PLANNING GRAPHS



Planning Graphs

Planning graphs are an efficient way to create a
representation of a planning problem that can be
used to

Achieve better heuristic estimates
Directly construct plans

Planning graphs only work
for propositional problems.



Planning Graphs

Planning graphs consists of a seq of levels that
correspond to time steps in the plan.

Level O is the initial state.

Each level consists of a set of literals and a set of
actions that represent what might be possible at
that step in the plan

Might be is the key to efficiency

Records only a restricted subset of possible
negative interactions among actions.



Planning Graphs

Each level consists of

Literals = all those that could be true at that time
step, depending upon the actions executed at
preceding time steps.

Actions = all those actions that could have their
preconditions satisfied at that time step, depending
on which of the literals actually hold.



PG Example

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))

Action(Eat(Cake),
PRECOND: Have(Cake)

EFFECT: "Have(Cake) A Eaten(Cake))

Action(Bake(Cake),
PRECOND: — Have(Cake)

EFFECT: Have(Cake))



PG Example

SU AU 81

Have(Cake)

— Eaten(Cake)

Create level O from initial problem state.



PG Example
=

SU AU 81

Have(Cake)
\ —Have(Cake)
Eat(Cake) <

Eaten(Cake)
— Eaten(Cake)

Add all applicable actions.

Add all effects to the next state.



PG Example

SU AU S’I

Have(Cake) = Have(Cake)
\ —1Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = |Eaten(Cake)

Add persistence actions (inaction = no-ops) to
map all literals in state S; to state S, ;.



PG Example

SU AU S’I

Have(Cake) = Have(Cake)
\ —1Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = |Eaten(Cake)

|dentify mutual exclusions between actions and
literals based on potential conflicts.



Mutual exclusion

A mutex relation holds between two actions when:

Inconsistent effects: one action negates the effect of another.

Interference: one of the effects of one action is the negation of a
precondition of the other.

Competing needs: one of the preconditions of one action is mutually
exclusive with the precondition of the other.

A mutex relation holds between two literals when:
one is the negation of the other OR

each possible action pair that could achieve the literals is
mutex (inconsistent support).



Cake example

So Ao Sy
Have(Cake) = Have(Cake)
\ —1Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = |Eaten(Cake)

Level S, contains all literals that could result from
picking any subset of actions in A,
Conflicts between literals that can not occur together

(as a consequence of the selection action) are
represented by mutex links.

S1 defines multiple states and the mutex links are the constraints that
define this set of states.



Cake example

So A 0 S1 A1
Bake(Cake)
Have(Cake) = Have(Cake) / =t
\ — Have(Cake) ><\ =
Eat(Cake) Eat(Cake)
< Eaten(Cake) s
— Eaten(Cake) = — Eaten(Cake) &

-1 Repeat process until graph levels off:

two consecutive levels are identical, or

contain the same amount of literals
(explanation follows later)

S»

Have(Cake)
— Have(Cake)

Eaten(Cake)
— Eaten(Cake)



The GRAPHPLAN Algorithm

Extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph <— INITIAL-PLANNING-GRAPH(problem)

goals <— GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do
solution <— EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution # failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph <— EXPAND-GRAPH(graph, problem)



GRAPHPLAN example

T - ” - o -

At(Spare, Trunk) At(Spare, Trunk)

At{Spare, Trunk) {} X
(—r Remove(Spare, Trunk)
— At(Spare, Trunk) — At(Spare, Trunk)

Remove(Spare, Trunk) ),
Remove I?I:n.AxIe Remove(Flat, Axle)
At(Flat, Axle) m! At(Flat Axle) / I} \ At(Flat,Axle)

{\ — At(Flat Axle) A= —anFiaAxe)

—At(Spare,Axle) {F — At(Spare,Axle) —At{Spare,Axle)
\\ At(Spare Axle)

—At{Flat, Ground) {1 — At{Flat,Ground) I {1 —At{Flat, Ground)
Y At(Flat. Ground) // Q \\\\ At(Flat, Ground)

— At(Spare, Ground) {} — At(Spare, Ground) / 5 \ﬁ At(Spare, Ground)
\ At(Spare, Ground) 1 At(Spare,Ground)

o Initially the plan consist of 5 literals from the initial state and the CWA literals (SO).
7 Add actions whose preconditions are satisfied by EXPAND-GRAPH (AO)

1 Also add persistence actions and mutex relations.

7 Add the effects at level S1

1 Repeat until goal is in level Si



S1
At(Spare, Trunk)

At(Spare Trunk)
\ Remove(Spare, Trunk)

—At(Spare, Trunk)

At(Flat,Axle) At(Flat Axle)
| LeaveOvernight —At(Flat Axle)
—At(Spare,Axle) {7 \\ — At(Spare,Axle)
—At{Flat, Ground) {7} \ —At(Flat,Ground)
\\ At(Flat Ground)
—At(Spare, Ground) } —At(Spare, Ground)

\

At(Spare, Ground)

A, S
At(Spare, Trunk)
Remove(Spare, Trunk) L\
—) — At{Spare,Trunk)
Remove(Flat,Axle)
/'-' At(Flat,Axie)
| LeaveOvernight
{ —At(Spare,Axie)
PutOn(Spare Axle) At(Spare Axle)
At(Flat, Ground)

— At{Spare, Ground)
At(Spare,Ground)

B
E>




GRAPHPLAN example

At(Spare, Trunk) {} At{(Spare, Trunk) At(Spare, Trunk)
Remove(Spare, Trunk)
Remove(Spare,Trunk) —At(Spare, Trunk) — At{Spare,Trunk)
‘ Remove(Flat, Axle)
At(Flat,Axle) -_‘\ At(Flat Axle) 0 At(Flat, Axle)
A“ —At(Flat Axle) ) A — At{Flat Axle)
\ g‘\
— At(Spare, Axle O — At(Spare,Axle) A — At(Spare, Axle)
parsfde) N AN
“ At{Spare.Axle)
— At{Flat,Ground) —At{Flat,Ground) \N — At{Flat, Ground)
At(Flat Ground) o At(Flat, Ground)
— At(Spare, Ground) T} \—1At{8pare, Ground) // 3 ‘\—1 At{Spare, Ground)
At(Spare, Ground) 1 At(Spare,Ground)

1 EXPAND-GRAPH also looks for mutex relations

o Inconsistent effects
=  E.g. Remove(Spare, Trunk) and LeaveOverNight due to At{Spare,Ground) and not At(Spare, Ground)

o Interference

m  E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT
1 Competing needs

m  E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)
= Inconsistent support

m  E.g.in S2, At(Spare,Axle) and At(Flat,Axle)



GRAPHPLAN example
=

S, S, A S,

At(Spare, Trunk) At(Spare, Trunk) 1 At(Spare, Trunk)

* Remove(Spare Tk |
—At(Spare, Trunk) —0 - — At{Spare, Trunk)
At(Flat,Axle) At(Flat Axle) =y X At(Flat,Axie)
— At(Flat Axle) -Uh ‘7 — At(Flat Axle)
| LeaveOvernight | “\

— At(Spare,Axle) — At(Spare,Axle) —‘ - — At{Spare,Axle)

“\ ‘\‘ At{Spare Axle)

— At(Flat,Ground) {} —At{Flat,Ground)

— At(Flat,Ground)
\\\\ At(Flat,Ground)
— At{Spare, Ground)
\ At(Spare,Ground)

\Q At(Flat Ground) /
— At(Spare, Ground) /

\ At(Spare, Ground) /

0l

— At(Spare, Ground)

0.0 El_,[]

7 In S2, the goal literals exist and are not mutex with any other
Solution might exist and EXTRACT-SOLUTION will try to find it

o EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search process:
Initial state = last level of PG and goal goals of planning problem
Actions = select any set of non-conflicting actions that cover the goals in the state
Goal = reach level SO such that all goals are satisfied

Cost = 1 for each action.



GRAPHPLAN Termination

Termination? YES

PG are monotonically increasing or decreasing:
Literals increase monotonically
Actions increase monotonically

Mutexes decrease monotonically

Because of these properties and because there is
a finite number of actions and literals, every PG
will eventually level off



Dinner Date example

Initial Conditions: (and (garbage) (cleanHands) (quiet))

Goal: (and (dinner) (present) (not (garbage))
Actions:

Cook :precondition (cleanHands)
.effect (dinner)

Wrap :precondition (quiet)
.effect (present)

Carry :precondition

.effect (and (not (garbage)) (not (cleanHands))
Dolly :precondition

.effect (and (not (garbage)) (not (quiet)))



Dinner Date example

garb garb
u garb
cleanH cleanH
“1cleanH
quiet quiet
“1quiet
dinner

present



Dinner Date example

garb

garb
—|garD
cleanH
‘Icleanl—)
\ quiet
\ —Iquie)
dinner% \ \dinner
present/ \ present

quiet




Dinner Date example

'garb

cleanH | CleanH\
H

present present



Rocket domain

(define (operator move)
:parameters ((rocket 7r) (place ?from) (place 7to))
:precondition (zand (meq ?from 7to) (at 7r from) (has-fuel 1))
reffect (zand (at 7r 7to) (:not (at 7r Tfrom)) (:not (has-fuel ?1))))

(define (operator unload)
:parameters ((rocket 7r) (place ?p) (cargo 7c))
:precondition (zand (at 7t 7p) {(in 7¢ 7r))
reffect (zand (:not (in 7¢ 7r)) (at 7c 7p)))

(define (operator load)
:parameters ((rocket 7r) (place 7p) (cargo 7c))
:precondition (zand (at 7r ?p) (at 7¢ 7p))
reffect (zand (:not (at ¢ 7p)) (in 7¢ 7r)))



Planning Graph Example
Rocket problem

in AR inAR
load A L/ J]mt A L/ \

nBR = nBR
oad B L/ / load B L,..-v-—-"""" unload A P\\ A D
L Y E & .- “‘!
R RE move L-P ‘3’"‘*:) Ry T unload B P
E \ atBP

move L P"%"., ", / ﬁ:."u %,
{‘a “4 ", .:'- *, *
dt jln I_ . “:..' .r‘ L dT 1‘5& L / . ‘ﬂ-' .‘ ;_11_' ‘i"L I_
t:'-. “"4 ‘;‘:"- .,
at BL / ® '-.".,‘ > atB L ® At 0t B L
1' 4‘ / i-‘ ""l‘
. . .
at R L P " at R L ® *“— atRL
fuel R & fuel R ® fuel R

propositions actions propositions actions propositions actions goals
time 1 time 1 time 2 time 2 time 3 time 3



