

# OPPA European Social Fund Prague & EU: We invest in your future.

# **State-space and Plan-space Planning Algorithms**

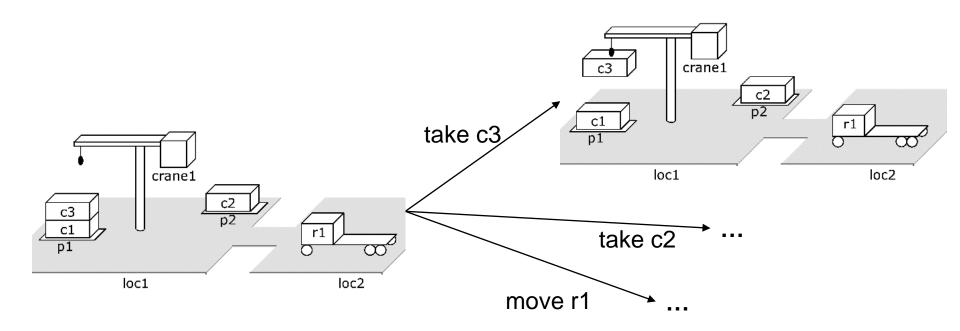
based on Dana S. Nau, University of Maryland, revised and presented by Michal Pechoucek, CTU in Prague

### Motivation

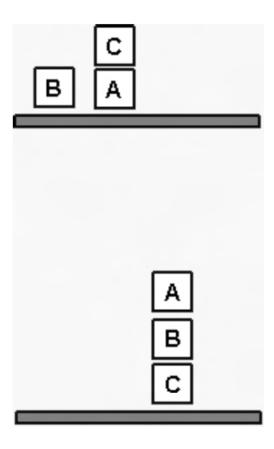
- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
  - » Two examples:
- State-space planning
  - » Each node represents a state of the world
    - A plan is a path through the space
- Plan-space planning
  - » Each node is a set of partially-instantiated operators, plus some constraints
    - Impose more and more constraints, until we get a plan

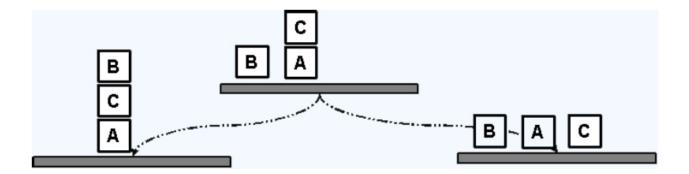
# Outline

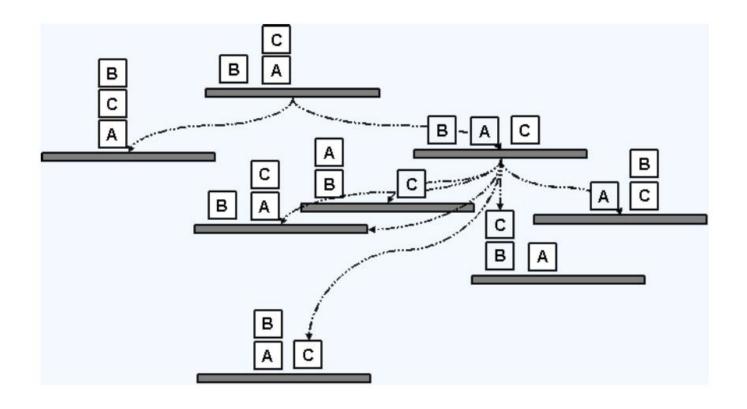
- State-space planning
  - » Forward search
  - » Backward search
  - » Lifting
  - » STRIPS
  - » Block-stacking

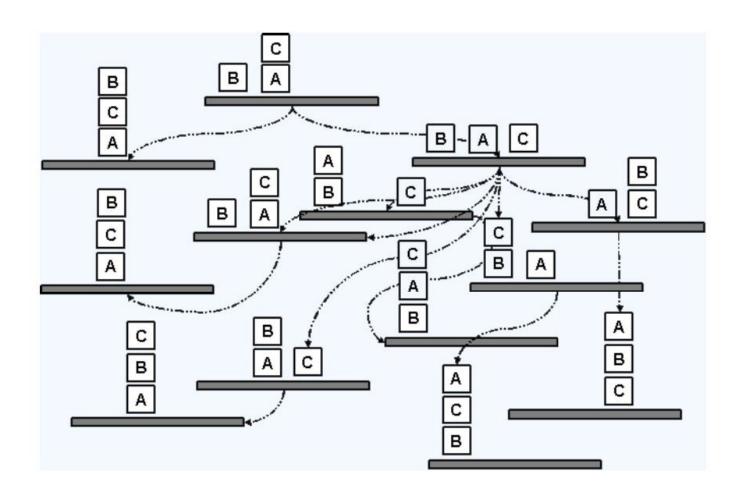


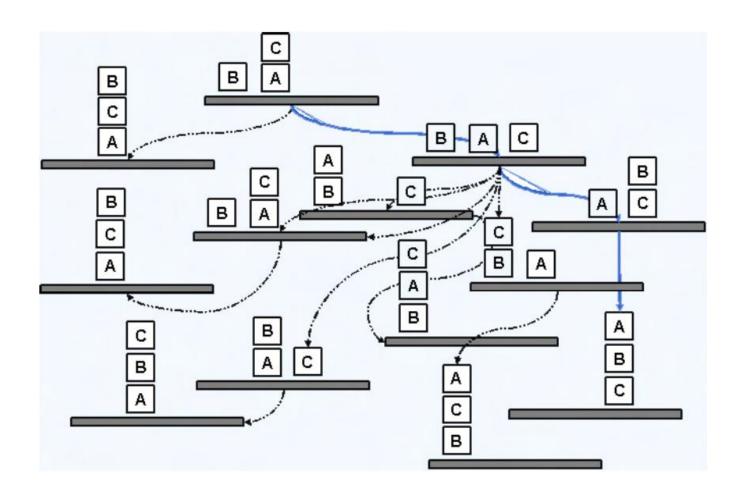
```
Forward-search(O, s_0, g)
    s \leftarrow s_0
    \pi \leftarrow the empty plan
    loop
        if s satisfies g then return \pi
        E \leftarrow \{a | a \text{ is a ground instance an operator in } O,
                    and precond(a) is true in s}
        if E = \emptyset then return failure
        nondeterministically choose an action a \in E
        s \leftarrow \gamma(s, a)
        \pi \leftarrow \pi.a
```











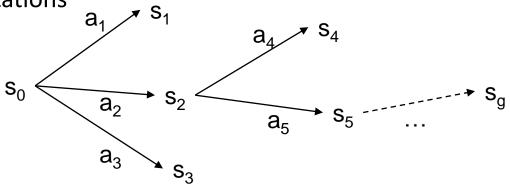
### **Properties**

- Forward-search is sound
  - » for any plan returned by any of its nondeterministic traces, this plan is guaranteed to be a solution
- Forward-search also is complete
  - » if a solution exists then at least one of Forward-search's nondeterministic traces will return a solution.

### **Deterministic Implementations**

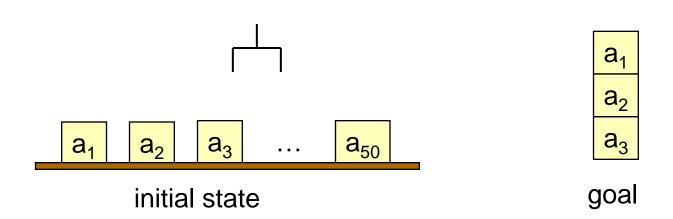
 Some deterministic implementations of forward search:

- » breadth-first search
- » depth-first search
- » best-first search (e.g., A\*)
- » greedy search



- Breadth-first and best-first search are sound and complete
  - » But they usually aren't practical because they require too much memory
  - » Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
  - » Worst-case memory requirement is linear in the length of the solution
  - » In general, sound but not complete
    - But classical planning has only finitely many states
    - Thus, can make depth-first search complete by doing loop-checking

### **Branching Factor of Forward Search**



- Forward search can have a very large branching factor
  - » E.g., many applicable actions that don't progress toward goal
- Why this is bad:
  - » Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure
  - » See Section 4.5 (Domain-Specific State-Space Planning) and Part III (Heuristics and Control Strategies)

### **Backward Search**

- For forward search, we started at the initial state and computed state transitions
  - » new state =  $\gamma(s,a)$
- For backward search, we start at the goal and compute inverse state transitions
  - » new set of subgoals =  $\gamma^{-1}(g,a)$
- To define  $\gamma^{-1}(g,a)$ , must first define *relevance*:
  - » An action a is relevant for a goal g if
    - a makes at least one of g's literals true
      - -g ∩ effects(a) ≠  $\emptyset$
    - a does not make any of g's literals false
      - $-g^+ \cap \text{effects}^-(a) = \emptyset \text{ and } g^- \cap \text{effects}^+(a) = \emptyset$

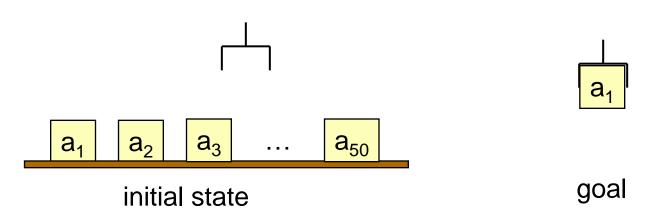
### **Inverse State Transitions**

- If a is relevant for g, then
  - $\gamma^{-1}(g,a) = (g \text{effects(a)}) \cup \text{precond}(a)$
- Otherwise  $\gamma^{-1}(g,a)$  is undefined
- Example: suppose that
  - $g = \{on(b1,b2), on(b2,b3)\}$
  - a = stack(b1,b2)
- What is  $\gamma^{-1}(g,a)$ ?

### **Backward Search**

```
Backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{a | a \text{ is a ground instance of an operator in } O
                    and \gamma^{-1}(g,a) is defined}
        if A = \emptyset then return failure
        nondeterministically choose an action a \in A
        \pi \leftarrow a.\pi
        g \leftarrow \gamma^{-1}(g, a)
```

## **Efficiency of Backward Search**



- Backward search can also have a very large branching factor
  - » E.g., an operator o that is relevant for g may have many ground instances  $a_1$ ,  $a_2$ , ...,  $a_n$  such that each  $a_i$ 's input state might be unreachable from the initial state
- As before, deterministic implementations can waste lots of time trying all of them
- Backward-search is sound and complete

# **Pruning the Search Space**

- » Lifting
- » STRIPS
- » Block stacking

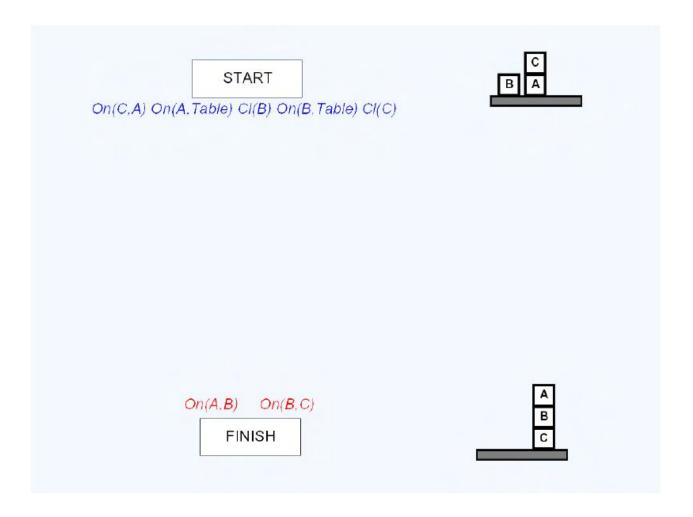
### **Lifted Backward Search**

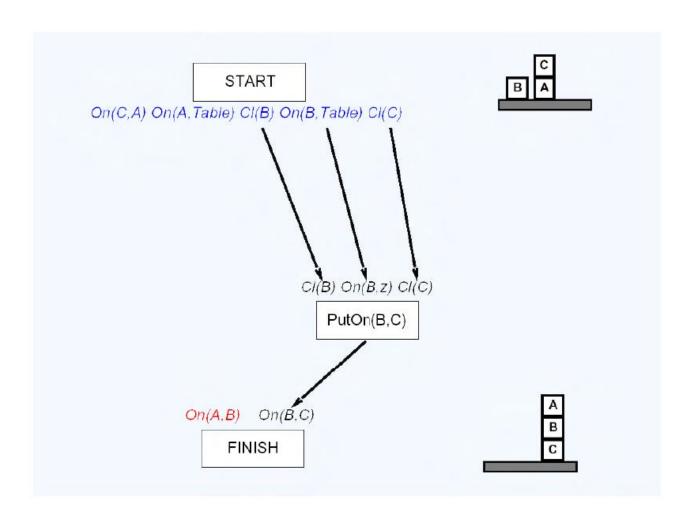
- We can reduce the branching factor if we partially instantiate the operators
  - » this is called *lifting*
- More complicated than Backward-search (keeps track of what substitutions were performed), but it has a much smaller branching factor

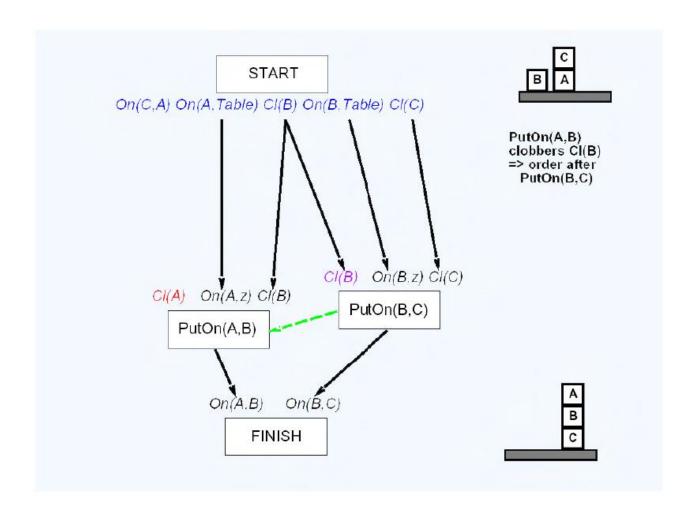
```
Lifted-backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{(o, \theta) | o \text{ is a standardization of an operator in } O,
                     \theta is an mgu for an atom of g and an atom of effects<sup>+</sup>(o),
                     and \gamma^{-1}(\theta(g), \theta(o)) is defined}
        if A = \emptyset then return failure
        nondeterministically choose a pair (o, \theta) \in A
        \pi \leftarrow the concatenation of \theta(o) and \theta(\pi)
        g \leftarrow \gamma^{-1}(\theta(g), \theta(o))
```

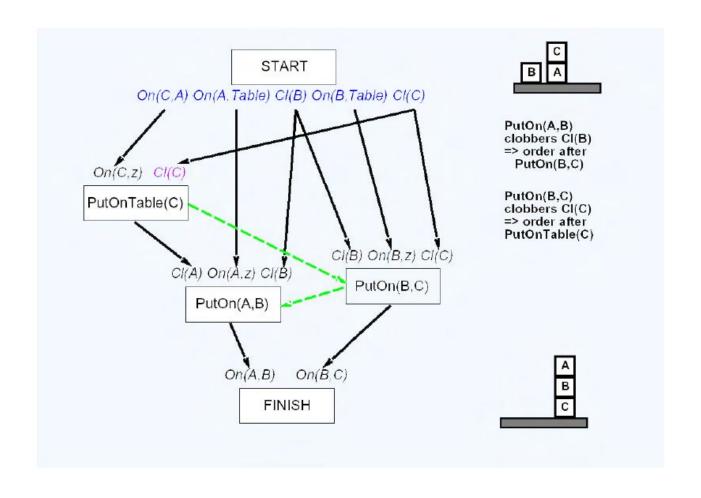
#### **STRIPS Planner**

- $\pi \leftarrow$  the empty plan
- do a modified backward search from g
  - » instead of  $\gamma^{-1}(s,a)$ , each new set of subgoals is just precond(a)
  - » choose one of them to achieve
  - » If it is not already achieved
    - choose an action that makes the goal true
    - achieve the preconditions of the action
    - carry out the action
  - » achieve the rest of the goals.
- The STRIPS algorithm, as presented, is unsound.
- Achieving one subgoal may undo already achieved subgoals.







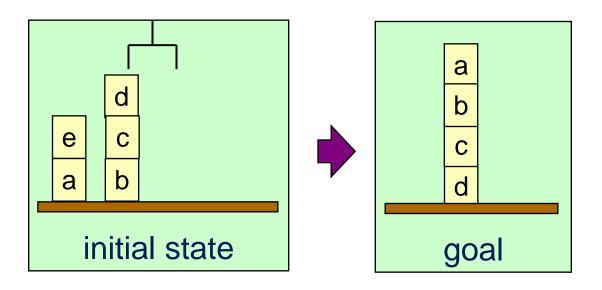


### **How to Handle Problems like These?**

- How to make STRIPS sound?
  - » *Protect subgoals* so that, once achieved, until they are needed, they cannot be undone.
    - Protecting subgoals makes STRIPS incomplete.
  - » Reachieve subgoals that have been undone.
    - Reachieving subgoals finds longer plans than necessary.
  - » Use domain-specific knowledge to prune the search space
    - Can solve both problems quite easily this way
    - Example: block stacking using forward search
  - » Use methods for causal links thread resolution

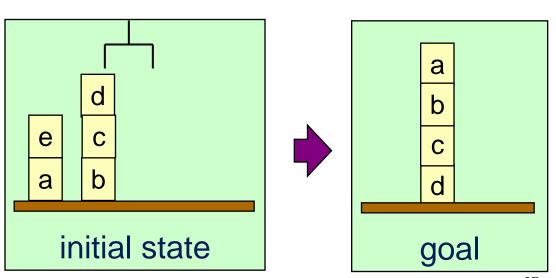
### Additional Domain-Specific Knowledge

- A block x needs to be moved if any of the following is true:
  - » s contains ontable(x) and g contains on(x,y) see a below
  - » s contains on(x,y) and g contains ontable(x) see d below
  - » s contains On(x,y) and g contains On(x,z) for some  $y\neq z$ 
    - see c below
  - » s contains on(x,y) and y needs to be moved see e below



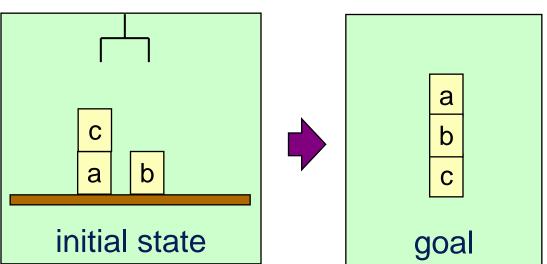
# Domain-Specific Block Stacking Algorithm

```
loop
   if there is a clear block x such that
           x needs to be moved and
           x can be moved to a place where it won't need to be moved
         then move x to that place
   else if there is a clear block x such that
           x needs to be moved
         then move x to the table
   else if the goal is satisfied
         then return the plan
   else return failure
repeat
```



# **Easily Solves the Sussman Anomaly**

```
loop
   if there is a clear block x such that
           x needs to be moved and
           x can be moved to a place where it won't need to be moved
         then move x to that place
   else if there is a clear block x such that
           x needs to be moved
         then move x to the table
   else if the goal is satisfied
         then return the plan
   else return failure
repeat
```



### **Properties**

- The block-stacking algorithm:
  - » Sound, complete, guaranteed to terminate
  - » Runs in time  $O(n^3)$ 
    - Can be modified to run in time O(n)
  - » Often finds optimal (shortest) solutions
  - » But sometimes only near-optimal (Exercise 4.22 in the book)
    - Recall that PLAN LENGTH for the blocks world is NP-complete

### Plan Space Planning (PSP)

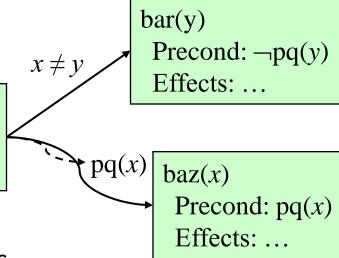
- Backward search from the goal
- Each node of the search space is a partial plan
  - A set of partially-instantiated actions
  - A set of constraints
  - » Make more and more refinements, until we have a solution
- Types of constraints:
  - » precedence constraint:
    a must precede b
  - » binding constraints:
    - inequality constraints, e.g.,  $v_1 \neq v_2$  or  $v \neq c$
    - equality constraints (e.g.,  $v_1 = v_2$  or v = c) or substitutions

foo(x)

Precond: ...

Effects: pq(x)

- » causal link:
  - use action a to establish the precondition p needed by action b
- How to tell we have a solution: no more flaws in the plan
  - » Will discuss flaws and how to resolve them



### Flaws: 1. Open Goals

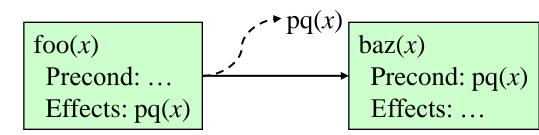
- Open goal:
  - » An action a has a precondition p that we haven't decided how to establish

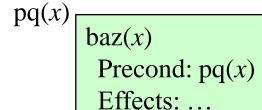
foo(x)

Precond: ...

Effects: pq(x)

- Resolving the flaw:
  - » Find an action b
    - (either already in the plan, or insert it)
  - » that can be used to establish p
    - can precede a and produce p
  - » Instantiate variables
  - » Create a causal link





### Flaws: 2. Causal Link Threats

Causal Link Formally: due to the properties of the ordering relation:

$$\forall \alpha_1, \alpha_2 \in \pi : \exists x : x \in \mathsf{pre}(\alpha_2) \land x \in \mathsf{eff}(\alpha_1) \Leftrightarrow \alpha_1 \prec \alpha_2$$

we introduce causal link as satisfiability relation among operators

$$\alpha_1 \neq \alpha_2$$
, where  $x \in \mathsf{eff}(\alpha_1) \land x \in \mathsf{pre}(\alpha_2) \land \alpha_1 \prec \alpha_2$ 

to be read as 1 achieves x for 2 the fact x is that true allows carrying out 2 provided that 1 has been already achieved

#### Causal link threat:

negative thread of causal link:  $\alpha_1 \prec \alpha_2, \alpha_2 \prec \alpha_3$  and  $\alpha_1 \neq \alpha_3$  are consistent in a plan and there is an effect  $q \in (\text{eff } \alpha_2)$  so that  $\neg q \in (\text{pre } \alpha_3)$  positive causal thread is defined similarly

#### – Causal link threat resolution:

additional ordering – demotion  $\alpha_3 \prec \alpha_2$  or promotion  $\alpha_2 \prec \alpha_1$  or constrain variable binding preventing the threat

### The PSP Procedure

```
PSP(\pi)
    flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi)
    if flaws = \emptyset then return(\pi)
    select any flaw \phi \in flaws
    resolvers \leftarrow \mathsf{Resolve}(\phi, \pi)
    if resolvers = \emptyset then return(failure)
    nondeterministically choose a resolver \rho \in resolvers
    \pi' \leftarrow \mathsf{Refine}(\rho, \pi)
    return(PSP(\pi'))
end
```

PSP is both sound and complete

### Example

- Similar (but not identical) to an example in Russell and Norvig's Artificial Intelligence: A Modern Approach (1st edition)
- Operators:

```
» Start
```

Precond: none

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk), Sells(SM,Banana)

» Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

» Go(*l*,*m*)

Precond: At(1)

Effects: At(m),  $\neg$ At(l)

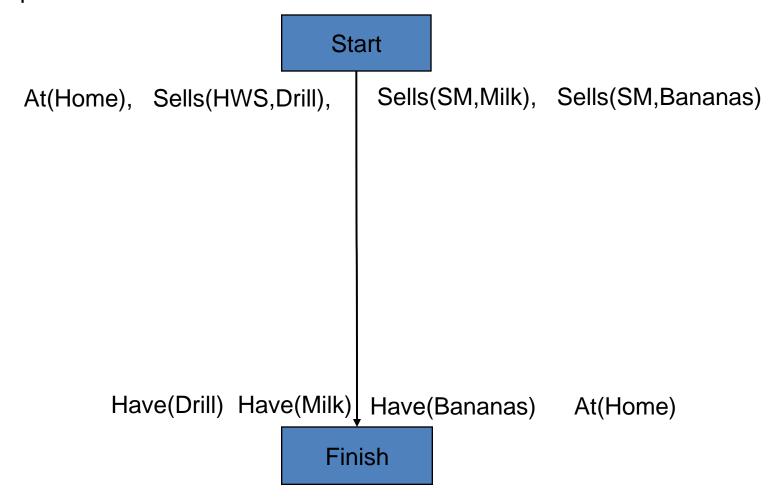
» Buy(p,s)

Precond: At(s), Sells(s,p)

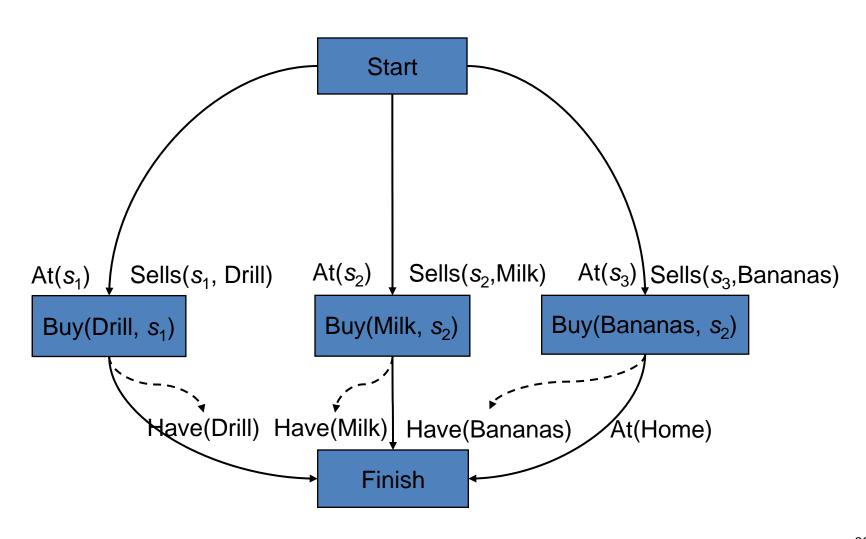
Effects: Have(p)

# **Example (continued)**

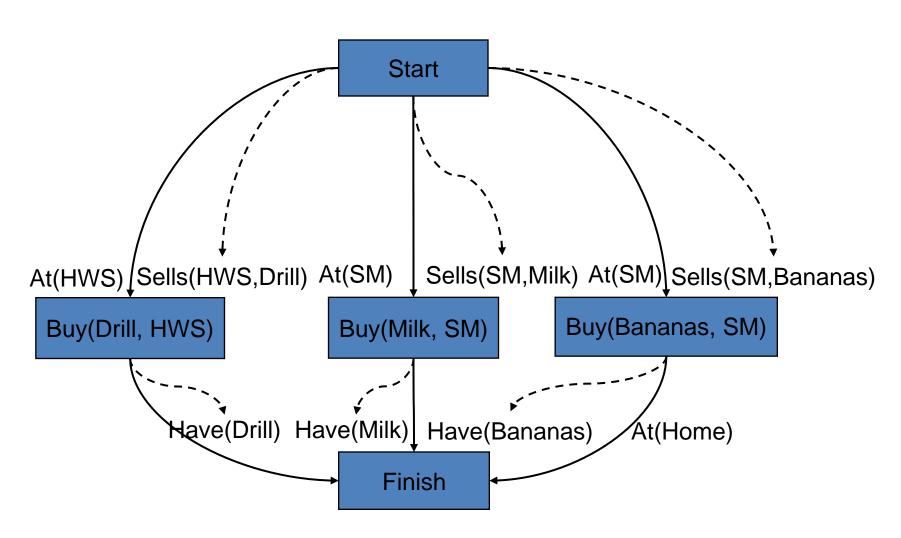
Initial plan



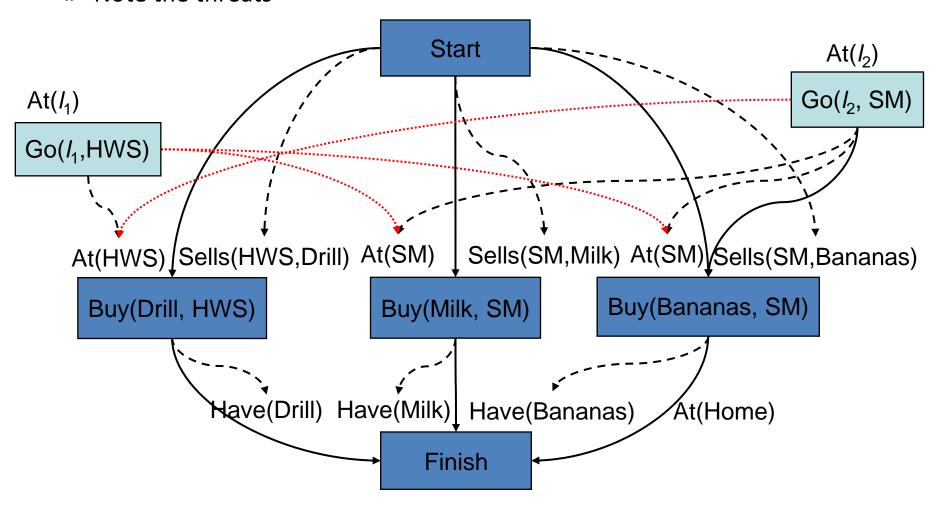
The only possible ways to establish the Have preconditions



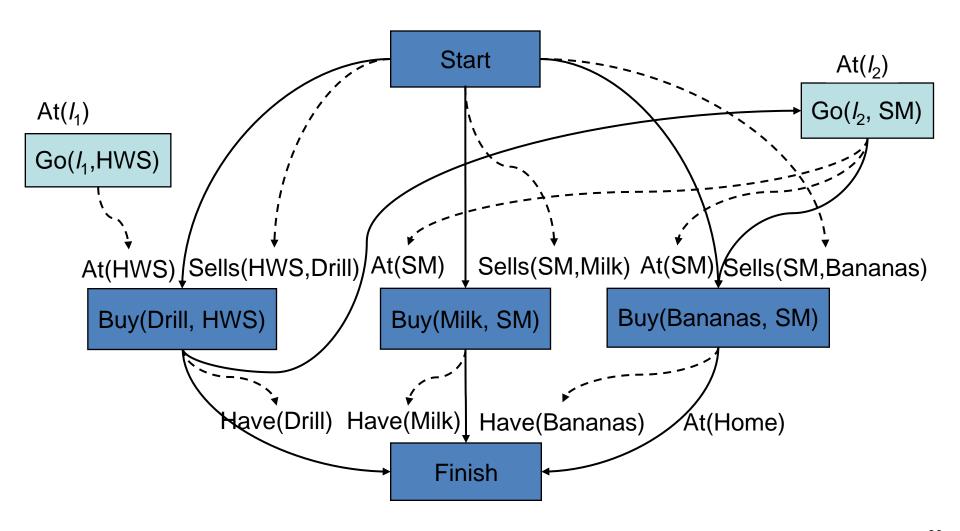
The only possible ways to establish the Sells preconditions



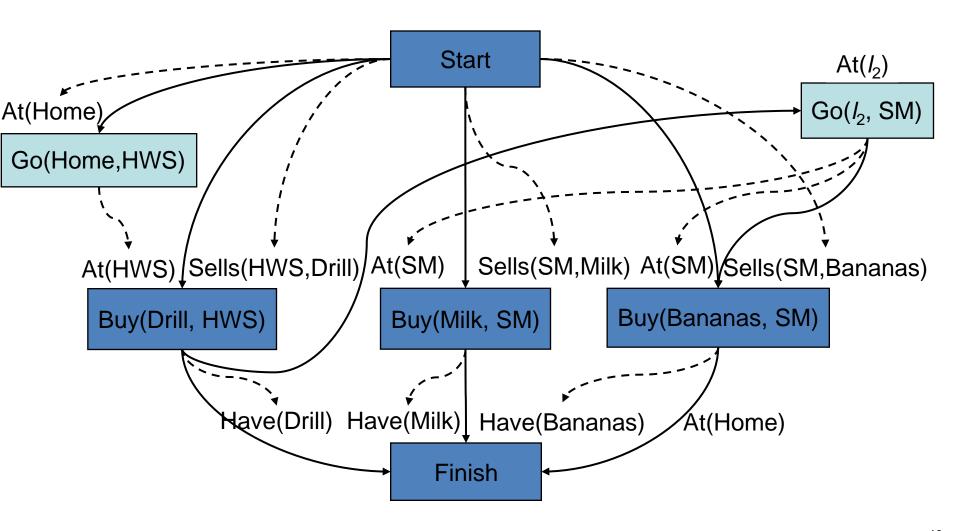
- The only ways to establish At(HWS) and At(SM)
  - » Note the threats



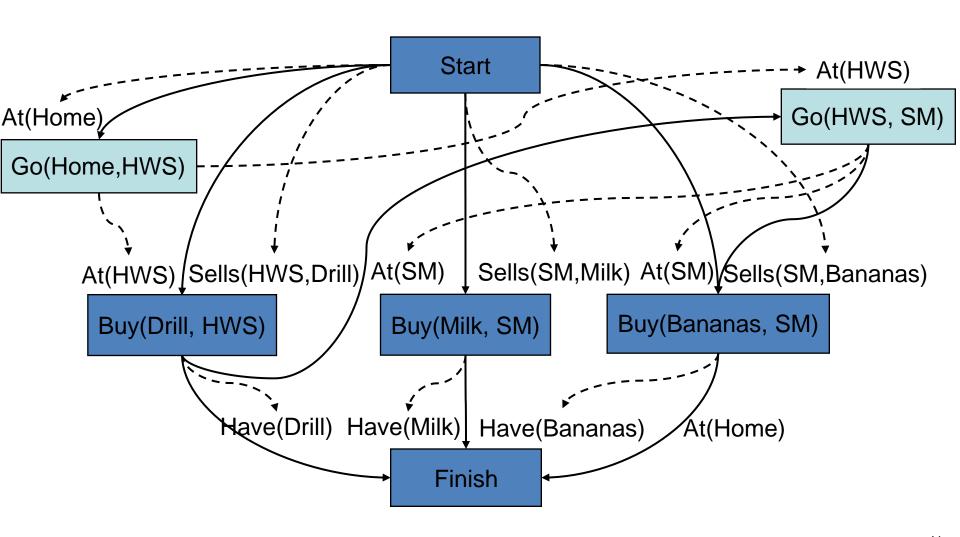
- To resolve the threat to  $At(s_1)$ , make Buy(Drill) precede Go(SM)
  - » This resolves all three threats



- Establish  $At(I_1)$  with  $I_1$ =Home



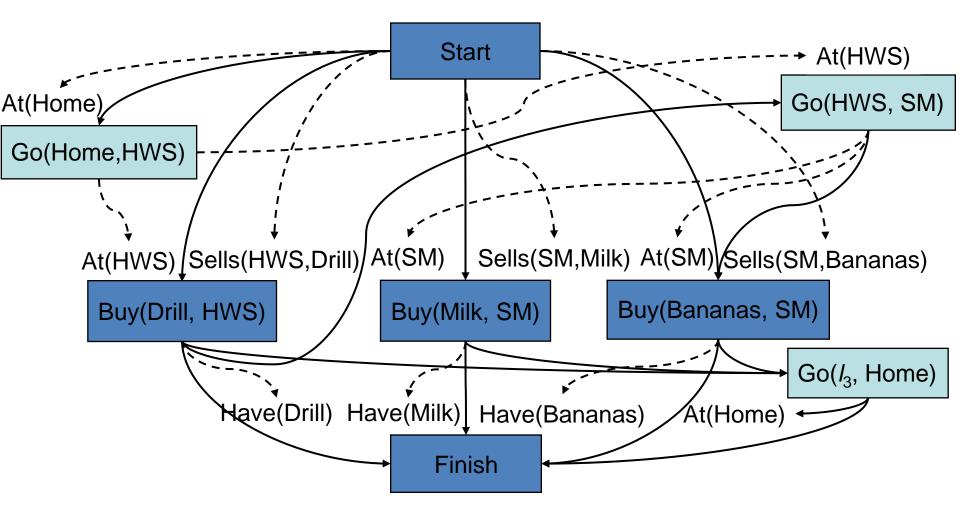
- Establish At( $I_2$ ) with  $I_2$ = HWS



- Establish At(Home) for Finish
  - » This creates a bunch of threats



- Constrain  $Go(I_3, Home)$  to remove threats to At(SM)
  - » This also removes the other threats



#### **Final Plan**

- Establish At( $I_3$ ) with  $I_3$ =SM



#### Comments

- PSP doesn't commit to orderings and instantiations until necessary
- Problem: how to prune infinitely long paths?
  - » Loop detection is based on recognizing states we've seen before
  - » In a partially ordered plan, we don't know the states
- Can we prune if we see the same action more than once?

$$\dots$$
 go(b,a) — go(a,b) – go(b,a) — at(a)

 No. Sometimes we might need the same action several times in different states of the world.

#### TOPLAN – known nonlinear planner

```
initialize: \Pi \leftarrow \{\{s_{\texttt{goal}}\}\}, \mathbf{S} \leftarrow \{s_{\texttt{goal}}\}
toplan(s_0, \Pi, S):
                       if \exists s_n \in \mathbf{S}, \pi_n \in \mathbf{\Pi} : s_{\mathtt{goal}} = s_n \text{ then return}(\pi_n)
                       if S = \{\} return failure
                                        else <u>remove</u> s_i from S and <u>remove</u> \pi_i from \Pi
                                       A \leftarrow \{\alpha|_{\texttt{eff}(\alpha) \in s_i}\}
                                       S \leftarrow \{s | \forall \alpha \in A: \mathtt{successor}(\alpha, s) = s_i \}
                                       \Pi \leftarrow \{\pi|_{\forall \alpha \in A: \ \pi = \alpha \cup \pi_i}\}
                       return(toplan(s_0, append(\Pi, \Pi), append(\mathbf{S}, S)))
```

#### POPLAN – known nonlinear planner

```
initialize: \Pi \leftarrow \{ \text{actions}, \{ s_0 \prec s_{\text{goal}} \}, \{ \}, \{ \text{pre}(s_{\text{goal}}) \} \}
poplan(\Pi):
     if complete(\Pi) then return(\Pi)
     if \exists p of action \beta \in \text{open\_goals}(\Pi) and \exists \alpha that achieves p
                than append(\Pi, \{\{\alpha \rightarrow \beta\}\}, \{\alpha \prec \beta\}\}) and remove(\beta, open_goals(\Pi))
                else return(fail)
     if there is a causal link lpha_1 rac{1}{x} lpha_2 threatened by lpha_3
                then do either
                            <u>Promotion:</u> return poplan(\Pi \uplus \{\alpha_3 \prec \alpha_1\}) or
                            <u>Demotion</u>: return poplan(\Pi \uplus \{\alpha_2 \prec \alpha_3\}) or
                else return poplan(\Pi)
```



# OPPA European Social Fund Prague & EU: We invest in your future.