
OPPA European Social Fund
Prague & EU: We invest in your future.

GEOMETRIC SEARCHING
PART 2: RANGE SEARCH

PETR FELKEL
FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 4.10.2012

Felkel: Computational geometry

(2)

Range search

 Orthogonal range searching
 Canonical subsets
 1D range tree
 Kd-tree
 2-nD Range tree

– With fractional cascading (Layered tree)

Felkel: Computational geometry

(3)

Orthogonal range searching
– Given a set of points P, find the points in the region Q

• Search space: a set of points P (somehow represented)
• Query: intervals Q (axis parallel rectangle)
• Answer: points contained in Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]

Felkel: Computational geometry

(4)

Orthogonal range searching

 Query region = axis parallel rectangle
– nDimensional search can be decomposed into

set of 1D searches

Felkel: Computational geometry

(5)

Other range searching variants
 Search space: set of

– line segments,
– rectangles, …

 Query region: any other region
– disc,
– polygon,
– halfspace, …

 Answer: subset of P laying in Q

 We concentrate on points in orthogonal ranges

How to represent the search space?

 Not all possible combination can be in the output
(not the whole power set)

 => Represent only the “selectable” things
(a well selected subset –> one of the canonical
subsets)

Felkel: Computational geometry

(6)

Felkel: Computational geometry

(7)

Subsets selectable by given range class

 The number of subsets that can be selected by
simple ranges Q is limited

 It is usually much smaller than the power set of P
– Power set of P where P = {1,2,3,4} (potenční množina)

is {{ }, {1},{2},{3},{4}, {1,2},{1,3},{1,4}, {2,3},…,{2,3,4},
{1,2,3,4} } … O(2n)
i.e. of all possible subsets

– Simple rectangular queries are limited
• Defined by max 4 points along 4 sides

=> O(n4) of O(2n) power set
• Moreover – not all sets can be formed

by query
e.g. sets {1,4} and {1,2,4} cannot be formed

[Mount]

Felkel: Computational geometry

(8)

Canonical subsets Si

 Search space S=(P,Q) represented as a collection
of canonical subsets {S1, S2, …, Sk}, each Si Œ S,

– Si may overlap each other
– Any set can be represented as disjoint union disjunktní sjednocení

of canonical subsets Si (elements can be multiple times)
– Elements of disjoint union are ordered pairs (x, i)

(every element x with index i of the subset Si)

 Can be selected in many ways
• from n singletons {pi} … O(n)
• to power set of P … O(2n)

– Good DS balances between total number of canonical
subsets and number of CS needed to answer the query

Felkel: Computational geometry

(9)

1D range queries (interval queries)

 Search the interval [xlo, xhi] in
 Points P= {p1, p2, …, pn} on the line

a) Binary search in an array
• Simple, but
• not generalize to any higher dimensions

(values in inner nodes are not reachable in particular level below,
to get them, we must traverse back to root)

b) Balanced binary search tree
• 1D range tree
• maintains canonical subsets
• generalize to higher dimensions

Felkel: Computational geometry

(10)

1D range tree definition

 Balanced binary search tree
– leaves – sorted points
– inner node label – the largest key in its left child
– Each node associate with subset of descendants

=> O(n) canonical subsets
31

[Mount]

Felkel: Computational geometry

(11)

Canonical subsets and <2,23> search

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]

Felkel: Computational geometry

(12)

1D range tree search interval <2,23>

 Canonical subsets for any range found in O(log n)
– Search xlo: Find leftmost leaf u with key(u) ¥ xlo 2 ->
– Search xhi: Find leftmost leaf v with key(v) ¥ xhi 23 ->
– Points between u and v lie within the range => report

canon. subsets of maximal subtrees between u and v
– Split node = node, where paths to u and v diverge

31
split node

[Mount]

to u to v

to u and v

3

24

Felkel: Computational geometry

(13)

1D range tree search

 Reporting the subtrees (below the split node)
– On the path to u whenever the path goes left, add the

canonical subset associated to right child
– On the path to v whenever the path goes right, add the

canonical subset associated to left child
– In the leaf u, if key(u) œ [xlo:xhi] then add CS of u
– In the leaf v, if key(v) œ [xlo:xhi] then add CS of v

31
split node

[Mount]

Felkel: Computational geometry

(14)

 Path lengths O(log n)
=> O(log n) canonical subsets

(subtrees)

 Range counting queries
– Return just the number of points in given range
– Sum the total numbers of leaves stored in maximal

subtree roots … O(log n) time

 Range reporting queries
– Return all k points in given range
– Traverse the canonical subtrees … O(log n + k) time

 O(n) storage, O(n log n) preprocessing (sort P)

split node

1D range tree search complexity

[Berg]

Input:
Output:

Felkel: Computational geometry

(15)

split node

Find split node
FindSplitNode(T, [x:x’])

Tree T and Query range [x:x’], x § x’
The node, where the paths to x and x’ split
or the leaf, where both paths end

1. t = root(T)
2. while(t is not a leaf and x’ § t.x or t.x < x) // out of the range [x:x’]
3. if(x’ § t.x) t = t.left
4. else t = t.right
5. return t

position

x’ § t.x

position

x§ t.x § x’

position

t.x < x

[Berg]

Input:
Output:

Felkel: Computational geometry

(16)

1D range search (2D on slide 30)

1dRangeQuery(t, [x:x’])
1d range tree t and Query range
All points in t liying in the range

1. tsplit = FindSplitNode(t, x, x’) // find interval point t œ [x:x’]
2. if(tsplit is leaf)
3. check if the point in tsplit must be reported
4. else // follow the path to x, reporting points in subtrees right of the path
5. t = tsplit.left
6. while(t is not a leaf)
7. if(x § t.x)
8. ReportSubtree(t(t.right)) // any kind of tree traversal
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported
12. // Symmetrically follow the path to x’ reporting points left of the path

t = tsplit.right …

Felkel: Computational geometry

(17)

Multidimensional range searching

 Equal principle – find the largest subtrees
contained within the range

 Separate one n-dimensional search
into n 1-dimensional searches

 Different tree organization
– Kd tree
– Orthogonal (Multilevel) search tree – range tree

Felkel: Computational geometry

(18)

Kd-tree

 Easy to implement
 Good for different searching problems

(counting queries, nearest neighbor,…)
 Designed by Jon Bentley as k-dimensional tree

(2-dimensional kd-tree was a 2-d tree, …)
 Not the asymptotically best for orthogonal range

search (=> range tree is better)
 Types of queries

– Reporting – points in range
– Counting – number of points in range

Felkel: Computational geometry

(19)

Kd-tree principle

 Subdivide space according to different dimension
(x-coord, then y-coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node
represents a region

Where is a mistake in the figure?

[Mount]

= Cutting line

Felkel: Computational geometry

(20)

Kd-tree principle

 Which dimension to cut? (cutDim)
– Cycle through dimensions (round robin)

• Save storage – cutDim is implicit ~ depth in the tree
• May produce elongated cells (if uneven data distribution)

– Greatest spread (the largest difference of coordinates)
• Adaptive
• Called “Optimal kd-tree”

 Where to cut? (cutVal)
– Median, or midpoint between upper and lower median

-> (n)
– Presort coords of points in each dimension (x-, y-,...)

for (1) median – resp. (d) for all d dimensions

Felkel: Computational geometry

(21)

Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

§

§

§

>

>

>

Input:
Output:

Felkel: Computational geometry

(22)

Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets

P1 and P2 (left and right from median)
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left = BuildKdTree(P1, depth+1)
7. t right = BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n => O(n log n) construction

Split according to (depth%max_dim) dimension

Felkel: Computational geometry

(23)

Kd-tree variants

a) Compare rectang. Array Q with rectangular cells C
– Rectangle C:[xlo, xhi, ylo, yhi] – computed on the fly
– Test of kD node cell C against query Q (in one cutDim)

1. if cell is disjoint with Q … C … Q = « … stop
2. If cell C completely inside Q … C Œ Q … stop and report cell points
3. else cell C overlaps Q … recurse on both children

– Recursion stops on the largest subtree (in/out)

cutDim

Chi § Qlo

cutDim

Qhi § Clo

cutDim

Clo § Qhi § Chi

cutDim

Clo § Qlo § Chi

cutDim

Qlo § Clo Chi § Qhi

Test interval-interval

1 2 3

if (CutDim == x) Clo = xlo

Input:
Output:

Felkel: Computational geometry

(24)

Kd-tree rangeCount (with rectangular cells)
int rangeCount(t, Q, C)

The root t of kD tree, query range Q and t’s cell C.
Number of points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) return 1 // or loop this test for all points in leaf
3. else return 0 // visited, not counted
4. else // (t is not a leaf)
5. if (C … Q = «) return 0 … disjoint
6. else if (C Œ Q) return t.size … C is fully contained in Q
7. else
8. split C along t’s cutting value and dimension,

creating two rectangles C1 and C2.
9. return rangeCount(t.left, Q, C1) + rangeCount(t.right, Q, C2)

// (pictograms refer to the next slide)

C1

C
C2

4

k
1

Felkel: Computational geometry

(25)

Kd-tree rangeCount example

[Mount]

Tree node (rectangular region)

(prune)

Felkel: Computational geometry

(26)

Kd-tree variants

b) Compare Q with cutting lines
– Line = Splitting value p in one of the dimensions
– Test of single position given by dimension against Q

1. Line is right from Q … recurse on left child only (prune right child)
2. Line is left from Q … recurse on right child only (prune left ch.)
3. Line intersects Q … recurse on both children

– Recursion stops in leaves - traverses the whole tree

[Havran]

position

Qhi § p

position

Qlo § p § Qhi

position

Qlo § p

Test point-interval

Input:
Output:

Felkel: Computational geometry

(27)

Kd-tree rangeSearch (with cutting lines)
int rangeSearch(t, Q)
The root t of (a subtree of a) kD tree and query range Q.
Points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) report t.point // or loop test for all points in leaf
3. else return
4. else (t is not a leaf)
5. if (Qhi § t.cutVal) rangeSearch(t.left, Q) // go left only
6. if (Qlo > t.cutVal) rangeSearch(t.right, Q) // go right only
7. else
8. rangeSearch(t.left, Q) // go to both
9. rangeSearch(t.right, Q)

Felkel: Computational geometry

(28)

Kd-tree - summary

 Orthogonal range queries in the plane
(in balanced 2d-tree)

– Counting queries O(◊n) time
– Reporting queries O(◊n + k) time,

where k = No. of reported points
– Space O(n)
– Preprocessing: Construction O(n log n) time

(Proof: if presorted points to arrays in dimensions. Median in O(1)
and split in O(n) per level, log n levels of the tree)

 For d¥2:
– Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)

Felkel: Computational geometry

(29)

Orthogonal range tree (RT)

 DS highly tuned for orthogonal range queries
 Query times in plane

n = number of points
k = number of reported points

2d tree versus range tree
O(◊n + k) time of Kd O(log n) time query
O(n) space of Kd O(n log n) space

Felkel: Computational geometry

(30)

From 1D to 2D range tree

 Search points from [Q.xlo, Q.xhi] [Q.ylo, Q.yhi]
 1d range tree: log n canonical subsets based on x
 Construct an auxiliary tree for each such subset y

31

[Mount]

Felkel: Computational geometry

(31)

2D range tree

[Mount]

Input:
Output:

Felkel: Computational geometry

(32)

2D range search
2dRangeQuery(t, [x:x’] μ [y:y’])

2d range tree t and Query range
All points in t laying in the range

1. tsplit = FindSplitNode(t, x, x’)
2. if(tsplit is leaf)
3. check if the point in tsplit must be reported … t.x œ [x:x’], t.y œ [y:y’]
4. else // follow the path to x, calling 1dRangeQuery on y
5. t = tsplit.left // path to the left
6. while(t is not a leaf)
7. if(x § t.x)
8. 1dRangeQuerry(tassoc(t.right), [y:y’]) // check associated subtree
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported … t.x § x’, t.y œ [y:y’]
12. Similarly for the path to x’ … // path to the right

Felkel: Computational geometry

(33)

2D range tree

 Search O(log2 n + k) – log n in x-, log n in y
 Space O(n log n)

– O(n) the tree for x-coords
– O(n log n) trees for y-coords

• Point p is stored in all canonical subsets
along the path from root to leaf with p,

• once for x-tree level
• each canonical subsets is stored in one auxiliary tree
• log n levels of x-tree => O(n log n) space for y-trees

 Construction - O(n log n)
– Sort points (by x and by y). Bottom up construction

[Berg]

Felkel: Computational geometry

(34)

Canonical subsets

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]

Felkel: Computational geometry

(35)

nD range tree (multilevel search tree)

Split node

split node
canonical subsets

of 1. dimension
(nodes œ [x:x’])

Tree for each dimension

canonical subsets
of 2. dimension

[Berg]

Fractional cascading - principle

 Two sets S1, S2 stored in sorted arrays A1, A2

 Report objects in both whose keys in [y:y’]
 Naïve approach

– O(logn1+k1) – search in A1 + report k1 elements
– O(logn2+k2) – search in A2 + report k2 elements

 Fractional cascading – adds pointers from A1 to A2
– O(logn1+k1+1+k2) – search in A1 + report k1 elements
– O(1 + k2) – jump to A2 + report k2 elements
– Saves the O(logn2) – search

Felkel: Computational geometry

(36)

Fractional cascading – principle for arrays

 Add pointers from A1 to A2
– From element in A1 with a key yi point to the element in

A2 with the smallest key larger or equal to yi

 Example query with the range [20 : 65]

Felkel: Computational geometry

(37)

[Berg]

Felkel: Computational geometry

(38)

Fractional cascading in the 2D range tree

 How to save one log n during last dim. search?
– Store canonical subsets in arrays sorted by y
– Pointers to subsets for both child nodes vL and vR

– O(1) search in lower levels => in two dimensional
search O(log2 n) time -> O(2 log n)

internal node in x-tree

points p1 to p6 sorted by - y

right son of v

Pointer to the smallest
larger or equal y-value

[Mount]

nil

Felkel: Computational geometry

(39)

Orthogonal range tree - summary

 Orthogonal range queries in plane
– Counting queries O(log2 n) time,

or with fractional cascading O(log n) time
– Reporting queries plus O(k) time, for k reported points
– Space O(n log n)
– Construction O(n log n)

 Orthogonal range queries in d-dimensions, d¥2
– Counting queries O(logd n) time,

or with fractional cascading O(log(d-1) n) time
– Reporting queries plus O(k) time, for k reported points
– Space O(n log(d-1) n)
– Construction O(n log(d-1) n) time

Felkel: Computational geometry

(40)

References
 [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark

Overmars: Computational Geometry: Algorithms and Applications,
Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 5, http://www.cs.uu.nl/geobook/

 [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland , Lectures 17 and 18.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

 [Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro
počítačovou grafiku, přednáška č. 6, Proximity search and its
Applications 1, CTU FEL, 2007

OPPA European Social Fund
Prague & EU: We invest in your future.

