Automated (AI) Planning

Planning via Constraint Satisfaction

Constraint
satisfaction
Planning via
SAT
Behind the
curtains

Carmel Domshlak

Logic

Essential components

Automated
(AI) Planning

- formal language for expressing statements
- model theory/semantics for making sense of them
- proof theory/axiomatics for deriving new statements from old
- Originally developed for studying structure of (mathematical/philosophical) arguments, and identifying valid arguments.
- Currently the basis for
- programming languages like Prolog
- representation languages in Al (e.g., planning languages)
- verification
- automatic theorem proving

Logical representations of state sets

- n state variables with m values induce a state space consisting of m^{n} states (2^{n} states for n Boolean state variables)
- a language for talking about sets of states (valuations of state variables): propositional logic
- logical connectives \approx set-theoretical operations

Syntax of propositional logic

Let P be a set of atomic propositions (\sim state variables).
(1) For all $p \in P, p$ is a propositional formula.
(2) If ϕ is a propositional formula, then so is $\neg \phi$.
(3) If ϕ and ϕ^{\prime} are propositional formulae, then so is $\phi \vee \phi^{\prime}$.
(4) If ϕ and ϕ^{\prime} are propositional formulae, then so is $\phi \wedge \phi^{\prime}$.
(3) The symbols \perp and \top are propositional formulae.

Logic
Propositional
logic
Inference in PL
Constraint
satisfaction
Planning via

Behind the
curtains

The implication $\phi \rightarrow \phi^{\prime}$ is an abbreviation for $\neg \phi \vee \phi^{\prime}$.
The equivalence $\phi \leftrightarrow \phi^{\prime}$ is an abbreviation for
$\left(\phi \rightarrow \phi^{\prime}\right) \wedge\left(\phi^{\prime} \rightarrow \phi\right)$.

Semantics of propositional logic

A valuation of P is a function $v: P \rightarrow\{0,1\}$. Define the notation $v \models \phi$ for valuations v and formulae ϕ by
(1) $v \models p$ if and only if $v(p)=1$, for $p \in P$.
(2) $v \models \neg \phi$ if and only if $v \not \vDash \phi$
(3) $v \models \phi \vee \phi^{\prime}$ if and only if $v \models \phi$ or $v \models \phi^{\prime}$
(9) $v \models \phi \wedge \phi^{\prime}$ if and only if $v \models \phi$ and $v \models \phi^{\prime}$
(3) $v \models T$
(0) $v \not \vDash \perp$

Propositional logic terminology

- A propositional formula ϕ is satisfiable if there is at least one valuation v so that $v \models \phi$. Otherwise it is unsatisfiable.
- A propositional formula ϕ is valid or a tautology if $v \models \phi$ for all valuations v. We write this as $\models \phi$.

Logic
Propositional
logic
Inference in PL
Constraint
satisfaction
Planning via

- A propositional formula ϕ is a logical consequence of a propositional formula ϕ^{\prime}, written $\phi^{\prime} \models \phi$ if $v \models \phi$ for all valuations v with $v \models \phi^{\prime}$.
- Two propositional formulae ϕ and ϕ^{\prime} are logically equivalent, written $\phi \equiv \phi^{\prime}$, if $\phi \models \phi^{\prime}$ and $\phi^{\prime} \models \phi$.

Propositional logic terminology (ctd.)

- A propositional formula that is a proposition p or a negated proposition $\neg p$ for some $p \in P$ is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses l consisting of a single literal, and the empty clause \perp consisting of zero literals.

Normal forms: NNF, CNF, DNF

Formulae vs. sets

sets	formulae
those $\frac{2^{n}}{2}$ states in which p is true	$p \in P$
$E \cup F$	$E \vee F$
$E \cap F$	$E \wedge F$
$E \backslash F$	(set difference)
\bar{E}	$E \wedge \neg F$
the empty set \emptyset	(complement)
the universal set	$\neg E$

question about sets	question about formulae
$E \subseteq F ?$	$E \models F ?$
$E \subset F ?$	$E \models F$ and $F \not \models E ?$
$E=F ?$	$E \models F$ and $F \models E ?$

Propositional Logic: Inference

- Whether $\varphi \models \psi$ is true can be tested by enumerating all different interpretations involving the propositional symbols in φ and ψ
- Bad news: exponential time as there 2^{n} assignments ($0 / 1$) to n propositional symbols
- This time cannot be improved in worst case (unless $\mathrm{P}=\mathrm{NP}$), but approaches that run much faster in practice

Logic
Propositional
logic
Inference in PL
Constraint
satisfaction
Planning via

Behind the
curtains exist

- General idea is to combine case analysis and inference
- Exhaustive procedure above based exclusively on case analysis, even worse, deals with full assignments
- More about this in a few slides

Propositional Logic: Inference

- Whether $\varphi \models \psi$ is true can be tested by enumerating all different interpretations involving the propositional symbols in φ and ψ
- Bad news: exponential time as there 2^{n} assignments $(0 / 1)$ to n propositional symbols
- This time cannot be improved in worst case (unless $\mathrm{P}=\mathrm{NP}$), but approaches that run much faster in practice exist
- General idea is to combine case analysis and inference
- Exhaustive procedure above based exclusively on case analysis, even worse, deals with full assignments
- More about this in a few slides ...

Conjunctive Normal Form (CNF) and SAT

Let P be a set of propositional symbols. A propositional formula Φ is called a CNF if it has the form

$$
\Phi=\varphi_{1} \wedge \cdots \wedge \varphi_{m}
$$

where each φ_{i} has the form $\phi_{i}=\left(l_{1} \vee \cdots \vee l_{k}\right)$ and each l_{j} is a literal over P

- in other words, a conjunction of disjunctions of literals
- why called "normal form"?

CNF \rightsquigarrow formula $==$ a set of constraints

- in CNFs, each constraint φ_{i} is called a clause, each clause being a set of literals

SAT is the decision problem of determining whether a given CNF formula is satisfiable

Conjunctive Normal Form (CNF) and SAT

Let P be a set of propositional symbols. A propositional formula Φ is called a CNF if it has the form

$$
\Phi=\varphi_{1} \wedge \cdots \wedge \varphi_{m}
$$

where each φ_{i} has the form $\phi_{i}=\left(l_{1} \vee \cdots \vee l_{k}\right)$ and each l_{j} is a literal over P

- in other words, a conjunction of disjunctions of literals
- why called "normal form"?

Automated
(AI) Planning

Logic
Propositional
logic
Inference in PL
Constraint
satisfaction
Planning via

Behind the
curtains

CNF \rightsquigarrow formula $==$ a set of constraints

- in CNFs, each constraint φ_{i} is called a clause, each clause being a set of literals

SAT is the decision problem of determining whether a given CNF formula is satisfiable

Constraint Propagation

- Given a set Φ of constraints over variables (e.g., clauses over propositional variables), infer new constraints
- Inference: some reasoning (= proof theory) R that is sound
- if R infers φ from Φ, then $\Phi \models \varphi$
- $\Phi \cup\{\varphi\}$ is logically equivalent to $\Phi \ldots$ but $\Phi \cup\{\varphi\}$ can be "more informative"
- e.g., there may be constraints ψ that R can infer in one step from $\Phi \cup\{\varphi\}$, but not from Φ
- Typically one computes a fixpoint: propagation

Resolution

Given clauses $\varphi^{\prime}=\varphi \cup\{p\}$ and $\psi^{\prime}=\psi \cup\{\neg p\}$, we allow the inference

$$
\frac{\varphi \cup\{p\} \quad \psi \cup\{\neg p\}}{\varphi \vee \psi}
$$

That is, $\varphi \vee \psi$ can be added as a new clause

- Since p and $\neg p$ cannot be simultaneously true, we have to make true at least one of φ and ψ
- Resolution is complete: Φ is unsatisfiable iff $\left\} \in R^{+}(\Phi)\right.$

k-Resolution and Unit Propagation

- A full (complete) constraint propagation is exponentially costly: it solves the original decision problem
- We need more restricted reasoning that will still give us some information/simplification
- k-resolution: in

$$
\frac{\varphi \cup\{p\} \quad \psi \cup\{\neg p\}}{\varphi \vee \psi}
$$

require that either $|\varphi \cup\{p\}| \leq k$ or $|\psi \cup\{\neg p\}| \leq k$

- Unit propagation $==1$-resolution is the most wide-spread techniques in implemented SAT solvers

Unit Propagation

Fixpoint application of

$$
\frac{\varphi \cup\{\bar{l}\} \quad\{l\}}{\varphi}
$$

Procedure unit-propagation

Logic
Constraint
satisfaction
Constraint
propagation
Backtracking
search
Planning via
SAT
Behind the
curtains
forall $\psi \in \Phi, \psi=\{l\}$ do
forall $\phi \in \Phi, \bar{l} \in \phi$ do

$$
\Phi^{\prime}:=\Phi^{\prime} \cup\{\phi \backslash\{\bar{l}\}\}
$$

if $\Phi^{\prime}=\Phi$ then stop $\Phi:=\Phi^{\prime}$

Unit Propagation

Procedure unit-propagation

while TRUE do

$$
\Phi^{\prime}:=\Phi
$$

forall $\psi \in \Phi, \psi=\{l\}$ do
forall $\phi \in \Phi, \bar{l} \in \phi$ do

$$
\Phi^{\prime}:=\Phi^{\prime} \cup\{\phi \backslash\{\bar{l}\}\}
$$

$$
\Phi^{\prime}:=\Phi^{\prime} \backslash \phi
$$

forall $\varphi \in \Phi^{\prime}, l \in \varphi$ do

$$
\Phi^{\prime}:=\Phi^{\prime} \backslash \varphi
$$

if $\Phi^{\prime}=\Phi$ then stop
$\Phi:=\Phi^{\prime}$

Unit Propagation

Procedure unit-propagation

Automated
(AI) Planning
while TRUE do

$$
\Phi^{\prime}:=\Phi
$$

forall $\psi \in \Phi, \psi=\{l\}$ do
forall $\phi \in \Phi, \bar{l} \in \phi$ do

$$
\begin{aligned}
& \Phi^{\prime}:=\Phi^{\prime} \cup\{\phi \backslash\{\bar{l}\}\} \\
& \Phi^{\prime}:=\Phi^{\prime} \backslash \phi
\end{aligned}
$$

forall $\varphi \in \Phi^{\prime}, l \in \varphi$ do

$$
\Phi^{\prime}:=\Phi^{\prime} \backslash \varphi
$$

if $\Phi^{\prime}=\Phi$ then stop
$\Phi:=\Phi^{\prime}$

Examples

$\triangleright\{\{\neg A, \neg B, \neg C, D\},\{\neg A, B\},\{A\},\{\neg A, \neg B, \neg C, \neg D\},\{\{\neg A, \neg B, C\}\}\}$
$\triangleright\{\{\neg A, B\},\{\neg B, C\},\{\neg C, A\},\{A, C\},\{\neg B, \neg C\}\}$

Backtracking search

Backtracking over variable values

 if Solve \(\left(\Phi^{\prime}, \omega^{\prime} \cup\{v:=c\}\right)\) then return TRUE
 return FALSE

Davis-Putnam-Logeman-Loveland Algorithm (DPLL)

Procedure DPLL

bool DPLL (Φ, partial assignment ω)
$\left(\Phi^{\prime}, \omega^{\prime}\right):=$ unit-propagation (Φ, ω)
if Φ^{\prime} contains empty clause then return FALSE
if no such variable exists then return TRUE
if $\operatorname{DPLL}\left(\Phi^{\prime}, \omega^{\prime} \cup\{v:=1\}\right)$ then return TRUE if $\operatorname{DPLL}\left(\Phi^{\prime}, \omega^{\prime} \cup\{v:=0\}\right)$ then return TRUE

Constraint
propagation
Backtracking
search
Planning via
SAT
return FALSE

Davis-Putnam-Logeman-Loveland Algorithm (DPLL)

Procedure DPLL

Automated (AI) Planning

Logic
Constraint
satisfaction
Constraint
propagation
Backtracking
search
Planning via
SAT
Behind the curtains

Examples

$\triangleright\{\{A, B, C\},\{\neg A, \neg B\},\{\neg A, \neg C\},\{\{\neg B, \neg C\}\}\}$
$\triangleright\{\{\neg A, B\},\{\neg B, C\},\{\neg C, A\},\{A, C\},\{\neg B, \neg C\}\}$

DPLL these days (DPLL ++)

- currently very large SAT problems can be solved
- criterion for variable selection is critical
- additional key components
- randomization (in selection) + restarts (???)
- clause learning (...)
- engineering issues (e.g., caching)
- from 50 variables, 200 constraints in early 90 's to 1000000 variables and 5000000 constraints these days (from 10^{15} to 10^{300000})

Progress of SAT solvers

Instance	Posit' 94	Grasp' 96	Sato' 98	Chaff' 01
ssa2670-136	$40,66 s$	$1,2 \mathrm{~s}$	$0,95 s$	$0,02 s$
bf1355-638	$1805,21 \mathrm{~s}$	$0,11 \mathrm{~s}$	$0,04 \mathrm{~s}$	$0,01 \mathrm{~s}$
pret150_25	$>3000 \mathrm{~s}$	$0,21 \mathrm{~s}$	$0,09 \mathrm{~s}$	$0,01 \mathrm{~s}$
dubois100	$>3000 \mathrm{~s}$	$11,85 \mathrm{~s}$	$0,08 \mathrm{~s}$	$0,01 \mathrm{~s}$
aim200-2_0-no-1	$>3000 \mathrm{~s}$	$0,01 \mathrm{~s}$	0 s	0 s
2dlx_.._bug005	$>3000 \mathrm{~s}$	$>3000 \mathrm{~s}$	$>3000 \mathrm{~s}$	$2,9 \mathrm{~s}$
c6288	$>3000 \mathrm{~s}$	$>3000 \mathrm{~s}$	$>3000 \mathrm{~s}$	$>3000 \mathrm{~s}$

Logic
Constraint
satisfaction
Constraint
propagation
Backtracking search

Planning via
SAT
Behind the curtains
(Marques Silva, 02)

Phase Transition and Computational Hardness

(Selman, Levesque, and David Mitchell, 92)

Pathology of backtracking search

Backtrack-style search on hard problems characterized by:

- Erratic behavior of time complexity distribution
- Distributions have "heavy tails"
- infinite mean ? infinite variance ?

Standard Distribution
(finite mean \& variance)

HEAVY TAILED DISTRIBUTION
(infinite mean \& variance)

Behind the
curtains

Idea: Randomized Restarts

Randomize the backtrack strategy

- add noise to the heuristic branching (variable choice) function
- cutoff and restart search after a fixed number of backtracks
satisfaction
Constraint
propagation
Backtracking
search
Planning via
SAT
Behind the
curtains
- critical parameter: cutoff threshold

Works?

- provably eliminates heavy tails
- practice: rapid restarts with low cutoff can dramatically improve performance (Gomes and Selman 1998, 1999)
- exploited in most (all?) current SAT solvers

Idea: Randomized Restarts

Randomize the backtrack strategy

- add noise to the heuristic branching (variable choice) function
- cutoff and restart search after a fixed number of backtracks

HEAVY TAILED DISTRIBUTION
Logic
Constraint
satisfaction
Constraint
propagation
Backtracking
search
Planning via

- critical parameter: cutoff threshold

Works?

- provably eliminates heavy tails
- practice: rapid restarts with low cutoff can dramatically improve performance (Gomes and Selman 1998, 1999)
- exploited in most (all?) current SAT solvers

Planning via SAT: Motivation and idea

Motivation observation

- solvers are developed for many NP-complete classes of problems
- progress is not uniform (reasons?)
- progress in solving SAT is probably most prominent

Planning via SAT: Motivation and idea

Motivation observation

- solvers are developed for many NP-complete classes of problems
- progress is not uniform (reasons?)
- progress in solving SAT is probably most prominent

Idea (Kautz \& Selman, 91-96)

- Maybe we should teach SAT solvers to solve planning?
- Problem: Strips planning is PSPACE-complete
- Solution: Bounded-Strips planning is in NP

Planning as Satisfiability

Transform Planning into a series of SATs
Procedure planning-as-SAT $(\Pi=(P, A, I, G))$
$b=0$
while TRUE do
$\Phi(\Pi, b):=$ a CNF that is satisfiable iff there exists a plan with b steps
if $\operatorname{DPLL}(\Phi(\Pi, b), \emptyset)$ then
output Plan encoded by a satisfying assignment $b:=b+1$

Questions

- What notions of "steps" can we use?
- What do we know about the found plan?
- What should be the connection between the set of plans for Π and the set of satisfying assignments to $\Phi(\Pi, b)$?
- What can we say about the completeness of the algorithm?

Strips encodings

How to encode b-step Strips plan existence as a CNF?

Many possible answers. Most (in use to date) share:

- Time steps $0 \leq t \leq b$
- Fact variables p_{t} : is p TRUE or FALSE at t ?
- Action variables a_{t} : is a applied at t or not?

Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the curtains

- The size of the encoding grows linearly in b
- but is it a linear grows in the size of the input?

The Linear Encoding, I

- Problem $\Pi=(P, A, I, G)$, time steps $0 \leq t \leq b$
- Decision variables

$$
\begin{aligned}
& p_{t} \text { - for all } p \in P, 0 \leq t \leq b \\
& a_{t} \text { - for all } a \in A, 0 \leq t \leq b-1
\end{aligned}
$$

- Initial State Clauses: "specify initial state" for all $p \in P:\left\{p_{0}\right\}$ if $p \in I$, and $\left\{\neg p_{0}\right\}$, otherwise
- Goal Clauses: "specify goal values" for all $p \in G:\left\{p_{b}\right\}$

The Linear Encoding, II

Sequential planning

- Action Precondition Clauses: "action implies its preconditions"
for all $a \in A, p \in \operatorname{pre}(a), 0 \leq t \leq b-1:\left\{\neg a_{t}, p_{t}\right\}$
- Action Effect Clauses:
"action implies its add/delete effects"

Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the curtains
for all $a \in A, p \in \operatorname{add}(a), 0 \leq t \leq b-1:\left\{\neg a_{t}, p_{t+1}\right\}$ for all $a \in A, p \in \operatorname{del}(a), 0 \leq t \leq b-1:\left\{\neg a_{t}, \neg p_{t+1}\right\}$

The Linear Encoding, III

Sequential planning

- Positive Frame Axioms:
"if a is applied and $p \notin \operatorname{del}(a)$ was true, then p is still true"

$$
\text { for all } a \in A, p \notin \operatorname{del}(a), 0 \leq t \leq b-1:\left\{\neg a, \neg p_{t}, p_{t+1}\right\}
$$

- Negative Frame Axioms:
"if a is applied and $p \notin \operatorname{add}(a)$ was false, then p is still false"

$$
\text { for all } a \in A, p \notin \operatorname{add}(a), 0 \leq t \leq b-1:\left\{\neg a, p_{t}, \neg p_{t+1}\right\}
$$

- Linearity (Exclusion) Constraints:
"apply exactly one action at each time step"
for all $a, a^{\prime} \in A, 0 \leq t \leq b-1:\left\{\neg a, \neg a_{t}^{\prime}\right\}$
for all $0 \leq t \leq b-1$: A_{t} (do we really need them?)

Example

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information

- $P=\{A, B, C, v i s B, v i s C\}, I=\{A\}, G=\{v i s B, v i s C\}$

Behind the curtains

- Actions

$$
\begin{aligned}
& d r A B=\{\{A\},\{B, v i s B\},\{A\}\} \\
& d r A C=\{\{A\},\{C, v i s C\},\{A\}\} \\
& d r B C=\{\{B\},\{C, v i s C\},\{B\}\}
\end{aligned}
$$

Blackboard: Linear encoding for $b=1$

A Basic Parallel Encoding, I

Parallel planning

- Problem $\Pi=(P, A, I, G)$, noops-extended actions A^{N}, time steps $0 \leq t \leq b$
- Decision variables

$$
\begin{aligned}
& p_{t}-\text { for all } p \in P, 0 \leq t \leq b \\
& a_{t}-\text { for all } a \in A^{N}, 0 \leq t \leq b-1
\end{aligned}
$$

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the
curtains

- Initial State Clauses: "specify initial state" for all $p \in P:\left\{p_{0}\right\}$ if $p \in I$, and $\left\{\neg p_{0}\right\}$, otherwise
- Goal Clauses: "specify goal values"

$$
\text { for all } p \in G:\left\{p_{b}\right\}
$$

A Basic Parallel Encoding, II

Parallel planning

- Action Precondition Clauses:
"action implies its preconditions"
for all $a \in A^{N}, p \in \operatorname{pre}(a), 0 \leq t \leq b-1:\left\{\neg a_{t}, p_{t}\right\}$
- Action Interference Clauses:
"do not apply interfering actions in the same time step" for all $a, a^{\prime} \in A^{N}, a \not \backslash a^{\prime}, 0 \leq t \leq b-1:\left\{\neg a_{t}, \neg a_{t}^{\prime}\right\}$
- Fact Achievement Clauses:
"fact implies disjunction of its achievers"

$$
\text { for all } p \in P, 1 \leq t \leq b:\left\{\neg p_{t}\right\} \cup\left\{a_{t-1} \mid p \in \operatorname{add}(a)\right\}
$$

A Basic Parallel Encoding, II

Parallel planning

- Action Precondition Clauses: "action implies its preconditions" for all $a \in A^{N}, p \in \operatorname{pre}(a), 0 \leq t \leq b-1:\left\{\neg a_{t}, p_{t}\right\}$
- Action Interference Clauses:
"do not apply interfering actions in the same time step" for all $a, a^{\prime} \in A^{N}, a \not \backslash a^{\prime}, 0 \leq t \leq b-1:\left\{\neg a_{t}, \neg a_{t}^{\prime}\right\}$
- Fact Achievement Clauses:
"fact implies disjunction of its achievers"

$$
\text { for all } p \in P, 1 \leq t \leq b:\left\{\neg p_{t}\right\} \cup\left\{a_{t-1} \mid p \in \operatorname{add}(a)\right\}
$$

Do we need anything else?

Linear vs. Parallel Encodings

- Optimal parallel plans are often shorter than optimal sequential plans encodings

So in parallel planning-as-SAT we (typically) need fewer iterations and (always) consider smaller formulas!

Example

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information

- $P=\{A, B, C, v i s B, v i s C\}, I=\{A\}, G=\{v i s B, v i s C\}$

Behind the curtains

- Actions

$$
\begin{aligned}
& d r A B=\{\{A\},\{B, v i s B\},\{A\}\} \\
& d r A C=\{\{A\},\{C, v i s C\},\{A\}\} \\
& d r B C=\{\{B\},\{C, v i s C\},\{B\}\}
\end{aligned}
$$

Blackboard: Basic parallel encoding for $b=1$

2-Planning Graphs

2-planning graphs extend 1-planning graphs by keeping track of mutex pairs; pairs that cannot be simultaneously achieved in i steps:

- action pair mutex at i if actions interfere or their preconditions mutex at i
- atom pair mutex at i if all supporting action pairs are mutex at $i-1$
- a set of atoms C is mutex at i if it contains a mutex pair at i

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the
curtains

Resulting graph:

- $P_{0}=\{p \in I\}$
- $A_{i}=\left\{a \in A^{N} \mid \operatorname{Prec}(a) \subseteq P_{i}\right.$ and not mutex at $\left.i\right\}$
- $P_{i+1}=\left\{p \in \operatorname{Add}(a) \mid a \in A_{i}\right\}$, with sets of action/atom mutex pairs defined as above.

The Planning Graph Based Encoding, I

- Problem $\Pi=(P, A, I, G)$, noops-extended actions A^{N}, time steps $0 \leq t \leq b$
- Fact layers $P_{(t)}$, action layers $A_{(t)}$, fact mutexes (layers) $E P_{(t)}$, action mutexes (layers) $E A_{(t)}$

Automated (AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the
curtains

- Goal Clauses: "specify goal values"

$$
\text { for all } p \in G:\left\{p_{b}\right\}
$$

- Action Precondition Clauses:
"action implies its preconditions"
for all $a \in A^{N}, p \in \operatorname{pre}(a), 1 \leq t \leq b-1:\left\{\neg a_{t}, p_{t}\right\}$

The Planning Graph Based Encoding, II

- Action Mutex Clauses: "do not apply mutex actions in the same time step"

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the curtains

- Fact Mutex Clauses:
"do not make two mutex facts TRUE" for all $1 \leq t \leq b, p, p^{\prime} \in P_{(t)},\left\{p, p^{\prime}\right\} \in E P_{(t)}:\left\{\neg p_{t}, \neg p_{t}^{\prime}\right\}$

Basic Parallel vs. PG-Based Encoding, I

- PG-Based Encoding == Basic Parallel Encoding pruned and enhanced by information contained in 2-Planning Graph

Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information
Behind the curtains

- Enhanced: more non-trivial (temporal) exclusion clauses $\left\{\neg a_{t}, \neg a_{t}^{\prime}\right\}$ and $\left\{\neg p_{t}, \neg p_{t}^{\prime}\right\}$

Example

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Framework
Encodings
Mutex
information

- $P=\{A, B, C, v i s B, v i s C\}, I=\{A\}, G=\{v i s B, v i s C\}$
- Actions

$$
\begin{aligned}
& d r A B=\{\{A\},\{B, v i s B\},\{A\}\} \\
& d r A C=\{\{A\},\{C, v i s C\},\{A\}\} \\
& d r B C=\{\{B\},\{C, v i s C\},\{B\}\}
\end{aligned}
$$

Blackboard: PG-based encoding for $b=1$

Basic Parallel vs. PG-Based Encoding, I (Recall)

- PG-Based Encoding == Basic Parallel Encoding pruned and enhanced by information contained in 2-Planning Graph
- Pruned: less decision variables p_{t} and a_{t}, less redundant exclusion clauses
- Example: We don?t need vars for the initial facts since pre $(a) \subseteq I$ holds anyway for all $a \in A_{(0)}$
- Enhanced: more non-trivial (temporal) exclusion clauses $\left\{\neg a_{t}, \neg a_{t}^{\prime}\right\}$ and $\left\{\neg p_{t}, \neg p_{t}^{\prime}\right\}$

Basic Parallel vs. PG-Based Encoding, II

- All new clauses (the pruned $\left\{\neg p_{t}\right\}$ and $\left\{\neg a_{t}\right\}$, and all new exclusion clauses) follow from the Basic Parallel CNF Φ
- By constructing 2-planning graph and basic our SAT encoding on it ...
- ... we do some of the reasoning devoted to the SAT solver with a specialized algorithm instead
- But why this part of work and not all the work?
- Potentially exponential savings

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via SAT
Framework
Encodings
Mutex
information
Behind the curtains

- suppose (since) the SAT solver uses, in constraint propagation, 1-Resolution only
- for exclusion relations we need 2-Resolution! [Brafman, JAIR-2001]
- What sort of resolution do we need to capture k-planning graphs in the constraint propagation procedure?

Basic Parallel vs. PG-Based Encoding, II

- All new clauses (the pruned $\left\{\neg p_{t}\right\}$ and $\left\{\neg a_{t}\right\}$, and all new

Automated (AI) Planning exclusion clauses) follow from the Basic Parallel CNF Φ

- By constructing 2-planning graph and basic our SAT encoding on it ...
- ... we do some of the reasoning devoted to the SAT solver with a specialized algorithm instead
- But why this part of work and not all the work?
- Potentially exponential savings
- suppose (since) the SAT solver uses, in constraint propagation, 1-Resolution only
- for exclusion relations we need 2-Resolution! [Brafman, JAIR-2001]
- What sort of resolution do we need to capture k-planning graphs in the constraint propagation procedure?

In Front of the Curtains

- What are $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ in our case?
- What is X ?

A Very Simple Encoding

Use a 1-planning graph

- Problem $\Pi=(P, A, I, G)$, noops-extended actions A^{N}, time steps $0 \leq t \leq b$, action layers $A_{(t)}$
- Decision variables: a_{t} - for all $0 \leq t \leq b-1$ and $a \in A_{(t)}$

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Behind the
curtains

- Action Precondition Clauses:
"action implies disjunction of its precondition achievers"

$$
\text { for all } 1 \leq t \leq b-1, a \in A_{(t)}, p \in \operatorname{pre}(a) \text { : }
$$

$$
\left\{\neg a_{t}\right\} \cup\left\{a_{t-1}^{\prime} \mid a^{\prime} \in A_{(t-1)}, p \in \operatorname{add}\left(a^{\prime}\right)\right\}
$$

- Action Interference Clauses: as in basic parallel encoding

Example

Automated
(AI) Planning

Logic
Constraint
satisfaction
Planning via
SAT
Behind the
curtains

- $P=\{A, B, C\}, I=\{A\}, G=\{C\}$
- Actions

$$
\begin{aligned}
& d r A B=\{\{A\},\{B\},\{A\}\} \\
& d r B C=\{\{B\},\{C\},\{B\}\}
\end{aligned}
$$

Blackboard: "Very simple" encoding for $b=2$

Reminder: DPLL

Procedure DPLL

bool DPLL (Φ, partial assignment ω)
$\left(\Phi^{\prime}, \omega^{\prime}\right):=$ unit-propagation (Φ, ω)
if Φ^{\prime} contains empty clause then return FALSE select a variable v not assigned by ω^{\prime}

Behind the Curtains, Unit Propagation, I

propagate $a_{t}=$ TRUE
set $a \mathrm{IN}$ at t
if $t>0$ then forall $p \in \operatorname{pre}(a)$
if all $a^{\prime} \in A_{(t-1)}, p \in \operatorname{add}\left(a^{\prime}\right)$ are OUT at $t-1$ then fail
if all $a^{\prime} \in A_{(t-1)}, p \in \operatorname{add}\left(a^{\prime}\right)$ are OUT at $t-1$, except $a^{\prime \prime}$ then propagate $a^{\prime \prime} \mathrm{IN}$ at $t-1$
forall $a^{\prime} \in A_{(t)}$ that interfere with a propagate a^{\prime} OUT at t

Behind the Curtains, Unit Propagation, II

propagate $a_{t}=$ FALSE
set a OUT at t
if $t=b-1$ then forall $g \in \operatorname{add}(a) \cap G$
if all $a^{\prime} \in A_{(t)}, g \in \operatorname{add}\left(a^{\prime}\right)$ are OUT at t then fail
if all $a^{\prime} \in A_{(t)}, g \in \operatorname{add}\left(a^{\prime}\right)$ are OUT at t, except $a^{\prime \prime}$ then propagate $a^{\prime \prime} \mathrm{IN}$ at $t-1$
if $t<b-1$ then
???

Behind the Curtains, DPLL

- DPLL makes commitments of the form
"I will/won't apply action a at time t "
- The search state is a sequence of such commitments
d0 "I will move the truck from x to y at time 17 "
d1 UP: "truck at x at time 17", "truck at y at time 18 "
d1 "I will sell the truck at time 7 "
d2 UP: "no truck at time $8, \ldots, 25$ "
d2 FALSE
d1 "I will not sell the truck at time 7"
- The order of commitments in the sequence is independent of the time steps t

Behind the Curtains, DPLL

- DPLL makes commitments of the form
"I will/won't apply action a at time t "
- The search state is a sequence of such commitments
d0 "I will move the truck from x to y at time 17 "
d1 UP: "truck at x at time 17 ", "truck at y at time 18 "
d1 "I will sell the truck at time 7 "
d2 FALSE
d1 "I will not sell the truck at time 7"
- The order of commitments in the sequence is independent of the time steps t
- ... this is why we also call this undirected search

Branching in Planning: A Big Picture

- Forward: state-space; extend plan head, totally (possibly weakly) ordered
- Backward: regression-space; extend plan tail; totally (possibly weakly) ordered
- Temporal: for action a and time i, create splits $a[i]=$ TRUE $/ a[i]=$ FALSE
- POCL: Partial Order Causal Link Planning
- next ...

