1}$ then return $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$
5. return "Fail, m was too small"

Chan's algorithm - estimation of m

ChansHull
Input: points P
Output: convex hull $p_{1} \ldots p_{k}$

1. for $t=1,2, \ldots,\lceil\lg \lg h\rceil$ do $\{$
a) let $m=\min \left(2^{2^{\wedge t}}, \mathrm{n}\right)$
b) $L=\operatorname{PartialHull}(P, m)$
c) if $L \neq$ "Fail, m was too small" then return L

Sequence of choices of m are $\left\{4,16,256, \ldots, 2^{2^{\wedge t}}, \ldots, n\right\} \ldots$ squares
Example: for $h=23$ points on convex hull of $\mathrm{n}=57$ points, the algorithm
will try this sequence of choices of $m\{4,16,57\}$

1. 4 and 16 will fail
2. 256 will be replaced by n

Complexity of Chan's Convex Hull?

- The worst case: Compute all iterations
- $t^{\text {th }}$ iteration takes $\mathrm{O}\left(n \log 2^{2^{\wedge t}}\right)=O\left(n 2^{t}\right)$
- Algorithm stops when $\left.2^{2^{\wedge t}} \geq h=>t=\Pi \lg \lg h\right\rceil$
- All $t=\lceil\lg \lg h$ iterations take:

Using the fact that $\sum_{i=0}^{k} 2^{i}=2^{k+1}-1$

$$
\sum_{t=1}^{\lg \lg h^{t}} n 2^{t}=n \sum_{t=1}^{\lg \lg h} 2^{t} \leq n 2^{1+\lg \lg h}=2 n \lg h=O(n \log h)
$$

Conclusion in 2D

- Graham's scan: $\mathrm{O}(n \log n), \mathrm{O}(n)$ for sorted pts
- Divide \& Conquer: $\mathrm{O}(n \log n)$
- Quick hull:
- Jarvis's march:
- Chan's alg.:
$\mathrm{O}(n \log n)$, max $\mathrm{O}\left(n^{2}\right) \sim$ distrib.
$\mathrm{O}(h n)$, max $\mathrm{O}\left(n^{2}\right) \sim$ pts on CH
$\mathrm{O}(n \log h) \sim$ pts on CH

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, http://www.cs.uu.nil/geobook/
- [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 3 and 4. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., Discrete and Computational Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

