

OPPA European Social Fund Prague \& EU: We invest in your future.

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

Version from 4.10.2012

Range search

- Orthogonal range searching
- Canonical subsets
- 1D range tree
- Kd-tree
- 2-nD Range tree
- With fractional cascading (Layered tree)

Orthogonal range searching

- Given a set of points P, find the points in the region Q
- Search space: a set of points P (somehow represented)
- Query: intervals Q (axis parallel rectangle)
- Answer: points contained in Q
- Example: Databases (records->points)
- Find the people with given range of salary, date of birth, kids, ...

Orthogonal range searching

- Query region = axis parallel rectangle
- nDimensional search can be decomposed into set of 1D searches

Other range searching variants

- Search space: set of
- line segments,
- rectangles, ...
- Query region: any other region
- disc,
- polygon,
- halfspace, ...
- Answer: subset of P laying in Q
- We concentrate on points in orthogonal ranges

How to represent the search space?

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things (a well selected subset -> one of the canonical subsets)

Subsets selectable by given range class

- The number of subsets that can be selected by simple ranges Q is limited
- It is usually much smaller than the power set of P
- Power set of P where $P=\{1,2,3,4\}$ (potenční množina) is $\{\},\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\}, \ldots,\{2,3,4\}$, $\{1,2,3,4\}\} \quad \ldots O\left(2^{n}\right)$
i.e. of all possible subsets
- Simple rectangular queries are limited
- Defined by max 4 points along 4 sides $=>\mathrm{O}\left(\mathrm{n}^{4}\right)$ of $\mathrm{O}\left(2^{n}\right)$ power set
- Moreover - not all sets can be formed by \square query

e.g. sets $\{1,4\}$ and $\{1,2,4\}$ cannot be formed

Canonical subsets S_{i}

- Search space $S=(P, Q)$ represented as a collection of canonical subsets $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}\right\}$, each $\mathrm{S}_{\mathrm{i}} \subseteq \mathrm{S}$,
- S_{i} may overlap each other
- Any set can be represented as disjoint union disiunkeni sisennoceni of canonical subsets S_{i} (elements can be multiple times)
- Elements of disjoint union are ordered pairs (x, i) (every element x with index i of the subset S_{i})
- Can be selected in many ways
- from n singletons $\left\{p_{i}\right\} \quad \ldots O(n)$
- to power set of $P \quad \ldots O\left(2^{n}\right)$
- Good DS balances between total number of canonical subsets and number of CS needed to answer the query

1D range queries (interval queries)

- Search the interval $\left[\mathrm{x}_{10}, \mathrm{x}_{\mathrm{hi}}\right]$ in
- Points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ on the line
a) Binary search in an array
- Simple, but
- not generalize to any higher dimensions (values in inner nodes are not reachable in particular level below, to get them, we must traverse back to root)
b) Balanced binary search tree
- 1D range tree
- maintains canonical subsets
- generalize to higher dimensions

1D range tree definition

- Balanced binary search tree
- leaves - sorted points
- inner node label - the largest key in its left child
- Each node associate with subset of descendants => On) canonical subsets

Canonical subsets and <2,23> search

- Canonical subsets for this subtree are
\{ \{1\}, \{3\}, ..., \{31\},
$\{1,3\},\{4,7\}, \ldots,\{29,31\}$
$\{1,3,4,7\},\{9,12,14,15\}, \ldots,\{25,27,29,31\}$
$\{1,3,4,7,9,12,14,15\},\{17,20,22,24,25,27,29,31\} 2$
$\{1,3,4,7,9,12,14,15,17,20,22,24,25,27,29,31\} \quad 1$
\}
(31) $\mathrm{O}(\mathrm{n})$

1D range tree search interval <2,23>

- Canonical subsets for any range found in $\mathrm{O}(\log n)$
- Search x_{10} : Find leftmost leaf u with $\operatorname{key}(u) \geq x_{10} 2$-> 3
- Search $x_{h i}$: Find leftmost leaf v with $k e y(v) \geq x_{h i} 23->24$
- Points between u and v lie within the range $=>$ report canon. subsets of maximal subtrees between u and v
- Split node $=$ node, where paths to u and v diverge

1D range tree search

- Reporting the subtrees (below the split node)
- On the path to u whenever the path goes left, add the canonical subset associated to right child
- On the path to v whenever the path goes right, add the canonical subset associated to left child
- In the leaf u, if $\operatorname{key}(u) \in\left[\mathrm{x}_{10}: x_{\text {hi }}\right]$ then add CS of u
- In the leaf v, if $\operatorname{key}(v) \in\left[\mathrm{x}_{10}: \mathrm{x}_{\mathrm{h}}\right]$ then add CS of v

1D range tree search complexity

- Path lengths O($\log n)$
=> $O(\log n)$ canonical subsets (subtrees)
- Range counting queries

[Berg]
- Return just the number of points in given range
- Sum the total numbers of leaves stored in maximal subtree roots $\quad .$. O($\log n$) time
- Range reporting queries
- Return all k points in given range
- Traverse the canonical subtrees $\quad \ldots O(\log n+k)$ time
- $\mathrm{O}(n)$ storage, $\mathrm{O}(n \log n)$ preprocessing (sort P)

Find split node

FindSplitNode($\left.T,\left[x: x^{\prime}\right]\right)$
Input: \quad Tree T and Query range [$\left.\mathrm{x}: \mathrm{x}^{\prime}\right], \mathrm{x} \leq \mathrm{x}^{\prime}$
Output: The node, where the paths to x and x ' split or the leaf, where both paths end

1. $t=\operatorname{root}(T)$
2. while $\left(t\right.$ is not a leaf and $x^{\prime} \leq t . x$ or $\left.t . x<x\right) \quad / /$ out of the range [$\left.x: x^{\prime}\right]$
3. if $\left(x^{\prime} \leq \mathrm{t} . \mathrm{x}\right) t=$ t.left
4. else $t=$ t.right
5. return t
$\operatorname{root}(\mathcal{T})$

1D range search

1dRangeQuery(t, [x:x'] $\left.{ }^{\prime}\right)$
Input: $\quad 1 \mathrm{~d}$ range tree t and Query range
Output: \quad All points in t liying in the range

1. $\mathrm{t}_{\text {split }}=$ FindSplitNode $\left(t, x, x^{\prime}\right) \quad / /$ find interval point $t \in\left[x: x^{\prime}\right]$
2. if($\mathrm{t}_{\text {split }}$ is leaf $)$
3. check if the point in $t_{\text {split }}$ must be reported
4. else // follow the path to x, reporting points in subtrees right of the path
5. $t=t_{\text {split }}$.left
6. while(t is not a leaf)
7. $\quad \operatorname{if}(x \leq t . x)$

8. ReportSubtree($\mathrm{t}(\mathrm{t}$.right)) // any kind of tree traversal
9. $\quad t=$ t.left
10. else $t=t . r i g h t$
11. check if the point in leaf t must be reported
12. // Symmetrically follow the path to x ' reporting points left of the path

DCGI

Multidimensional range searching

- Equal principle - find the largest subtrees contained within the range
- Separate one n-dimensional search into n 1-dimensional searches
- Different tree organization
- Kd tree
- Orthogonal (Multilevel) search tree - range tree

Kd-tree

- Easy to implement
- Good for different searching problems (counting queries, nearest neighbor,...)
- Designed by Jon Bentley as k-dimensional tree (2-dimensional kd-tree was a 2-d tree, ...)
- Not the asymptotically best for orthogonal range search (=> range tree is better)
- Types of queries
- Reporting - points in range
- Counting - number of points in range

Kd-tree principle

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells => hierarchical decomposition of space

Kd-tree principle

- Which dimension to cut? (cutDim)
- Cycle through dimensions (round robin)
- Save storage - cutDim is implicit ~ depth in the tree
- May produce elongated cells (if uneven data distribution)
- Greatest spread (the largest difference of coordinates)
- Adaptive
- Called "Optimal kd-tree"
- Where to cut? (cutVal)
- Median, or midpoint between upper and lower median -> $O(n)$
- Presort coords of points in each dimension ($x-, y-, \ldots$) for $O(1)$ median - resp. $O(d)$ for all d dimensions

Kd-tree principle

- What about points on the cell boundary?
- Boundary belongs to the left child
- Left: $\quad \mathrm{p}_{\text {cutDim }} \leq$ cutVal
- Right: $\quad \mathrm{p}_{\text {cutDim }}>$ cutVal

Subdivision

Tree structure
[Mount]

Kd-tree construction in 2-dimensions

BuildKdTree(P, depth)
Input: \quad A set of points P and current depth.

Output: The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even) Split according to (depth\%max_dim) dimension
4. \quad then split P with a vertical line / through median x into two subsets P_{1} and P_{2} (left and right from median)
5. else split P with a horiz. line / through median y into two subsets P_{1} and P_{2} (below and above the median)
$t_{\text {left }}=$ BuildKdTree $\left(P_{1}\right.$, depth+1)
6. $\quad t_{\text {right }}=\operatorname{BuildKdTree}\left(P_{2}\right.$, depth+1)
7. create node t storing $I, t_{\text {left }}$ and $t_{\text {right }}$ children $\quad / / I=$ cutDim, cutVal
8. return t

$$
\text { If median found in } \mathrm{O}(1) \text { and array split in } \mathrm{O}(\mathrm{n})
$$

$T(n)=2 T(n / 2)+n=>O(n \log n)$ construction

Kd-tree variants

Test interval-interval

a) Compare rectang. Array Q with rectangular cells C

- Rectangle C:[x $\left.\mathrm{x}_{\mathrm{lo}}, \mathrm{x}_{\mathrm{hi}}, \mathrm{y}_{10}, \mathrm{y}_{\mathrm{hi}}\right]$ - computed on the fly
- Test of kD node cell C against query Q (in one cutDim)

1. if cell is disjoint with $Q \ldots C \cap Q=\varnothing$... stop
2. If cell C completely inside $Q \ldots C \subseteq Q \ldots$ stop and report cell points
3. else cell C overlaps $Q \quad . .$. recurse on both children

- Recursion stops on the largest subtree (in/out)

Kd-tree rangeCount (with rectangular cells)

int rangeCount (t, Q, C)
Input: \quad The root t of kD tree, query range Q and t's cell C .
Output: \quad Number of points at leaves below t that lie in the range.

1. if $(t$ is a leaf $)$
2. if (t.point lies in Q) return $1_{k}^{\mathbf{0}} / /$ or loop this test for all points in leaf
3. else return 0
// visited, not counted
else $I I$ (is not a leaf)
4. if $(C \cap Q=\emptyset)$ return 0
5. else if $(C \subseteq Q)$ return $t . s i z e$
6. else
7. split C along t's cutting value and dimension, creating two rectangles C_{1} and C_{2}.

// (pictograms refer to the next slide)

Kd-tree rangeCount example

Tree node (rectangular region)

kd-tree subdivision

Nodes visited in range search

Kd-tree variants

Test point-interval

b) Compare Q with cutting lines

- Line = Splitting value p in one of the dimensions
- Test of single position given by dimension against Q

1. Line is right from Q
... recurse on left child only (prune right child)
2. Line is left from Q
... recurse on right child only (prune left ch.)
3. Line intersects Q
... recurse on both children

- Recursion stops in leaves - traverses the whole tree

Kd-tree rangeSearch (with cutting lines)

```
int rangeSearch(t,Q)
The root t of (a subtree of a) kD tree and query range Q.
Points at leaves below t that lie in the range.
```

1. if $(t$ is a leaf)
2. if (t.point lies in Q) report t.point // or loop test for all points in leaf
3. else return
4. else (t is not a leaf)
5. if $\left(\mathbf{Q}_{\mathrm{hi}} \leq t . c u t V a l\right)$ rangeSearch(t.left, Q) // go left only
6. if $\left(\mathbf{Q}_{\mathbf{l o}}>\right.$ t.cutVal) rangeSearch(t.right, $\left.Q\right) / /$ go right only
7. else
8. rangeSearch(t.left, Q) // go to both
9. rangeSearch(t.right, Q)

Kd-tree - summary

- Orthogonal range queries in the plane (in balanced 2d-tree)
- Counting queries $O(\sqrt{ } n)$ time
- Reporting queries $O(\sqrt{ } n+k)$ time, where $k=$ No. of reported points
- Space O(n)
- Preprocessing: Construction O($n \log n$) time (Proof: if presorted points to arrays in dimensions. Median in $\mathrm{O}(1)$ and split in $\mathrm{O}(\mathrm{n})$ per level, log n levels of the tree)
- For $\mathrm{d} \geq 2$:
- Construction $O(d n \log n)$, space $O(d n)$, Search $O\left(d n^{\wedge}(1-1 / d)+k\right)$

Orthogonal range tree (RT)

- DS highly tuned for orthogonal range queries
- Query times in plane

2d tree \quad versus	range tree
$\mathrm{O}(\sqrt{ } \mathrm{n}+\mathrm{k})$ time of Kd	$\mathrm{O}(\log n)$ time query
$\mathrm{O}(n)$ space of Kd	$\mathrm{O}(n \log n)$ space

$n=$ number of points
$k=$ number of reported points

From 1D to 2D range tree

- Search points from [Q. x_{10}, $Q . x_{h i l}$ [Q. y_{10}, Q. $y_{h i l}$]
- 1d range tree: $\log n$ canonical subsets based on x
- Construct an auxiliary tree for each such súbset y

2D range tree

2D range search

2dRangeQuery ($t,\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$)
Input: $\quad 2 d$ range tree t and Query range
Output: \quad All points in t laying in the range

1. $\mathrm{t}_{\text {split }}=$ FindSplitNode $\left(t, x, x^{\prime}\right)$
2. if($\mathrm{t}_{\text {split }}$ is leaf)
3. check if the point in $t_{\text {split }}$ must be reported $\ldots t . x \in\left[x: x^{\prime}\right]$, $t . y \in\left[y: y^{\prime}\right]$
4. else // follow the path to x, calling 1dRangeQuery on y
5. $\quad t=t_{\text {split }}$.left $/ /$ path to the left
6. while(t is not a leaf)
7. $\quad \mathrm{if}(x \leq \mathrm{t} . \mathrm{x})$
8. 1dRangeQuerry ($\mathrm{t}_{\text {assoc }}($ t.right $\left.),\left[y: y^{\prime}\right]\right) / /$ check associated subtree
9. $t=t$.left
10. else $t=$ t.right
11. check if the point in leaf t must be reported \quad... t. $x \leq x^{\prime}$, t. $y \in\left[y: y^{\prime}\right]$
12. Similarly for the path to $x^{\prime} \quad . . / /$ path to the right

2D range tree

- Search $O\left(\log ^{2} n+k\right)-\log n$ in $x-, \log n$ in y
- Space O(n log n)
- O(n) the tree for x-coords
- O(n log n) trees for y-coords
- Point p is stored in all canonical subsets along the path from root to leaf with p,
- once for x-tree level
- each canonical subsets is stored in one auxiliary tree
- $\log n$ levels of x-tree $=>O(n \log n)$ space for y-trees

- Construction - O(n log n)
- Sort points (by x and by y). Bottom up construction

Canonical subsets

- Canonical subsets for this subtree are
\{ \{1\}, \{3\}, ..., \{31\},
$\{1,3\},\{4,7\}, \ldots,\{29,31\}$
$\{1,3,4,7\},\{9,12,14,15\}, \ldots,\{25,27,29,31\}$
$\{1,3,4,7,9,12,14,15\},\{17,20,22,24,25,27,29,31\} 2$
$\{1,3,4,7,9,12,14,15,17,20,22,24,25,27,29,31\} \quad 1$
\}
(31) $\mathrm{O}(\mathrm{n})$

nD range tree (multilevel search tree)

Fractional cascading - principle

- Two sets S_{1}, S_{2} stored in sorted arrays A_{1}, A_{2}
- Report objects in both whose keys in [y:y']
- Naïve approach
$-\mathrm{O}\left(\log n_{1}+k_{1}\right)$ - search in $\mathrm{A}_{1}+$ report k_{1} elements
$-\mathrm{O}\left(\log n_{2}+k_{2}\right)-$ search in $\mathrm{A}_{2}+$ report k_{2} elements
- Fractional cascading - adds pointers from A_{1} to A_{2}
$-\mathrm{O}\left(\log n_{1}+k_{1}+1+k_{2}\right)$ - search in $\mathrm{A}_{1}+$ report k_{1} elements
$-\mathrm{O}\left(1+k_{2}\right) \quad$ - jump to $\mathrm{A}_{2}+$ report k_{2} elements
- Saves the $O\left(\log n_{2}\right)$ - search

Fractional cascading - principle for arrays

- Add pointers from A_{1} to A_{2}
- From element in A_{1} with a key y_{i} point to the element in A_{2} with the smallest key larger or equal to y_{i}
- Example query with the range [20:65]

[Berg]

Fractional cascading in the 2D range tree

- How to save one log n during last dim. search?
- Store canonical subsets in arrays sorted by y
- Pointers to subsets for both child nodes v_{L} and v_{R}
$-\mathrm{O}(1)$ search in lower levels => in two dimensional search $\mathrm{O}\left(\log ^{2} n\right)$ time $->\mathrm{O}(2 \log n)$

Orthogonal range tree - summary

- Orthogonal range queries in plane
- Counting queries $\mathrm{O}\left(\log ^{2} n\right)$ time, or with fractional cascading $O(\log n)$ time
- Reporting queries plus $\mathrm{O}(k)$ time, for k reported points
- Space O($n \log n$)
- Construction O($n \log n$)
- Orthogonal range queries in d-dimensions, $\mathrm{d} \geq 2$
- Counting queries $\mathrm{O}\left(\log ^{d} n\right)$ time, or with fractional cascading $\mathrm{O}\left(\log ^{(\mathrm{d}-1)} n\right)$ time
- Reporting queries plus $O(k)$ time, for k reported points
- Space O($n \log ^{(d-1)} n$)

DCGI

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, http://www.cs.uu.nl/geobook/
- [Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 17 and 18. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro počítačovou grafiku, přednáška č. 6, Proximity search and its Applications 1, CTU FEL, 2007

OPPA European Social Fund Prague \& EU: We invest in your future.

