
TEMPORAL LOGIC & PLANNING

kopriva@agents.felk.cvut.cz

Quick Review of First Order Logic

 First Order Logic (FOL):

 constant symbols, function symbols, predicate symbols

 logical connectives (, , , ,), quantifiers (,), punctuation

 Syntax for formulas and sentences on(A,B) on(B,C)

x on(x,A)

x (ontable(x) clear(x))

 First Order Theory T:

 “Logical” axioms and inference rules – encode logical reasoning in general

 Additional “nonlogical” axioms – talk about a particular domain

 Theorems: produced by applying the axioms and rules of inference

 Model: set of objects, functions, relations that the symbols refer to

 For our purposes, a model is some state of the world s

 In order for s to be a model, all theorems of T must be true in s

 s |= on(A,B) read “s satisfies on(A,B)” or “s models on(A,B)”

 means that on(A,B) is true in the state s

Linear Temporal Logic

 Modal logic: FOL plus modal operators

 Linear Temporal Logic (LTL):

 Purpose: to express a limited notion of time

 An infinite sequence 0, 1, 2, … of time instants

 An infinite sequence M= s0, s1, … of states of the world

 Modal operators to refer to the states in which formulas are true:

 f - next f - f holds in the next state, e.g., on(A,B)

♢ f - eventually f - f either holds now or in some future state

⃞ f - always f - f holds now and in all future states

f1 f2 - f1 until f2 - f2 either holds now or in some future state,

and f1 holds until then

 Propositional constant symbols TRUE and FALSE

Linear Temporal Logic (continued)

 Quantifiers cause problems with computability

 Suppose f(x) is true for infinitely many values of x

 Problem evaluating truth of x f(x) and x f(x)

 Bounded quantifiers

 Let g(x) be such that {x : g(x)} is finite and easily computed
[x:g(x)] f(x)

 means x (g(x) f(x))

 expands into f(x1) f(x2) … f(xn)

[x:g(x)] f(x)
 means x (g(x) f(x))

 expands into f(x1) f(x2) … f(xn)

Models for LTL

 A model is a triple (M, si, v)

 M = s0, s1, … is a sequence of states

 si is the i’th state in M,

 v is a variable assignment function
 a substitution that maps all variables into constants

 Write (M,si,v) |= f

to mean that v(f) is true in si

 Always require that
(M, si,v) |= TRUE

(M, si,v) |= FALSE

Examples
 Suppose M= s0, s1, …

(M,s0,v) |= on(A,B) means A is on B in s2

 Abbreviations:

(M,s0) |= on(A,B)no free variables, so v is irrelevant:

M |= on(A,B) if we omit the state, it defaults to s0

 Equivalently,

(M,s2,v) |= on(A,B) same meaning with no modal operators

s2 |= on(A,B) same thing in ordinary FOL

 M |= holding(C)

 in every state in M, we aren’t holding C

 M |= (on(B, C) (on(B, C) on (A, B)))

 whenever we enter a state in which B is on C, B remains on C until A is on B.

Where We’re Going

 Basic idea:

 TLPLan does a forward search, using LTL to do pruning tests

 Input includes a current state s, and a control formula f written in LTL

 If f isn’t satisfied, then s is unacceptable => backtrack

 Else keep going

 We’ll need to augment LTL to include a way to refer to goal states

 Include a GOAL operator such that GOAL(f) means f is true in every goal state

 ((M,si,V),g) |= GOAL(f) iff (M,si,V) |= f for every si g

 Next, some examples of control formulas

Example: Blocks World
unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: on(x,y), clear(x), handempty,

holding(x), clear(y)

stack(x,y)

Precond: holding(x), clear(y)

Effects: holding(x), clear(y),

on(x,y), clear(x), handempty

pickup(x)

Precond: ontable(x), clear(x), handempty

Effects: ontable(x), clear(x),

handempty, holding(x)

putdown(x)

Precond: holding(x)

Effects: holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Supporting Axioms

 Want to define conditions under which a stack of blocks will never need to be
moved

 If x is the top of a stack of blocks, then we want goodtower(x) to hold if

 x doesn’t need to be anywhere else

 None of the blocks below x need to be anywhere else

 Definitions to support this:

 goodtower(x) clear(x) GOAL(holding(x)) goodtowerbelow(x)

 goodtowerbelow(x)

[ontable(x) [y:GOAL(on(x,y)]]

 [y:on(x,y)] {GOAL(ontable(x)) GOAL(holding(y))

 GOAL(clear(y)) [z:GOAL(on(x,z))] (z = y)

 [z:GOAL(on(z,y))] (z = x) goodtowerbelow(y)}

 badtower(x) clear(x) goodtower(x)

Blocks World Example (continued)

Three different control formulas:

(1) Every goodtower must always remain a goodtower:

(2) Like (1), but also says never to put anything onto a badtower:

(3) Like (2), but also says never to pick up a block from the table unless you can
put it onto a goodtower:

Outline of How TLPlan Works

 Recall that TLPLan’s input includes a current state s, and a control formula f written in
LTL

 How can TLPLan determine whether there exists a sequence of states M beginning
with s, such that M |= f ?

 We can compute a formula f + such that for every sequence M = s, s+, s++,…,

 M |= f + iff M+ = s+, s++,… satisfies f +

 f + is called the progression of f through s

 If f + = FALSE then no M+ can satisfy f +

 Thus no M can satisfy f, so TLPLan can backtrack

 Otherwise, need to determine whether there is an M+ that satisfies f +

 For every child s+ of s, call TLPLan recursively on s+ and f +

 How to compute the progression of f through s?

Procedure Progress

s

s s
s

s

s

s

s

s

where {c1, …, cn} = {x : s |= (x)}, and fi = f with x replaced by ci

Boolean simplification rules:

contains no temporal operators:

Progress

Progress

Progress

Progress

Progress

Progress

Progress

i=1,…,nProgress(fi, s)
i=1,…,nProgress(fi, s)

Examples

 Suppose f = on(a,b)

 f + = Progress(on(a,b), s) on(a,b)

 If on(a,b) is true in s then
 f + = TRUE on(a,b)

 simplifies to on(a,b)

 If on(a,b) is false in s then
 f + = FALSE on(a,b)

 simplifies to FALSE

 Summary:

 generates a test on the current state

 If the test succeeds, propagates it to the next state

Examples (continued)

 Suppose f = (on(a,b) clear(a))

 f + = Progress[(on(a,b) clear(a)), s]

 = Progress[on(a,b) clear(a), s] (on(a,b) clear(a))

 If on(a,b) is true in s, then

 f + = clear(a) (on(a,b) clear(a))

 Since on(a,b) is true in s,

s+ must satisfy clear(a)

 The “always” constraint is propagated to s+

 If on(a,b) is false in s, then

 f + = (on(a,b) clear(a))

 The “always” constraint is propagated to s+

Example

 s = {ontable(a), ontable(b), clear(a), clear(c), on(c,b)}

 g = {on(b, a)}

 f = [x:clear(x)] {(ontable(x) [y:GOAL(on(x,y))]) holding(x)}

 never pick up a block x if x is not required to be on another block y

 f + = Progress(f,s) f

 Progress(f,s)

= Progress([x:clear(x)]
{(ontable(x) [y:GOAL(on(x,y))]) holding(x)},s)

= Progress((ontable(a) [y:GOAL(on(a,y))]) holding(a)},s)

 Progress((ontable(b) [y:GOAL(on(b,y))]) holding(b)},s)

= holding(a) TRUE

 f + =holding(a) TRUE f
= holding(a)
[x:clear(x)] {(ontable(x) [y:GOAL(on(x,y))]) holding(x)}

a b

b

a

c

Pseudocode for TLPlan

 Nondeterministic forward search

 Input includes a control formula f for the current state s

 When we expand a state s, we progress its formula f through s

 If the progressed formula is false, s is a dead-end

 Otherwise the progressed formula is the control formula for s’s children

Procedure TLPlan (s, f, g, π)

f + Progress (f, s)

if f + = FALSE then return failure

if s satisfies g then return π

A {actions applicable to s}

if A = empty then return failure

nondeterministically choose a A

s + (s,a)

return TLPlan (s +, f +, g, π.a)

Discussion

 2000 International Planning Competition

 TALplanner: same kind of algorithm, different temporal
logic
 received the top award for a “hand-tailored” (i.e., domain-

configurable) planner

 TLPlan won the same award in the 2002 International
Planning Competition

 Both of them:

 Ran several orders of magnitude faster than the “fully
automated” (i.e., domain-independent) planners
 especially on large problems

 Solved problems on which the domain-independent planners
ran out of time/memory

