

OPPA European Social Fund Prague & EU: We invest in your future.

Introduction to Scheduling, Scheduling Algorithms

Jiří Vokřínek A4M33PAH - 26.3.2012

Planning and Scheduling

- planning
 - problem: search for feasible set of actions fulfilling a goal
 - plan: partially ordered set of actions
 - actions: fully instantiated operators
- scheduling:
 - problem: find an assignment of resources to actions
 - plan: sequence of resource-action assignment in time
 - can be modelled as parameters of an action
 - problem: planning algorithms tries out all possibilities (inefficient)
 - alternative approach:
 - allow unbound resource variables in plan (planning)
 - find assignment of resources to actions (scheduling)

Planning Techniques

- project planning
- Material Resource Planning (MRP)
- batch scheduling
- task ordering
- room scheduling
- notch planning

- project planning techniques:
 - Gantt charts
 - Program Evaluation and Review Technique
 - critical path analyses

Gantt Chart

× 01130783	.MPp -	MOC	IS Project	t Viewer											
Eile Yiew S	ettings	Help													
3 8 8 4 - 1	4 12	10	- 🧠 - 1	0											
Had		Info	Task Na	me	Duration Sta	20 23 26 25	January, 2004 1 ¥ 7 10 13 16 19 22 25 28	February, 2004	March, 2004 1 4 7 10 13 16 19 22 25 28 3						
	1	_	B Proc	luct Localization	146d	-	6								
	2	_	0.1	cope	25d		A								
32	3	3		Review business	26	8	Preject manager Management								
Gantt	4	-		Estimate project Prepare localizati	lw		Project manager								
Chart	5	-			20		Project manager								
Task Usage	0	-		Estimate costs	30		Project manager								
	1	-		Lidentify risks	20		Project manage	т. 							
	0	-	Define preliminar		100		- Management								
		-		Define presents	24		+	roject manager							
1	11	Secure core reso Scope complete		1.00			Protect manager								
Tracking	12			Score complete	0.0										
COMMEN	13	-	6.4	analysis/Planning	38d			Name: Secure core resources							
	14	-	HT?	Identify localizati.	56			Start: 29/01/2004							
Resource	15	24		Identify Comp	56			Duration: 1w							
Sheet	16			Software C	Sd			Completion: 0.0							
CTT O	17	Setup		1w			Constraint type: As Soon As Possible								
Land	18			1w			Andyst								
Usage	19		🖻 User Assist 56		5d										
conge	20		Online h 1v					Analyst							
	21	1		User guide	1w			Analyst							
	22		- Marketing		5d										
	23			Packaging	Padkaging 1w			Analyst							
	24			Brochures	IW			Analyst							
	25			Web con	1w			Analyst							
	26			Ancillary C	5d	~									
		140			That is	(111 ×	10 A								
		-				I cian	1		Faarfaar						

Program Evaluation and Review Technique (PERT)

Filtered Plans	* CAD_konstrukce * CAM_technologie *											CN	C_fre	zky	2	Dre	Drevodilna 🧚 Kovodilna 🥍 MTZ 🧏 TK																													
Fillena d Direct															Janu	ary 2	002																											Fe	brua	iry
Filtered Plans	1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	18	17	18	19	20	21	22	23	24	25	28	27	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Z_211-0001	21	days																																												
Z_211-0002							39 d	lays																																						
Z_211-0003	-									21	days																																			
Z_212-0001															67 d	ays																														
Z_212-0002																	9 da	ys.																												
Z 211-0005															18 4	ays		1.1-1																												
Z 212-0003	-																				31 d	lave																								
Z 211-0008																																				4 42	ive:									
7 211,0006																																														
	-	_	-	_	_	_	-	_	_	-	_	-	_	_	121070			_	-	_	-	-	_	-	-	_	_	-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-		-	-
Z_211-0003			2	conc.			-	0		140		10	40		Janu	ary 2	002	40	40		24		22	24	-	-04		-00	- 20		- 24		0	~	-			-	0	0	40	a a ch	40	Fe	brua	ry
CAR Include	1	4	3		0	0	1	8	.9	10	11	12	13	14	15	10	1/	18	18	20	21	22	23	24	20	20	21	28	29	30	31	1	2	3	-4-	D.	0	1	8	A	10	113	12	13	14	10
CAD_konstrukce	-									9	8			4			-				-	-	10		-				-	-																
CAM_technologie	-									10	15			10	10	10	10	10			10	10	10	10	10			10	12																	
Kovodilna															16	4	_	-				-			No.			-																		
Drevodilna															16	16	16	16			10	10	16	16	16			16	16	4																
тк	_														8	8	8																													
			_	_	_	_	_	_		_	_	_	_	_	_	_		_	_		_	_	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_		_	_	_		_	_
CAD konstrukce		January 2002															Fe	brua	iry																											
CAD_KORBAGKOE	1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	8	7	8	9	10	11	12	13	14	li
occupation 2 %	0	0	0	0			0	0	0	33	33			17	0	0	0	0			0	0	0	0	0			0	0	0	0	0			0	0	0	0	0			0	0	0	0	
1														2																																
2		-												211																																
3	N						N	N	N	N	N			8	N	N	N	N			N	N	N	N	N			PH.	N	N	N	N			N.	N	N	N	N							
4	21						N	2	21	21	21			8	21	21	2	N			N	2	2	2	N			21	21	21	212	212			21	21	21	12	2							
5	8						ē	ē	8	8	00				6	8	8	ē			8	ě.	8	8	8			6	ě	00	6	8			00	8	6	8	8							
6	3						8	ន	8	8	8				8	8	2	8			2	3	3	2	2			2	2	2	3	2			2	8	8	8	8							
7														N																																
8														2																																
9						- 1								5																																
10														02																							2									
11										N	N				N	N	N	N																		N										
12										12	'n				N	2	N	2																		N										
13										5	5				5	5	20	2-0																		2-0										
10										02	002				82	8	8	8																		8										
14										10	10				1	100																														
10																																														
10												-																																		
17																		2																												
18																																														
19															S	S	S																													
20															12.	12-	124																													
21															8	8	8																													
22															-	-	2																													
23																																														

Actions and Resources

- resources: an entity needed to perform an action
 - state variables: modified by actions in absolute ways
 - example: move(*r*,*l*,*l'*):
 - location changes from *I* to *I'*
 - resource variables: modified by actions in relative ways
 - example: move(*r*,*l*,*l'*):
 - fuel level changes from f to f-f'

Actions with Time Constraints

Start: 7/28/06 10: 5 Frish: 8/7/06 Dur: 6.33 days

c Start: 7/28/06 ID: 4 Rvish: 8/4/06 Dur: 5.17 days

> Sart: 5/4/05 ID: 5 Reish: 5/11/05 Our: 5.17 days

a Start: 7/24/06 30: 2 Reish: 7/27/06 Dur: 4 days

Start: 7/24/06 ID: 3 Reish: 7/31/06 Our: 5.33 days

Nestone Date: Mon 7/24/06

Start: 8/7/06 ID: 7 Riveh: 8/11/06 Dur: 45 deys

9 Start: 8/11/06 ID: 8 Prish: 8/18/06 Dur: 5.17 days

- Let *a* be an action in a planning domain:
 - attached time constraints:
 - earliest start time: $s_{min}(a)$ actual start time: s(a)
 - latest end time: $s_{max}(a)$ actual end time: e(a)
 - duration: d(a)
- action types:
 - preemptive actions: cannot be interrupted
 - d(a) = e(a) s(a)
 - non-preemptive actions: can be interrupted
 - resources available to other actions during interruption

Actions with Resource Constraints

- Let *a* be an action in a planning domain:
 - attached resource constraints:
 - required resource: r
 - quantity of resource required: q
 - reusable: resource will be available to other actions after this action is completed

 – consumable: resource will be consumed when action is complete

Reusable Resources

- resource availability:
 - total capacity: Q_r
 - current level at time $t: z_r(t)$
- resource requirements:
 - require(*a*,*r*,*q*): action *a* requires *q* units of resource *r* while it is active
- resource profile:

Consumable Resources

- resource availability:
 - total reservoir at $t_0: Q_r$
 - current level at time $t: z_r(t)$
- resource consumption/production:
 - consume(a,r,q): action a requires q units of resource r
 - produce(a,r,q): action a produces q units of resource r
- resource profile:

Other Resource Features

- discrete vs. continuous
 - countable number of units: cranes, bolts
 - real-valued amount: bandwidth, electricity
- unary
 - Q_r =1; exactly one resource of this type available
- sharable
 - can be used by several actions at the same time
- resources with states
 - actions may require resources in specific state

Combining Resource Constraints

- conjunction:
 - action uses multiple resources while being performed
- disjunction:
 - action requires resources as alternatives
 - cost/time may depend on resource used
- resource types:
 - resource-class(s) = $\{r_1, ..., r_m\}$: require(a,s,q)
 - equivalent to disjunction over identical resources

Cost Functions and Optimization Criteria

- cost function parameters
 - quantity of resource required
 - duration of requirement
- optimization criteria:
 - total schedule cost
 - makespan (end time of last action)
 - weighted completion time
 - (weighted) number of late actions
 - (weighted) maximum tardiness
 - resource usage

Planning vs. Scheduling

- Planning
 - feasibility of plan for ONE goal
 - duration (number of actions) in a plan
- Scheduling
 - utilization of resource(s) for ALL plans
 - total schedule cost or duration
- It is hard to optimize both together ...

Machine Scheduling

- machine: resource of unit capacity
 - either available or not available at time t
 - cannot process two actions at the same time
- job *j*: partially ordered set of actions $a_{j1},...,a_{jk}$
 - action a_{ii} requires
 - one resource type
 - for a number of time units
 - actions in same job must be processed sequentially
 - actions in different jobs are independent (not ordered)
- machine scheduling problem:
 - given: *n* jobs and *m* machines
 - schedule: mapping from actions to machines + start times

Material Resource Planning

- machine: resource of countable capacity
 - available amount r_i at time t_i
 - can process any number of actions at the same time if $r_i >= 0$
- job *j*: partially ordered set of actions $a_{j1},...,a_{jk}$
 - action a_{jj} requires
 - *I* resource types of *q* number each
 - for a number of time units
 - actions in same job must be processed sequentially
 - actions in different jobs are independent (not ordered)
- material resource planning problem:
 - given: n jobs and m machines
 - supply report: consumption of resources capacity by actions in time

Example: Scheduling Problem

- machines:
 - $-m_1$ of resource type r_1
 - $-m_2$, m_3 of resource type r_2
- jobs:

$$-j_1:\langle r_1(3), r_2(3), r_1(3) \rangle$$

- three actions, totally ordered
- a_{11} requires 3 units of resource type 1, etc.

$$-j_2:\langle r_2(3), r_1(5)\rangle$$

$$-j_3$$
: $\langle r_1(3), r_1(2), r_2(3), r_1(5) \rangle$

Example: Schedules by Job

- machines:
 - $-m_1$ of type r_1
 - $-m_2$ of type r_2
- jobs:
 - $$\begin{split} -j_1: \langle r_1(1), r_2(2) \rangle \\ -j_2: \langle r_1(3), r_2(1) \rangle \end{split}$$

Example: Schedules by Machine

- machines: $-m_1$ of type r_1
 - $-m_2$ of type r_2
- jobs:
 - $$\begin{split} -j_1: \langle r_1(1), r_2(2) \rangle \\ -j_2: \langle r_1(3), r_2(1) \rangle \end{split}$$

Assignable Actions

- Let *P* be a machine scheduling problem. Let *S* be a partially defined schedule.
- An action a_{ji} of some job j_l in P is <u>unassigned</u> if it does not appear in S.
- An action a_{ji} of some job j_i in P is <u>assignable</u> if it has no unassigned predecessors in S.

Example: Assignable Actions

- problem P:
 - machines:
 - m_1 of type r_1
 - m_2 of type r_2
 - jobs:
 - $j_1: \langle r_1(1), r_2(2) \rangle$
 - j_2 : $\langle r_1(3), r_2(1) \rangle$
 - j_3 : $\langle r_1(3), r_2(1), r_1(3) \rangle$

partial schedule S:

- unassigned:
 - $a_{22}, a_{31}, a_{32}, a_{33}$
- assignable:
 - *a*₂₂, *a*₃₁

Earliest Assignable Time

- Let a_{ji} be an assignable action in S. The <u>earliest</u> assignable time for a_{ji} on machine m in S is:
 - the end of the last action currently scheduled on *m* in *S*, or
 - the end of the last predecessor $(a_{i0} \dots a_{ii-1})$ in S, or
 - the earliest start time $s_{min}(a_{ji})$,
 - whichever comes later.

Example: Earliest Assignable Time

- problem P
 (R2|prec|C_max):
 - machines:
 - m_1 of type r_1
 - m_2 of type r_2
 - jobs:
 - $j_1: \langle r_1(1), r_2(2) \rangle$
 - j_2 : $\langle r_1(3), r_2(1) \rangle$
 - j_3 : $\langle r_1(3), r_2(1), r_1(3) \rangle$

partial schedule S:

- earliest assignable time for a_{22} on m_2 : 4
- earliest assignable time for a_{31} on m_1 :4

Heuristic Search

heuristicScheduler(P,S)

assignables \leftarrow P.getAssignables(S) if assignables.isEmpty() then return S action \leftarrow assignables.selectOne() machines \leftarrow P.getMachines(action) machine \leftarrow machines.selectOne()

time ← *S*.getEarliestAssignableTime(*action, machine*)

 $S \leftarrow S + assign(action, machine, time)$

return heuristicScheduler(P,S)

Scheduling Algorithms

- First In, First Out (FIFO) known also as First Come, First Served (FCFS)
- Last In, First Out (LIFO)
- Shortest Remaining Time First (SRTF), Shortest Job First (SJF)
- priority ordering
- Round-robin (RR) scheduling
- critical path priority ordering

Scheduling Algorithms

- scheduling problem α/β/γ
- α machine environment: 1 (single machine),
 Pm (m identical machines), Qm (as P with different speeds), Rm (as P, but unrelated)
- β problem specs: r_i (release time), d_i
 (deadline), pmtn (preemptive), size_i (multimachine), prec (precedences), ...
- γ objective function: C_{\max} , L_{\max} , E_{\max} , T_{\max} , $\sum C_i$, $\sum L_i$, $\sum E_i$, $\sum T_i$,

the scheduling zoo: http://www-desir.lip6.fr/~durrc/query/

Example: FCFS

- First In, First Out (FIFO) known also as First Come, First Served (FCFS)
- problem average waiting time depends on arrival order
- advantage simple algorithm

Example: LIFO

- Last In, First Out (LIFO)
- problem early processes may never be served (for dynamic scheduling)
- advantage newly arrived jobs have low response times

Example: SJF

- Shortest Job First (SJF)
- provably optimal for minimizing average waiting time

Example: SRTF

- Shortest Remaining Time First (SRTF)
- preemptive variant of SJF

Example: critical path

- problem P (P|prec|C_max):
 - job:
 - $j: \langle a_1(1), a_2(2), a_3(3), a_4(1), a_5(3), a_6(1), a_7(3) \rangle$
 - $a_1 < a_2, a_2 < a_3, a_1 < a_4, a_4 < a_5, a_5 < a_7, a_6 < a_7, a_3 < a_7$

Example: critical path

- problem P (P|prec|C_max):
 - job:
 - *j*: $\langle a_1(1), a_2(2), a_3(3), a_4(1), a_5(3), a_6(1), a_7(3) \rangle$
 - $a_1 < a_2, a_2 < a_3, a_1 < a_4, a_4 < a_5, a_5 < a_7, a_6 < a_7, a_3 < a_7$

Example: critical path

- problem P (1|prec|C_max, P2|prec|C_max):
 job:
 - $j: \langle a_1(1), a_2(2), a_3(3), a_4(1), a_5(3), a_6(1), a_7(3) \rangle$
 - $a_1 < a_2, a_2 < a_3, a_1 < a_4, a_4 < a_5, a_5 < a_7, a_6 < a_7, a_3 < a_7$
 - machines: m_1 of one type (upper-bound schedule length = 14)

$$m_1 a_1 a_2 a_3 a_6 a_4 a_5 a_7$$

- machines: m_1 , m_2 of the same type
- (with unlimited machines: lower-bound schedule length = 9)

Literature

- Malik Ghallab, Dana Nau, and Paolo Traverso.
 Automated Planning Theory and Practice, chapter 15.
 Elsevier/Morgan Kaufmann, 2004.
- Michael Pinedo. *Scheduling: Theory, Algorithms and Systems,* Prentice Hall, 2001.
- Peter Brucker. Scheduling Algorithms, Springer Verlag, 2004.

OPPA European Social Fund Prague & EU: We invest in your future.