PLÁNOVÁNÍ A HRY - CV 1

kopriva@agents.felk.cvut.cz

Course Info

Gerhard Wickler lectures on planning

- First week of term
 - Mon 16:15 19:30, T2:C3-54 (Dejvice)
 - Tue 16:15 19:30, K-112 (Vyčichlova)
 - Wed 16:15 19:30, K-112 (Vyčichlova)
 - Thu 16:15 19:30, K-112 (Vyčichlova)
 - Fri 12:45 16:00, K-112 (Vyčichlova)

Game Theory lectures

- In the second half of the term
- Date to be specified

Grading

To get Zápočet

Each tutorial short assessment (10 together)

Assessments graded 1/0

Need to get 70% to get Zápočet

🗆 Exam

■ 20% - Assignment in the 6th week of term

🗖 80% - Exam

Course Preparation / Recap

- Algorithm Properties
- Searches
- Logics
- Satisfiability Problem

Algorithm Properties

Soundness

The result returned by the algorithm is a solution to the problem

Completeness

If a solution exists, the algorithm finds it

Admissibility

- It is guaranteed that the algorithm finds the optimal solution
- Optimality has to be defined

Search Space

- Search Space S is a set of states, where the goal is to find the states that satisfy the condition g.
- Formally the problem is defined as a tuple (s₀,g, O), where:
 - \square s₀ is the initial state
 - g is the goal condition
 - O is a set of state transition operators

Breadth – First Search

- Is complete
- Complexity
 - **Time** O(b^d)
 - Space O(b^d)

- **b** is the number of siblings of each node
- **d** is the depth of the search space

Depth-First Search

- Is complete
 - if no endless paths are present
- Complexity
 - Time depends on the way of the search
 - Space O(d)
 - **d** is the depth of the search space

A*

\Box f'(n) = g(n) + h'(n)

- □ g(n) total distance it has taken to get from the starting position to the current location
- h'(n) the estimated distance from the current position to the goal destination/state. A heuristic function is used to create this estimate on how far away it will take to reach the goal state.

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

- Constants KingJohn, 2, NUS,...
- Predicates
 Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- $\Box \text{ Connectives } \neg, \Rightarrow, \land, \lor, \Leftrightarrow$
- Equality =
- □ Quantifiers \forall, \exists

Atomic sentences

- Atomic sentence = $predicate (term_1,...,term_n)$ or $term_1 = term_2$
- Term = $function (term_1,...,term_n)$ or constant or variable
- E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg \mathsf{S}_{1} \mathsf{S}_{1} \land \mathsf{S}_{2}, \mathsf{S}_{1} \lor \mathsf{S}_{2}, \mathsf{S}_{1} \Longrightarrow \mathsf{S}_{2}, \mathsf{S}_{1} \Leftrightarrow \mathsf{S}_{2},$$

E.g. Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn) >(1,2) $\lor \le$ (1,2) >(1,2) $\land \neg >$ (1,2)

Models for FOL: Example

Universal quantification

- □ ∀<variables> <sentence>
- □ Everyone at NUS is smart: $\forall x At(x, CVUT) \Rightarrow Smart(x)$
- $\Box \forall x P \text{ is true in a model } m \text{ iff } P \text{ is true with } x \text{ being each possible object in the model}$
- Roughly speaking, equivalent to the conjunction of instantiations of P

A common mistake to avoid

- \square Typically, \Longrightarrow is the main connective with \forall
- Common mistake: using \land as the main connective with \forall :

 $\forall x At(x, CVUT) \land Smart(x)$

means "Everyone is at CVUT and everyone is smart"

Existential quantification

- □ ∃<variables> <sentence>
- Someone at CVUT is smart:

```
\Box \exists x At(x, CVUT) \land Smart(x)
```

- $\Box \exists x \ P \text{ is true in a model } m \text{ iff } P \text{ is true with } x \text{ being some possible object in the model}$
- Roughly speaking, equivalent to the disjunction of instantiations of P

Another common mistake to avoid

- \square Typically, \wedge is the main connective with \exists
- □ Common mistake: using \Rightarrow as the main connective with \exists :
- $\Box \exists x \ \mathsf{At}(\mathsf{x}, \mathsf{CVUT}) \Longrightarrow \mathsf{Smart}(\mathsf{x})$
 - □ is true if there is anyone who is not at CVUT!

Equality

- □ $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object
- E.g., definition of Sibling in terms of Parent:
- □ $\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Satisfiability

- Model of the formula is a set of assignments of the true/false values to the variables in a way that the formula is evaluated to be true.
 - ¬p is true iff p is false
 - \blacksquare p \land q is true iff p is true and q is true
- Satisfiability problem (SAT) is a problem of evaluating, whether a model for the given formula exists.

3-SAT problem

Conjunctive normal form
 3-CNF

First known NP-complete problem

 $\Box (x_{11} \text{ OR } x_{12} \text{ OR } x_{13}) \text{ AND}$ $(x_{21} \text{ OR } x_{22} \text{ OR } x_{23}) \text{ AND}$ $(x_{31} \text{ OR } x_{32} \text{ OR } x_{33}) \text{ AND}$

.