
Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Automated (AI) Planning
Planning via Constraint Satisfaction

Carmel Domshlak

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Logic

Essential components

formal language for expressing statements

model theory/semantics for making sense of them

proof theory/axiomatics
for deriving new statements from old

Originally developed for studying structure of
(mathematical/philosophical) arguments,
and identifying valid arguments.

Currently the basis for

programming languages like Prolog
representation languages in AI (e.g., planning languages)
verification
automatic theorem proving

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Logical representations of state sets

n state variables with m values induce a state space
consisting of mn states (2n states for n Boolean state
variables)

a language for talking about sets of states (valuations of
state variables): propositional logic

logical connectives ≈ set-theoretical operations

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Syntax of propositional logic

Let P be a set of atomic propositions (∼ state variables).

1 For all p ∈ P , p is a propositional formula.

2 If φ is a propositional formula, then so is ¬φ.

3 If φ and φ′ are propositional formulae, then so is φ ∨ φ′.
4 If φ and φ′ are propositional formulae, then so is φ ∧ φ′.
5 The symbols ⊥ and > are propositional formulae.

The implication φ→ φ′ is an abbreviation for ¬φ ∨ φ′.
The equivalence φ↔ φ′ is an abbreviation for
(φ→ φ′) ∧ (φ′ → φ).

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Semantics of propositional logic

A valuation of P is a function v : P → {0, 1}. Define the
notation v |= φ for valuations v and formulae φ by

1 v |= p if and only if v(p) = 1, for p ∈ P .

2 v |= ¬φ if and only if v 6|= φ

3 v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

4 v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

5 v |= >
6 v 6|= ⊥

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Propositional logic terminology

A propositional formula φ is satisfiable if there is at least
one valuation v so that v |= φ. Otherwise it is
unsatisfiable.

A propositional formula φ is valid or a tautology if v |= φ
for all valuations v. We write this as |= φ.

A propositional formula φ is a logical consequence of a
propositional formula φ′, written φ′ |= φ if v |= φ for all
valuations v with v |= φ′.

Two propositional formulae φ and φ′ are logically
equivalent, written φ ≡ φ′, if φ |= φ′ and φ′ |= φ.

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Propositional logic terminology (ctd.)

A propositional formula that is a proposition p or
a negated proposition ¬p for some p ∈ P is a literal.

A formula that is a disjunction of literals is a clause.
This includes unit clauses l consisting of a single literal,
and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Formulae vs. sets

sets formulae

those 2n

2 states in which p is true p ∈ P
E ∪ F E ∨ F
E ∩ F E ∧ F
E \ F (set difference) E ∧ ¬F
E (complement) ¬E
the empty set ∅ ⊥
the universal set >

question about sets question about formulae

E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Propositional Logic: Inference

Whether ϕ |= ψ is true can be tested by enumerating all
different interpretations involving the propositional
symbols in ϕ and ψ

Bad news: exponential time as there 2n assignments (0/1)
to n propositional symbols

This time cannot be improved in worst case (unless
P=NP), but approaches that run much faster in practice
exist

General idea is to combine case analysis and inference

Exhaustive procedure above based exclusively on case
analysis, even worse, deals with full assignments

More about this in a few slides ...

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Propositional Logic: Inference

Whether ϕ |= ψ is true can be tested by enumerating all
different interpretations involving the propositional
symbols in ϕ and ψ

Bad news: exponential time as there 2n assignments (0/1)
to n propositional symbols

This time cannot be improved in worst case (unless
P=NP), but approaches that run much faster in practice
exist

General idea is to combine case analysis and inference

Exhaustive procedure above based exclusively on case
analysis, even worse, deals with full assignments

More about this in a few slides ...

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Conjunctive Normal Form (CNF) and SAT

Let P be a set of propositional symbols. A propositional
formula Φ is called a CNF if it has the form

Φ = ϕ1 ∧ · · · ∧ ϕm

where each ϕi has the form φi = (l1 ∨ · · · ∨ lk) and each lj is a
literal over P

in other words, a conjunction of disjunctions of literals

why called “normal form”?

CNF formula == a set of constraints

in CNFs, each constraint ϕi is called a clause, each clause
being a set of literals

SAT is the decision problem of determining whether a given
CNF formula is satisfiable

Automated
(AI) Planning

Logic

Propositional
logic

Inference in PL

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Conjunctive Normal Form (CNF) and SAT

Let P be a set of propositional symbols. A propositional
formula Φ is called a CNF if it has the form

Φ = ϕ1 ∧ · · · ∧ ϕm

where each ϕi has the form φi = (l1 ∨ · · · ∨ lk) and each lj is a
literal over P

in other words, a conjunction of disjunctions of literals

why called “normal form”?

CNF formula == a set of constraints

in CNFs, each constraint ϕi is called a clause, each clause
being a set of literals

SAT is the decision problem of determining whether a given
CNF formula is satisfiable

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Constraint Propagation

Given a set Φ of constraints over variables (e.g., clauses
over propositional variables), infer new constraints

Inference: some reasoning (= proof theory) R that is
sound

if R infers ϕ from Φ, then Φ |= ϕ

Φ∪ {ϕ} is logically equivalent to Φ ... but Φ∪ {ϕ} can be
“more informative”

e.g., there may be constraints ψ that R can infer in one
step from Φ ∪ {ϕ}, but not from Φ

Typically one computes a fixpoint: propagation

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Resolution

Given clauses ϕ′ = ϕ ∪ {p} and ψ′ = ψ ∪ {¬p}, we allow the
inference

ϕ ∪ {p} ψ ∪ {¬p}
ϕ ∨ ψ

That is, ϕ ∨ ψ can be added as a new clause

Since p and ¬p cannot be simultaneously true, we have to
make true at least one of ϕ and ψ

Resolution is complete: Φ is unsatisfiable iff {} ∈ R+(Φ)

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

k-Resolution and Unit Propagation

A full (complete) constraint propagation is exponentially
costly: it solves the original decision problem

We need more restricted reasoning that will still give us
some information/simplification

k-resolution: in

ϕ ∪ {p} ψ ∪ {¬p}
ϕ ∨ ψ

require that either |ϕ ∪ {p}| ≤ k or |ψ ∪ {¬p}| ≤ k
Unit propagation == 1-resolution is the most wide-spread
techniques in implemented SAT solvers

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Unit Propagation

Fixpoint application of

ϕ ∪ {l} {l}
ϕ

Procedure unit-propagation

while TRUE do
Φ′ := Φ
forall ψ ∈ Φ, ψ = {l} do

forall φ ∈ Φ, l ∈ φ do
Φ′ := Φ′ ∪ {φ \ {l}}

if Φ′ = Φ then stop
Φ := Φ′

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Unit Propagation

Procedure unit-propagation

while TRUE do
Φ′ := Φ
forall ψ ∈ Φ, ψ = {l} do

forall φ ∈ Φ, l ∈ φ do
Φ′ := Φ′ ∪ {φ \ {l}}
Φ′ := Φ′ \ φ

forall ϕ ∈ Φ′, l ∈ ϕ do
Φ′ := Φ′ \ ϕ

if Φ′ = Φ then stop
Φ := Φ′

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Unit Propagation

Procedure unit-propagation

while TRUE do
Φ′ := Φ
forall ψ ∈ Φ, ψ = {l} do

forall φ ∈ Φ, l ∈ φ do
Φ′ := Φ′ ∪ {φ \ {l}}
Φ′ := Φ′ \ φ

forall ϕ ∈ Φ′, l ∈ ϕ do
Φ′ := Φ′ \ ϕ

if Φ′ = Φ then stop
Φ := Φ′

Examples

. {{¬A,¬B,¬C, D}, {¬A, B}, {A}, {¬A,¬B,¬C,¬D}, {{¬A,¬B, C}}}

. {{¬A, B}, {¬B, C}, {¬C, A}, {A, C}, {¬B,¬C}}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Backtracking search

Backtracking over variable values

Procedure backtracking-search

bool Solve (Φ, partial assignment ω)
(Φ′, ω′) := constraint-propagation(Φ, ω)
if Φ′ is self-contradictory then return FALSE
select a variable v not assigned by ω′

if no such variable exists then return TRUE
forall c ∈ dom(v) do

if Solve(Φ′, ω′ ∪ {v := c}) then return TRUE
return FALSE

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Davis-Putnam-Logeman-Loveland Algorithm
(DPLL)

Procedure DPLL

bool DPLL (Φ, partial assignment ω)
(Φ′, ω′) := unit-propagation(Φ, ω)
if Φ′ contains empty clause then return FALSE
select a variable v not assigned by ω′

if no such variable exists then return TRUE
if DPLL(Φ′, ω′ ∪ {v := 1}) then return TRUE
if DPLL(Φ′, ω′ ∪ {v := 0}) then return TRUE
return FALSE

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Davis-Putnam-Logeman-Loveland Algorithm
(DPLL)

Procedure DPLL

bool DPLL (Φ, partial assignment ω)
(Φ′, ω′) := unit-propagation(Φ, ω)
if Φ′ contains empty clause then return FALSE
select a variable v not assigned by ω′

if no such variable exists then return TRUE
if DPLL(Φ′, ω′ ∪ {v := 1}) then return TRUE
if DPLL(Φ′, ω′ ∪ {v := 0}) then return TRUE
return FALSE

Examples

. {{A,B,C}, {¬A,¬B}, {¬A,¬C}, {{¬B,¬C}}}

. {{¬A,B}, {¬B,C}, {¬C,A}, {A,C}, {¬B,¬C}}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

DPLL these days (DPLL++)

currently very large SAT problems can be solved

criterion for variable selection is critical

additional key components

randomization (in selection) + restarts (???)
clause learning (...)
engineering issues (e.g., caching)

from 50 variables, 200 constraints in early 90’s to
1000000 variables and 5000000 constraints these days
(from 1015 to 10300000)

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Progress of SAT solvers

(Marques Silva, 02)

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Phase Transition and Computational Hardness

(Selman, Levesque, and David Mitchell, 92)

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Pathology of backtracking search

Backtrack-style search on hard problems characterized by:

Erratic behavior of time complexity distribution

Distributions have “heavy tails”
infinite mean ? infinite variance ?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Idea: Randomized Restarts

Randomize the backtrack strategy

add noise to the heuristic branching (variable choice)
function
cutoff and restart search after a fixed number of
backtracks

critical parameter: cutoff threshold

Works?

provably eliminates heavy tails

practice: rapid restarts with low cutoff can dramatically
improve performance (Gomes and Selman 1998, 1999)

exploited in most (all?) current SAT solvers

Automated
(AI) Planning

Logic

Constraint
satisfaction

Constraint
propagation

Backtracking
search

Planning via
SAT

Behind the
curtains

Idea: Randomized Restarts

Randomize the backtrack strategy

add noise to the heuristic branching (variable choice)
function
cutoff and restart search after a fixed number of
backtracks

critical parameter: cutoff threshold

Works?

provably eliminates heavy tails

practice: rapid restarts with low cutoff can dramatically
improve performance (Gomes and Selman 1998, 1999)

exploited in most (all?) current SAT solvers

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Planning via SAT: Motivation and idea

Motivation observation

solvers are developed for many NP-complete classes of
problems

progress is not uniform (reasons?)

progress in solving SAT is probably most prominent

Idea (Kautz & Selman, 91-96)

Maybe we should teach SAT solvers to solve planning?

Problem: Strips planning is PSPACE-complete

Solution: Bounded-Strips planning is in NP

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Planning via SAT: Motivation and idea

Motivation observation

solvers are developed for many NP-complete classes of
problems

progress is not uniform (reasons?)

progress in solving SAT is probably most prominent

Idea (Kautz & Selman, 91-96)

Maybe we should teach SAT solvers to solve planning?

Problem: Strips planning is PSPACE-complete

Solution: Bounded-Strips planning is in NP

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Planning as Satisfiability

Transform Planning into a series of SATs

Procedure planning-as-SAT(Π = (P,A, I,G))

b = 0
while TRUE do

Φ(Π, b) := a CNF that is satisfiable iff
there exists a plan with b steps

if DPLL(Φ(Π, b), ∅) then
output Plan encoded by a satisfying assignment
b := b+ 1

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Questions

What notions of “steps” can we use?

What do we know about the found plan?

What should be the connection between the set of plans
for Π and the set of satisfying assignments to Φ(Π, b)?

What can we say about the completeness of the algorithm?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Strips encodings

How to encode b-step Strips plan existence as a CNF?

Many possible answers. Most (in use to date) share:

Time steps 0 ≤ t ≤ b
Fact variables pt: is p TRUE or FALSE at t?

Action variables at: is a applied at t or not?

The size of the encoding grows linearly in b

but is it a linear grows in the size of the input?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

The Linear Encoding, I
Sequential planning

Problem Π = (P,A, I,G), time steps 0 ≤ t ≤ b

Decision variables

pt — for all p ∈ P, 0 ≤ t ≤ b
at — for all a ∈ A, 0 ≤ t ≤ b− 1

Initial State Clauses: “specify initial state”

for all p ∈ P : {p0} if p ∈ I, and {¬p0}, otherwise

Goal Clauses: “specify goal values”

for all p ∈ G: {pb}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

The Linear Encoding, II
Sequential planning

Action Precondition Clauses:
“action implies its preconditions”

for all a ∈ A, p ∈ pre(a), 0 ≤ t ≤ b− 1: {¬at, pt}

Action Effect Clauses:
“action implies its add/delete effects”

for all a ∈ A, p ∈ add(a), 0 ≤ t ≤ b− 1: {¬at, pt+1}
for all a ∈ A, p ∈ del(a), 0 ≤ t ≤ b− 1: {¬at,¬pt+1}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

The Linear Encoding, III
Sequential planning

Positive Frame Axioms:
“if a is applied and p 6∈ del(a) was true, then p is still
true”

for all a ∈ A, p 6∈ del(a), 0 ≤ t ≤ b− 1: {¬a,¬pt, pt+1}

Negative Frame Axioms:
“if a is applied and p 6∈ add(a) was false, then p is still
false”

for all a ∈ A, p 6∈ add(a), 0 ≤ t ≤ b− 1: {¬a, pt,¬pt+1}

Linearity (Exclusion) Constraints:
“apply exactly one action at each time step”

for all a, a′ ∈ A, 0 ≤ t ≤ b− 1: {¬a,¬a′t}
for all 0 ≤ t ≤ b− 1: At (do we really need them?)

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Example

GFED@ABCB //GFED@ABCC

?>=<89:;A

[[7777777777

CC����������

P = {A,B,C, visB, visC}, I = {A}, G = {visB, visC}
Actions

drAB = {{A}, {B, visB}, {A}}
drAC = {{A}, {C, visC}, {A}}
drBC = {{B}, {C, visC}, {B}}

Blackboard: Linear encoding for b = 1

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

A Basic Parallel Encoding, I
Parallel planning

Problem Π = (P,A, I,G), noops-extended actions AN ,
time steps 0 ≤ t ≤ b

Decision variables

pt — for all p ∈ P, 0 ≤ t ≤ b
at — for all a ∈ AN , 0 ≤ t ≤ b− 1

Initial State Clauses: “specify initial state”

for all p ∈ P : {p0} if p ∈ I, and {¬p0}, otherwise

Goal Clauses: “specify goal values”

for all p ∈ G: {pb}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

A Basic Parallel Encoding, II
Parallel planning

Action Precondition Clauses:
“action implies its preconditions”

for all a ∈ AN , p ∈ pre(a), 0 ≤ t ≤ b− 1: {¬at, pt}

Action Interference Clauses:
“do not apply interfering actions in the same time step”

for all a, a′ ∈ AN , a 6 |a′, 0 ≤ t ≤ b− 1: {¬at,¬a′t}

Fact Achievement Clauses:
“fact implies disjunction of its achievers”

for all p ∈ P, 1 ≤ t ≤ b: {¬pt} ∪ {at−1|p ∈ add(a)}

Do we need anything else?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

A Basic Parallel Encoding, II
Parallel planning

Action Precondition Clauses:
“action implies its preconditions”

for all a ∈ AN , p ∈ pre(a), 0 ≤ t ≤ b− 1: {¬at, pt}

Action Interference Clauses:
“do not apply interfering actions in the same time step”

for all a, a′ ∈ AN , a 6 |a′, 0 ≤ t ≤ b− 1: {¬at,¬a′t}

Fact Achievement Clauses:
“fact implies disjunction of its achievers”

for all p ∈ P, 1 ≤ t ≤ b: {¬pt} ∪ {at−1|p ∈ add(a)}

Do we need anything else?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Linear vs. Parallel Encodings

Optimal parallel plans are often shorter than optimal
sequential plans

Linearity constraints typically dominate the linear
encodings

So in parallel planning-as-SAT we (typically) need fewer
iterations and (always) consider smaller formulas!

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Example

GFED@ABCB //GFED@ABCC

?>=<89:;A

[[7777777777

CC����������

P = {A,B,C, visB, visC}, I = {A}, G = {visB, visC}
Actions

drAB = {{A}, {B, visB}, {A}}
drAC = {{A}, {C, visC}, {A}}
drBC = {{B}, {C, visC}, {B}}

Blackboard: Basic parallel encoding for b = 1

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

2-Planning Graphs

2-planning graphs extend 1-planning graphs by keeping
track of mutex pairs; pairs that cannot be
simultaneously achieved in i steps:

action pair mutex at i if actions interfere or their
preconditions mutex at i
atom pair mutex at i if all supporting action pairs are
mutex at i− 1
a set of atoms C is mutex at i if it contains a mutex pair
at i

Resulting graph:

P0 = {p ∈ I}
Ai = {a ∈ AN | Prec(a) ⊆ Pi and not mutex at i}
Pi+1 = {p ∈ Add(a) | a ∈ Ai},
with sets of action/atom mutex pairs defined as above.

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

The Planning Graph Based Encoding, I

Problem Π = (P,A, I,G), noops-extended actions AN ,
time steps 0 ≤ t ≤ b
Fact layers P(t), action layers A(t), fact mutexes (layers)
EP(t), action mutexes (layers) EA(t)

Decision variables
pt — for all p ∈ P, 1 ≤ t ≤ b
at — for all a ∈ AN , 0 ≤ t ≤ b− 1

Goal Clauses: “specify goal values”
for all p ∈ G: {pb}

Action Precondition Clauses:
“action implies its preconditions”

for all a ∈ AN , p ∈ pre(a), 1 ≤ t ≤ b− 1: {¬at, pt}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

The Planning Graph Based Encoding, II

Action Mutex Clauses: “do not apply mutex actions in the
same time step”

for all 0 ≤ t ≤ b− 1, a, a′ ∈ A(t), {a, a′} ∈ EA(t):
{¬at,¬a′t}

Fact Achievement Clauses:
“fact implies disjunction of its achievers”

for all p ∈ P, 1 ≤ t ≤ b: {¬pt} ∪ {at−1|p ∈ add(a)}

Fact Mutex Clauses:
“do not make two mutex facts TRUE”

for all 1 ≤ t ≤ b, p, p′ ∈ P(t), {p, p′} ∈ EP(t): {¬pt,¬p′t}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Basic Parallel vs. PG-Based Encoding, I

PG-Based Encoding == Basic Parallel Encoding pruned
and enhanced by information contained in 2-Planning
Graph

Pruned: less decision variables pt and at, less redundant
exclusion clauses

Example: We don?t need vars for the initial facts since
pre(a) ⊆ I holds anyway for all a ∈ A(0)

Enhanced: more non-trivial (temporal) exclusion clauses
{¬at,¬a′t} and {¬pt,¬p′t}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Example

GFED@ABCB //GFED@ABCC

?>=<89:;A

[[7777777777

CC����������

P = {A,B,C, visB, visC}, I = {A}, G = {visB, visC}
Actions

drAB = {{A}, {B, visB}, {A}}
drAC = {{A}, {C, visC}, {A}}
drBC = {{B}, {C, visC}, {B}}

Blackboard: PG-based encoding for b = 1

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Basic Parallel vs. PG-Based Encoding, I (Recall)

PG-Based Encoding == Basic Parallel Encoding pruned
and enhanced by information contained in 2-Planning
Graph

Pruned: less decision variables pt and at, less redundant
exclusion clauses

Example: We don?t need vars for the initial facts since
pre(a) ⊆ I holds anyway for all a ∈ A(0)

Enhanced: more non-trivial (temporal) exclusion clauses
{¬at,¬a′t} and {¬pt,¬p′t}

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Basic Parallel vs. PG-Based Encoding, II

All new clauses (the pruned {¬pt} and {¬at}, and all new
exclusion clauses) follow from the Basic Parallel CNF Φ

By constructing 2-planning graph and basic our SAT
encoding on it ...

. . . we do some of the reasoning devoted to the SAT solver
with a specialized algorithm instead
But why this part of work and not all the work?

Potentially exponential savings
suppose (since) the SAT solver uses, in constraint
propagation, 1-Resolution only
for exclusion relations we need 2-Resolution!
[Brafman, JAIR-2001]

What sort of resolution do we need to capture k-planning
graphs in the constraint propagation procedure?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Framework

Encodings

Mutex
information

Behind the
curtains

Basic Parallel vs. PG-Based Encoding, II

All new clauses (the pruned {¬pt} and {¬at}, and all new
exclusion clauses) follow from the Basic Parallel CNF Φ

By constructing 2-planning graph and basic our SAT
encoding on it ...

. . . we do some of the reasoning devoted to the SAT solver
with a specialized algorithm instead
But why this part of work and not all the work?

Potentially exponential savings
suppose (since) the SAT solver uses, in constraint
propagation, 1-Resolution only
for exclusion relations we need 2-Resolution!
[Brafman, JAIR-2001]

What sort of resolution do we need to capture k-planning
graphs in the constraint propagation procedure?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

In Front of the Curtains

What are A, B, C, D, E in our case?

What is X?

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

A Very Simple Encoding

Use a 1-planning graph

Problem Π = (P,A, I,G), noops-extended actions AN ,
time steps 0 ≤ t ≤ b, action layers A(t)

Decision variables: at — for all 0 ≤ t ≤ b− 1 and a ∈ A(t)

Goal Clauses: “at least one achiever”

for all p ∈ G: {ab−1|a ∈ A(b−1), g ∈ add(a)}

Action Precondition Clauses:
“action implies disjunction of its precondition achievers”

for all 1 ≤ t ≤ b− 1, a ∈ A(t), p ∈ pre(a):
{¬at} ∪ {a′t−1|a′ ∈ A(t−1), p ∈ add(a′)}

Action Interference Clauses: as in basic parallel encoding

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Example

GFED@ABCB //GFED@ABCC

?>=<89:;A

[[7777777777

P = {A,B,C}, I = {A}, G = {C}
Actions

drAB = {{A}, {B}, {A}}
drBC = {{B}, {C}, {B}}

Blackboard: “Very simple” encoding for b = 2

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Reminder: DPLL

Procedure DPLL

bool DPLL (Φ, partial assignment ω)
(Φ′, ω′) := unit-propagation(Φ, ω)
if Φ′ contains empty clause then return FALSE
select a variable v not assigned by ω′

if no such variable exists then return TRUE
if DPLL(Φ′, ω′ ∪ {v := 1}) then return TRUE
if DPLL(Φ′, ω′ ∪ {v := 0}) then return TRUE
return FALSE

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Behind the Curtains, Unit Propagation, I

propagate at = TRUE

set a IN at t
if t > 0 then forall p ∈ pre(a)

if all a′ ∈ A(t−1), p ∈ add(a′) are OUT at t− 1 then fail
if all a′ ∈ A(t−1), p ∈ add(a′) are OUT at t− 1, except a′′

then propagate a′′ IN at t− 1
forall a′ ∈ A(t) that interfere with a

propagate a′ OUT at t

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Behind the Curtains, Unit Propagation, II

propagate at = FALSE

set a OUT at t
if t = b− 1 then forall g ∈ add(a) ∩G

if all a′ ∈ A(t), g ∈ add(a′) are OUT at t then fail
if all a′ ∈ A(t), g ∈ add(a′) are OUT at t, except a′′

then propagate a′′ IN at t− 1
if t < b− 1 then

???

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Behind the Curtains, DPLL

DPLL makes commitments of the form
“I will/won’t apply action a at time t”

The search state is a sequence of such commitments

d0 “I will move the truck from x to y at time 17”

d1 UP: “truck at x at time 17”, “truck at y at time 18”

d1 “I will sell the truck at time 7”

d2 UP: “no truck at time 8, . . . , 25”

d2 FALSE

d1 “I will not sell the truck at time 7”

The order of commitments in the sequence is independent
of the time steps t

... this is why we also call this undirected search

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Behind the Curtains, DPLL

DPLL makes commitments of the form
“I will/won’t apply action a at time t”

The search state is a sequence of such commitments

d0 “I will move the truck from x to y at time 17”

d1 UP: “truck at x at time 17”, “truck at y at time 18”

d1 “I will sell the truck at time 7”

d2 UP: “no truck at time 8, . . . , 25”

d2 FALSE

d1 “I will not sell the truck at time 7”

The order of commitments in the sequence is independent
of the time steps t

... this is why we also call this undirected search

Automated
(AI) Planning

Logic

Constraint
satisfaction

Planning via
SAT

Behind the
curtains

Branching in Planning: A Big Picture

Forward: state-space; extend plan head, totally (possibly
weakly) ordered

Backward: regression-space; extend plan tail; totally
(possibly weakly) ordered

Temporal: for action a and time i, create splits
a[i] = TRUE / a[i] = FALSE

POCL: Partial Order Causal Link Planning

next ...

	Logic
	Propositional logic
	Inference in PL

	Constraint satisfaction
	Constraint propagation
	Backtracking search

	Planning via SAT
	Framework
	Encodings
	Mutex information

	Behind the curtains

