Automated (AI) Planning Planning via Constraint Satisfaction

Carmel Domshlak

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Essential components

- formal language for expressing statements
- model theory/semantics for making sense of them
- proof theory/axiomatics for deriving new statements from old
- Originally developed for studying structure of (mathematical/philosophical) arguments, and identifying valid arguments.
- Currently the basis for
 - programming languages like Prolog
 - representation languages in AI (e.g., planning languages)
 - verification
 - automatic theorem proving

Automated (AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Logical representations of state sets

- n state variables with m values induce a state space consisting of mⁿ states (2ⁿ states for n Boolean state variables)
- a language for talking about *sets of states (valuations of state variables)*: propositional logic
- logical connectives \approx set-theoretical operations

Automated (AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Let P be a set of atomic propositions (\sim state variables).

- For all $p \in P$, p is a propositional formula.
- 2 If ϕ is a propositional formula, then so is $\neg \phi$.
- **③** If ϕ and ϕ' are propositional formulae, then so is $\phi \lor \phi'$.
- If ϕ and ϕ' are propositional formulae, then so is $\phi \wedge \phi'$.
- **(**) The symbols \perp and \top are propositional formulae.

The implication $\phi \to \phi'$ is an abbreviation for $\neg \phi \lor \phi'$. The equivalence $\phi \leftrightarrow \phi'$ is an abbreviation for $(\phi \to \phi') \land (\phi' \to \phi)$.

Automated (AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

A valuation of P is a function $v : P \to \{0, 1\}$. Define the notation $v \models \phi$ for valuations v and formulae ϕ by

•
$$v \models p$$
 if and only if $v(p) = 1$, for $p \in P$.

2
$$v \models \neg \phi$$
 if and only if $v \not\models \phi$

$$\ \, {\mathfrak o} \ \, v \models \phi \lor \phi' \ \, {\rm if \ and \ only \ if \ \, } v \models \phi \ \, {\rm or \ \, } v \models \phi'$$

•
$$v \models \phi \land \phi'$$
 if and only if $v \models \phi$ and $v \models \phi'$

$$v \models \top$$

 $\bullet v \not\models \bot$

Automated (AI) Planning

Logi

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Propositional logic terminology

- A propositional formula φ is satisfiable if there is at least one valuation v so that v ⊨ φ. Otherwise it is unsatisfiable.
- A propositional formula φ is valid or a tautology if v ⊨ φ for all valuations v. We write this as ⊨ φ.
- A propositional formula φ is a logical consequence of a propositional formula φ', written φ' ⊨ φ if v ⊨ φ for all valuations v with v ⊨ φ'.
- Two propositional formulae ϕ and ϕ' are logically equivalent, written $\phi \equiv \phi'$, if $\phi \models \phi'$ and $\phi' \models \phi$.

Automated (AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Propositional logic terminology (ctd.)

- A propositional formula that is a proposition p or a negated proposition ¬p for some p ∈ P is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses *l* consisting of a single literal, and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

Automated (AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Formulae vs. sets

			(A
sets		formulae	
those $\frac{2^n}{2}$ states in	\mathfrak{r} which p is true	$p \in P$	Lo
$E \cup F$		$E \lor F$	Pr log
$E \cap F$		$E \wedge F$	Ini
$E \setminus F$	(set difference)	$E \wedge \neg F$	Co sat
\overline{E}	(complement)	$\neg E$	Pla
the empty set \emptyset		L	SA -
the universal set		Т	Be cui
		1	

question about sets	question about formulae		
$E \subseteq F$?	$E \models F$?		
$E \subset F$?	$E \models F$ and $F \not\models E$?		
E = F?	$E \models F$ and $F \not\models E$? $E \models F$ and $F \models E$?		

Automated AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Propositional Logic: Inference

- Whether φ ⊨ ψ is true can be tested by enumerating all different interpretations involving the propositional symbols in φ and ψ
- Bad news: exponential time as there 2ⁿ assignments (0/1) to n propositional symbols
- This time cannot be improved in worst case (unless P=NP), but approaches that run much faster in practice exist
- General idea is to combine case analysis and inference
- Exhaustive procedure above based exclusively on case analysis, even worse, deals with *full* assignments
- More about this in a few slides ...

Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Propositional Logic: Inference

- Whether φ ⊨ ψ is true can be tested by enumerating all different interpretations involving the propositional symbols in φ and ψ
- Bad news: exponential time as there 2ⁿ assignments (0/1) to n propositional symbols
- This time cannot be improved in worst case (unless P=NP), but approaches that run much faster in practice exist
- General idea is to combine case analysis and inference
- Exhaustive procedure above based exclusively on case analysis, even worse, deals with *full* assignments
- More about this in a few slides ...

Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Let P be a set of propositional symbols. A propositional formula Φ is called a CNF if it has the form

$$\Phi = \varphi_1 \wedge \dots \wedge \varphi_m$$

where each φ_i has the form $\phi_i = (l_1 \vee \cdots \vee l_k)$ and each l_j is a literal over P

- in other words, a conjunction of disjunctions of literals
- why called "normal form"?

CNF → formula == a set of constraints

• in CNFs, each constraint φ_i is called a clause, each clause being a set of literals

SAT is the decision problem of determining whether a given CNF formula is satisfiable

Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Let P be a set of propositional symbols. A propositional formula Φ is called a CNF if it has the form

$$\Phi = \varphi_1 \wedge \dots \wedge \varphi_m$$

where each φ_i has the form $\phi_i = (l_1 \vee \cdots \vee l_k)$ and each l_j is a literal over P

- in other words, a conjunction of disjunctions of literals
- why called "normal form"?
- $CNF \rightsquigarrow formula == a set of constraints$
 - in CNFs, each constraint φ_i is called a clause, each clause being a set of literals

SAT is the decision problem of determining whether a given CNF formula is satisfiable

Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

- Given a set Φ of constraints over variables (e.g., clauses over propositional variables), infer new constraints
- Inference: some reasoning (= proof theory) *R* that is sound
 - if R infers φ from $\Phi,$ then $\Phi\models\varphi$
- $\Phi \cup \{\varphi\}$ is logically equivalent to Φ ... but $\Phi \cup \{\varphi\}$ can be "more informative"
 - e.g., there may be constraints ψ that R can infer in one step from $\Phi \cup \{\varphi\},$ but not from Φ
- Typically one computes a fixpoint: propagation

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Given clauses $\varphi' = \varphi \cup \{p\}$ and $\psi' = \psi \cup \{\neg p\}$, we allow the inference

$$\frac{\varphi \cup \{p\} \quad \psi \cup \{\neg p\}}{\varphi \lor \psi}$$

That is, $\varphi \lor \psi$ can be added as a **new clause**

- Since p and $\neg p$ cannot be simultaneously true, we have to make true at least one of φ and ψ
- Resolution is complete: Φ is unsatisfiable iff $\{\} \in R^+(\Phi)$

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

k-Resolution and Unit Propagation

- A full (complete) constraint propagation is exponentially costly: it solves the original decision problem
- We need more restricted reasoning that will still give us some information/simplification
- k-resolution: in

$$\frac{\varphi \cup \{p\} \quad \psi \cup \{\neg p\}}{\varphi \lor \psi}$$

require that either $|\varphi \cup \{p\}| \le k$ or $|\psi \cup \{\neg p\}| \le k$

• Unit propagation == 1-resolution is the most wide-spread techniques in implemented SAT solvers

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Unit Propagation

Fixpoint application of

$$\frac{\varphi \cup \{\bar{l}\} \qquad \{l\}}{\varphi}$$

Procedure unit-propagation

while TRUE do

$$\begin{aligned}
\Phi' &:= \Phi \\
\text{forall } \psi \in \Phi, \ \psi = \{l\} \ \text{do} \\
\text{forall } \phi \in \Phi, \ \overline{l} \in \phi \ \text{do} \\
\Phi' &:= \Phi' \cup \{\phi \setminus \{\overline{l}\} \\
\text{if } \Phi' = \Phi \ \text{then stop} \\
\Phi &:= \Phi'
\end{aligned}$$

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking

Planning via SAT

Unit Propagation

Procedure unit-propagation

while TRUE do $\Phi' := \Phi$ forall $\psi \in \Phi, \psi = \{l\}$ do forall $\phi \in \Phi, \overline{l} \in \phi$ do $\Phi' := \Phi' \cup \{\phi \setminus \{\overline{l}\}\}$ $\Phi' := \Phi' \setminus \phi$ forall $\varphi \in \Phi', l \in \varphi$ do $\Phi' := \Phi' \setminus \varphi$ if $\Phi' = \Phi$ then stop $\Phi := \Phi'$

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Unit Propagation

Procedure unit-propagation

while TRUE do $\begin{aligned}
\Phi' &:= \Phi \\
\text{forall } \psi \in \Phi, \ \psi = \{l\} \ \text{do} \\
\text{forall } \phi \in \Phi, \ \overline{l} \in \phi \ \text{do} \\
\Phi' &:= \Phi' \cup \{\phi \setminus \{\overline{l}\}\} \\
\Phi' &:= \Phi' \setminus \phi \\
\text{forall } \varphi \in \Phi', \ l \in \varphi \ \text{do} \\
\Phi' &:= \Phi' \setminus \varphi \\
\text{if } \Phi' &= \Phi \ \text{then stop} \\
\Phi &:= \Phi'
\end{aligned}$

Examples

$$\label{eq:alpha} \begin{split} & \triangleright \; \{\{\neg A, \neg B, \neg C, D\}, \{\neg A, B\}, \{A\}, \{\neg A, \neg B, \neg C, \neg D\}, \{\{\neg A, \neg B, C\}\}\} \\ & \triangleright \; \{\{\neg A, B\}, \{\neg B, C\}, \{\neg C, A\}, \{A, C\}, \{\neg B, \neg C\}\} \end{split}$$

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Backtracking search

Backtracking over variable values

Procedure backtracking-search

bool **Solve** $(\Phi, \text{ partial assignment } \omega)$ $(\Phi', \omega') := constraint-propagation(\Phi, \omega)$ **if** Φ' is self-contradictory **then return** FALSE select a variable v not assigned by ω' **if** no such variable exists **then return** TRUE **forall** $c \in dom(v)$ **do if Solve** $(\Phi', \omega' \cup \{v := c\})$ **then return** TRUE **return** FALSE

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Davis-Putnam-Logeman-Loveland Algorithm (DPLL)

Procedure DPLL

bool DPLL (Φ , partial assignment ω) (Φ', ω') := unit-propagation(Φ, ω) if Φ' contains empty clause then return FALSE select a variable v not assigned by ω' if no such variable exists then return TRUE if DPLL($\Phi', \omega' \cup \{v := 1\}$) then return TRUE if DPLL($\Phi', \omega' \cup \{v := 0\}$) then return TRUE return FALSE Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Davis-Putnam-Logeman-Loveland Algorithm (DPLL)

Procedure DPLL

bool DPLL (Φ , partial assignment ω) (Φ', ω') := unit-propagation(Φ, ω) if Φ' contains empty clause then return FALSE select a variable v not assigned by ω' if no such variable exists then return TRUE if DPLL($\Phi', \omega' \cup \{v := 1\}$) then return TRUE if DPLL($\Phi', \omega' \cup \{v := 0\}$) then return TRUE return FALSE

Examples

$$\begin{split} & \triangleright \ \left\{ \{A,B,C\},\{\neg A,\neg B\},\{\neg A,\neg C\},\{\{\neg B,\neg C\}\} \right\} \\ & \triangleright \ \left\{ \{\neg A,B\},\{\neg B,C\},\{\neg C,A\},\{A,C\},\{\neg B,\neg C\} \right\} \end{split}$$

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

- currently very large SAT problems can be solved
- criterion for variable selection is critical
- additional key components
 - randomization (in selection) + restarts (???)
 - clause learning (...)
 - engineering issues (e.g., caching)
- from 50 variables, 200 constraints in early 90's to 1000000 variables and 5000000 constraints these days (from 10^{15} to 10^{300000})

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Progress of SAT solvers

Instance	Posit' 94	Grasp' 96	Sato' 98	Chaff' 01
ssa2670-136	40,66s	1,2s	0,95s	0,02s
bf1355-638	1805,21s	0,11s	0,04s	0,01s
pret150_25	>3000s	0,21s	0,09s	0,01s
dubois100	>3000s	11,85s	0,08s	0,01s
aim200-2_0-no-1	>3000s	0,01s	0s	0s
2dlxbug005	>3000s	>3000s	>3000s	2,9s
c6288	>3000s	>3000s	>3000s	>3000s

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Behind the curtains

(Marques Silva, 02)

Phase Transition and Computational Hardness

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Behind the curtains

(Selman, Levesque, and David Mitchell, 92)

Backtrack-style search on hard problems characterized by:

- Erratic behavior of time complexity distribution
- Distributions have "heavy tails"
 - infinite mean ? infinite variance ?

Standard Distribution (finite mean & variance)

HEAVY TAILED DISTRIBUTION (infinite mean & variance)

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Idea: Randomized Restarts

Randomize the backtrack strategy

- add noise to the heuristic branching (variable choice) function
- **cutoff** and **restart** search after a fixed number of backtracks
 - critical parameter: cutoff threshold

Works?

- provably eliminates heavy tails
- practice: rapid restarts with low cutoff can dramatically improve performance (Gomes and Selman 1998, 1999)
- exploited in most (all?) current SAT solvers

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Idea: Randomized Restarts

Randomize the backtrack strategy

- add noise to the heuristic branching (variable choice) function
- cutoff and restart search after a fixed number of backtracks
 - critical parameter: cutoff threshold

Works?

- provably eliminates heavy tails
- practice: rapid restarts with low cutoff can dramatically improve performance (Gomes and Selman 1998, 1999)
- exploited in most (all?) current SAT solvers

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Planning via SAT: Motivation and idea

Motivation observation

- solvers are developed for many NP-complete classes of problems
- progress is not uniform (reasons?)
- progress in solving SAT is probably most prominent

Idea (Kautz & Selman, 91-96)

- Maybe we should teach SAT solvers to solve planning?
- Problem: Strips planning is PSPACE-complete
- Solution: Bounded-Strips planning is in NP

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Planning via SAT: Motivation and idea

Motivation observation

- solvers are developed for many NP-complete classes of problems
- progress is not uniform (reasons?)
- progress in solving SAT is probably most prominent

Idea (Kautz & Selman, 91-96)

- Maybe we should teach SAT solvers to solve planning?
- Problem: Strips planning is PSPACE-complete
- Solution: Bounded-Strips planning is in NP

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Planning as Satisfiability

Transform Planning into a series of SATs

```
Procedure planning-as-SAT(\Pi = (P, A, I, G))

b = 0

while TRUE do

\Phi(\Pi, b) := a CNF that is satisfiable iff
```

there exists a plan with b steps

```
if \mathsf{DPLL}(\Phi(\Pi, b), \emptyset) then
```

output Plan encoded by a satisfying assignment

b := b + 1

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Questions

- What notions of "steps" can we use?
- What do we know about the found plan?
- What should be the connection between the set of plans for Π and the set of satisfying assignments to $\Phi(\Pi, b)$?
- What can we say about the completeness of the algorithm?

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

How to encode *b*-step Strips plan existence as a CNF?

Many possible answers. Most (in use to date) share:

- Time steps $0 \le t \le b$
- Fact variables p_t : is p TRUE or FALSE at t?
- Action variables *a_t*: is *a* applied at *t* or not?
- The size of the encoding grows linearly in b
 - but is it a linear grows in the size of the input?

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

The Linear Encoding, I Sequential planning

- Problem $\Pi = (P, A, I, G)$, time steps $0 \le t \le b$
- Decision variables
 - p_t for all $p \in P, 0 \le t \le b$ a_t — for all $a \in A, 0 \le t \le b - 1$
- Initial State Clauses: "specify initial state" for all p ∈ P: {p₀} if p ∈ I, and {¬p₀}, otherwise
- Goal Clauses: "specify goal values" for all p ∈ G: {p_b}

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

The Linear Encoding, II Sequential planning

- Action Precondition Clauses:
 "action implies its preconditions" for all a ∈ A, p ∈ pre(a), 0 ≤ t ≤ b − 1: {¬a_t, p_t}
- Action Effect Clauses:
 "action implies its add/delete effects"
 for all a ∈ A, p ∈ add(a), 0 ≤ t ≤ b − 1: {¬a_t, p_{t+1}}
 for all a ∈ A, p ∈ del(a), 0 ≤ t ≤ b − 1: {¬a_t, ¬p_{t+1}}

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

The Linear Encoding, III Sequential planning

Positive Frame Axioms:
 "if a is applied and p ∉ del(a) was true, then p is still true"

for all $a \in A, p \notin del(a), 0 \le t \le b - 1$: $\{\neg a, \neg p_t, p_{t+1}\}$

Negative Frame Axioms:
 "if a is applied and p ∉ add(a) was false, then p is still false"

for all $a \in A, p \notin \mathsf{add}(a), 0 \le t \le b - 1$: $\{\neg a, p_t, \neg p_{t+1}\}$

 Linearity (Exclusion) Constraints:
 "apply exactly one action at each time step" for all a, a' ∈ A, 0 ≤ t ≤ b − 1: {¬a, ¬a'_t} for all 0 ≤ t ≤ b − 1: A_t (do we really need them?)

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

•
$$P = \{A, B, C, visB, visC\}, I = \{A\}, G = \{visB, visC\}$$

Actions

$$\begin{aligned} drAB &= \{\{A\}, \{B, visB\}, \{A\}\} \\ drAC &= \{\{A\}, \{C, visC\}, \{A\}\} \\ drBC &= \{\{B\}, \{C, visC\}, \{B\}\} \end{aligned}$$

Blackboard: Linear encoding for b = 1

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex

A Basic Parallel Encoding, I Parallel planning

- Problem $\Pi = (P, A, I, G)$, noops-extended actions A^N , time steps $0 \le t \le b$
- Decision variables

$$p_t$$
 — for all $p \in P, 0 \le t \le b$
 a_t — for all $a \in A^N, 0 \le t \le b - 1$

 Initial State Clauses: "specify initial state" for all p ∈ P: {p₀} if p ∈ I, and {¬p₀}, otherwise

• Goal Clauses: "specify goal values"
for all
$$p \in G$$
: $\{p_b\}$

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

A Basic Parallel Encoding, II Parallel planning

 Action Precondition Clauses:
 "action implies its preconditions" for all a ∈ A^N, p ∈ pre(a), 0 ≤ t ≤ b − 1: {¬a_t, p_t}

 Action Interference Clauses:
 "do not apply interfering actions in the same time step" for all a, a' ∈ A^N, a ¼a', 0 ≤ t ≤ b − 1: {¬a_t, ¬a'_t} Automated (AI) Planning

Encodings

 Fact Achievement Clauses:
 "fact implies disjunction of its achievers" for all p ∈ P, 1 ≤ t ≤ b: {¬p_t} ∪ {a_{t-1}|p ∈ add(a)}

Do we need anything else?

A Basic Parallel Encoding, II Parallel planning

 Action Precondition Clauses:
 "action implies its preconditions" for all a ∈ A^N, p ∈ pre(a), 0 ≤ t ≤ b − 1: {¬a_t, p_t}

 Action Interference Clauses:
 "do not apply interfering actions in the same time step" for all a, a' ∈ A^N, a ¼a', 0 ≤ t ≤ b − 1: {¬a_t, ¬a'_t} Automated (AI) Planning

Encodings

 Fact Achievement Clauses:
 "fact implies disjunction of its achievers" for all p ∈ P, 1 ≤ t ≤ b: {¬p_t} ∪ {a_{t-1}|p ∈ add(a)}

Do we need anything else?

- Optimal parallel plans are often shorter than optimal sequential plans
- Linearity constraints typically dominate the linear encodings

So in parallel planning-as-SAT we (typically) need fewer iterations and (always) consider smaller formulas!

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

•
$$P = \{A, B, C, visB, visC\}, I = \{A\}, G = \{visB, visC\}$$

Actions

$$\begin{aligned} drAB &= \{\{A\}, \{B, visB\}, \{A\}\} \\ drAC &= \{\{A\}, \{C, visC\}, \{A\}\} \\ drBC &= \{\{B\}, \{C, visC\}, \{B\}\} \end{aligned}$$

Blackboard: Basic parallel encoding for b = 1

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex

2-planning graphs extend 1-planning graphs by keeping track of **mutex pairs**; pairs that cannot be **simultaneously** achieved in *i* steps:

- action pair mutex at *i* if actions interfere or their preconditions mutex at *i*
- atom pair mutex at i if all supporting action pairs are mutex at i - 1
- a set of atoms C is mutex at i if it contains a mutex pair at i

Resulting graph:

- $P_0 = \{ p \in I \}$
- $A_i = \{a \in A^N \mid Prec(a) \subseteq P_i \text{ and not mutex at } i\}$
- P_{i+1} = {p ∈ Add(a) | a ∈ A_i}, with sets of action/atom mutex pairs defined as above.

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Encodings Mutex information

The Planning Graph Based Encoding, I

- Problem $\Pi = (P, A, I, G)$, noops-extended actions A^N , time steps $0 \le t \le b$
- Fact layers $P_{(t)}$, action layers $A_{(t)}$, fact mutexes (layers) $EP_{(t)}$, action mutexes (layers) $EA_{(t)}$
- Decision variables

 $\begin{array}{l} p_t & - \text{ for all } p \in P, 1 \leq t \leq b \\ a_t & - \text{ for all } a \in A^N, 0 \leq t \leq b-1 \end{array}$

- Goal Clauses: "specify goal values" for all $p \in G$: $\{p_b\}$
- Action Precondition Clauses: "action implies its preconditions" for all $a \in A^N, p \in pre(a), 1 \le t \le b - 1$: $\{\neg a_t, p_t\}$

Automated (AI) Planning

_ogic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

The Planning Graph Based Encoding, II

 Action Mutex Clauses: "do not apply mutex actions in the same time step"

> for all $0 \le t \le b - 1, a, a' \in A_{(t)}, \{a, a'\} \in EA_{(t)}$: $\{\neg a_t, \neg a'_t\}$

- Fact Achievement Clauses:
 "fact implies disjunction of its achievers" for all p ∈ P, 1 ≤ t ≤ b: {¬p_t} ∪ {a_{t-1}|p ∈ add(a)}
- Fact Mutex Clauses: "do not make two mutex facts TRUE" for all $1 \le t \le b, p, p' \in P_{(t)}, \{p, p'\} \in EP_{(t)}$: $\{\neg p_t, \neg p'_t\}$

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Basic Parallel vs. PG-Based Encoding, I

- PG-Based Encoding == Basic Parallel Encoding pruned and enhanced by information contained in 2-Planning Graph
- Pruned: less decision variables p_t and a_t , less redundant exclusion clauses
 - Example: We don?t need vars for the initial facts since pre(a) ⊆ I holds anyway for all a ∈ A₍₀₎
- Enhanced: more non-trivial (temporal) exclusion clauses $\{\neg a_t, \neg a_t'\}$ and $\{\neg p_t, \neg p_t'\}$

Automated (AI) Planning

_ogic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

•
$$P = \{A, B, C, visB, visC\}, I = \{A\}, G = \{visB, visC\}$$

Actions

$$\begin{aligned} drAB &= \{\{A\}, \{B, visB\}, \{A\}\} \\ drAC &= \{\{A\}, \{C, visC\}, \{A\}\} \\ drBC &= \{\{B\}, \{C, visC\}, \{B\}\} \end{aligned}$$

Blackboard: PG-based encoding for b = 1

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Basic Parallel vs. PG-Based Encoding, I (Recall)

- PG-Based Encoding == Basic Parallel Encoding pruned and enhanced by information contained in 2-Planning Graph
- Pruned: less decision variables p_t and a_t , less redundant exclusion clauses
 - Example: We don?t need vars for the initial facts since pre(a) ⊆ I holds anyway for all a ∈ A₍₀₎
- Enhanced: more non-trivial (temporal) exclusion clauses $\{\neg a_t, \neg a_t'\}$ and $\{\neg p_t, \neg p_t'\}$

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Basic Parallel vs. PG-Based Encoding, II

- All new clauses (the pruned $\{\neg p_t\}$ and $\{\neg a_t\}$, and all new exclusion clauses) follow from the Basic Parallel CNF Φ
- By constructing 2-planning graph and basic our SAT encoding on it ...
 - ... we do some of the reasoning devoted to the SAT solver with a specialized algorithm instead
 - But why this part of work and not all the work?
- Potentially exponential savings
 - suppose (since) the SAT solver uses, in constraint propagation, 1-Resolution only
 - for exclusion relations we need 2-Resolution! [Brafman, JAIR-2001]
- What sort of resolution do we need to capture k-planning graphs in the constraint propagation procedure?

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

Basic Parallel vs. PG-Based Encoding, II

- All new clauses (the pruned $\{\neg p_t\}$ and $\{\neg a_t\}$, and all new exclusion clauses) follow from the Basic Parallel CNF Φ
- By constructing 2-planning graph and basic our SAT encoding on it ...
 - ... we do some of the reasoning devoted to the SAT solver with a specialized algorithm instead
 - But why this part of work and not all the work?
- Potentially exponential savings
 - suppose (since) the SAT solver uses, in constraint propagation, 1-Resolution only
 - for exclusion relations we need 2-Resolution! [Brafman, JAIR-2001]
- What sort of resolution do we need to capture k-planning graphs in the constraint propagation procedure?

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

In Front of the Curtains

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

- What are A, B, C, D, E in our case?
- What is X?

A Very Simple Encoding

Use a 1-planning graph

- Problem Π = (P, A, I, G), noops-extended actions A^N, time steps 0 ≤ t ≤ b, action layers A_(t)
- Decision variables: a_t for all $0 \le t \le b-1$ and $a \in A_{(t)}$

Goal Clauses: "at least one achiever"

• for all $p \in G$: $\{a_{b-1} | a \in A_{(b-1)}, g \in \mathsf{add}(a)\}$

• Action Precondition Clauses: "action implies disjunction of its precondition achievers" for all $1 \le t \le b - 1, a \in A_{(t)}, p \in pre(a)$: $\{\neg a_t\} \cup \{a'_{t-1} | a' \in A_{(t-1)}, p \in add(a')\}$

• Action Interference Clauses: as in basic parallel encoding

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

•
$$P = \{A, B, C\}, I = \{A\}, G = \{C\}$$

Actions

 $drAB = \{\{A\}, \{B\}, \{A\}\} \\ drBC = \{\{B\}, \{C\}, \{B\}\}$

Blackboard: "Very simple" encoding for b = 2

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Procedure DPLL

bool DPLL (Φ , partial assignment ω) (Φ', ω') := unit-propagation(Φ, ω) if Φ' contains empty clause then return FALSE select a variable v not assigned by ω' if no such variable exists then return TRUE if DPLL($\Phi', \omega' \cup \{v := 1\}$) then return TRUE if DPLL($\Phi', \omega' \cup \{v := 0\}$) then return TRUE return FALSE

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Behind the Curtains, Unit Propagation, I

propagate $a_t = \mathsf{TRUE}$

set a IN at tif t > 0 then forall $p \in \text{pre}(a)$ if all $a' \in A_{(t-1)}, p \in \text{add}(a')$ are OUT at t-1 then fail if all $a' \in A_{(t-1)}, p \in \text{add}(a')$ are OUT at t-1, except a''then propagate a'' IN at t-1forall $a' \in A_{(t)}$ that interfere with apropagate a' OUT at t

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Behind the Curtains, Unit Propagation, II

propagate $a_t = \mathsf{FALSE}$

set a OUT at tif t = b - 1 then forall $g \in add(a) \cap G$ if all $a' \in A_{(t)}, g \in add(a')$ are OUT at t then fail if all $a' \in A_{(t)}, g \in add(a')$ are OUT at t, except a''then propagate a'' IN at t - 1if t < b - 1 then ???

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Behind the Curtains, DPLL

- DPLL makes commitments of the form "I will/won't apply action *a* at time *t*"
- The search state is a sequence of such commitments
- d0 "I will move the truck from x to y at time 17"
- d1 UP: "truck at x at time 17", "truck at y at time 18"
- d1 "I will sell the truck at time 7"
- d2 UP: "no truck at time $8, \ldots, 25$ "
- d2 FALSE
- d1 "I will not sell the truck at time 7"
 - The order of commitments in the sequence is independent of the time steps *t*
 - ... this is why we also call this undirected search

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Behind the Curtains, DPLL

- DPLL makes commitments of the form "I will/won't apply action *a* at time *t*"
- The search state is a sequence of such commitments
- d0 "I will move the truck from x to y at time 17"
- d1 UP: "truck at x at time 17", "truck at y at time 18"
- d1 "I will sell the truck at time 7"
- d2 UP: "no truck at time $8, \ldots, 25$ "
- d2 FALSE
- d1 "I will not sell the truck at time 7"
 - The order of commitments in the sequence is independent of the time steps *t*
 - ... this is why we also call this undirected search

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Branching in Planning: A Big Picture

- Forward: state-space; extend plan head, totally (possibly weakly) ordered
- Backward: regression-space; extend plan tail; totally (possibly weakly) ordered
- **Temporal**: for action a and time i, create splits a[i] = TRUE / a[i] = FALSE
- POCL: Partial Order Causal Link Planning
 - next ...

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT