

# OPPA European Social Fund Prague & EU: We invest in your future.

# Automated (AI) Planning Planning via Constraint Satisfaction

Carmel Domshlak

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT



## Essential components

- formal language for expressing statements
- model theory/semantics for making sense of them
- proof theory/axiomatics for deriving new statements from old
- Originally developed for studying structure of (mathematical/philosophical) arguments, and identifying valid arguments.
- Currently the basis for
  - programming languages like Prolog
  - representation languages in AI (e.g., planning languages)
  - verification
  - automatic theorem proving

### Automated (AI) Planning

### Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

# Logical representations of state sets

- n state variables with m values induce a state space consisting of m<sup>n</sup> states (2<sup>n</sup> states for n Boolean state variables)
- a language for talking about *sets of states (valuations of state variables)*: propositional logic
- logical connectives  $\approx$  set-theoretical operations

### Automated (AI) Planning

### Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Let P be a set of atomic propositions ( $\sim$  state variables).

- For all  $p \in P$ , p is a propositional formula.
- 2 If  $\phi$  is a propositional formula, then so is  $\neg \phi$ .
- **③** If  $\phi$  and  $\phi'$  are propositional formulae, then so is  $\phi \lor \phi'$ .
- If  $\phi$  and  $\phi'$  are propositional formulae, then so is  $\phi \wedge \phi'$ .
- **(**) The symbols  $\perp$  and  $\top$  are propositional formulae.

The implication  $\phi \to \phi'$  is an abbreviation for  $\neg \phi \lor \phi'$ . The equivalence  $\phi \leftrightarrow \phi'$  is an abbreviation for  $(\phi \to \phi') \land (\phi' \to \phi)$ .

### Automated (AI) Planning

### Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

A valuation of P is a function  $v : P \to \{0, 1\}$ . Define the notation  $v \models \phi$  for valuations v and formulae  $\phi$  by

• 
$$v \models p$$
 if and only if  $v(p) = 1$ , for  $p \in P$ .

**2** 
$$v \models \neg \phi$$
 if and only if  $v \not\models \phi$ 

$$\ \, {\mathfrak o} \ \, v \models \phi \lor \phi' \ \, {\rm if \ and \ only \ if \ \, } v \models \phi \ \, {\rm or \ \, } v \models \phi'$$

• 
$$v \models \phi \land \phi'$$
 if and only if  $v \models \phi$  and  $v \models \phi'$ 

$$v \models \top$$

 $\bullet v \not\models \bot$ 

### Automated (AI) Planning

#### Logi

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

# Propositional logic terminology

- A propositional formula φ is satisfiable if there is at least one valuation v so that v ⊨ φ. Otherwise it is unsatisfiable.
- A propositional formula φ is valid or a tautology if v ⊨ φ for all valuations v. We write this as ⊨ φ.
- A propositional formula φ is a logical consequence of a propositional formula φ', written φ' ⊨ φ if v ⊨ φ for all valuations v with v ⊨ φ'.
- Two propositional formulae  $\phi$  and  $\phi'$  are logically equivalent, written  $\phi \equiv \phi'$ , if  $\phi \models \phi'$  and  $\phi' \models \phi$ .

### Automated (AI) Planning

### Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

# Propositional logic terminology (ctd.)

- A propositional formula that is a proposition p or a negated proposition ¬p for some p ∈ P is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses *l* consisting of a single literal, and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

### Automated (AI) Planning

#### Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

# Formulae vs. sets

|                                 |                                  |                   | (A        |
|---------------------------------|----------------------------------|-------------------|-----------|
| sets                            |                                  | formulae          |           |
| those $\frac{2^n}{2}$ states in | $\mathfrak{r}$ which $p$ is true | $p \in P$         | Lo        |
| $E \cup F$                      |                                  | $E \lor F$        | Pr<br>log |
| $E \cap F$                      |                                  | $E \wedge F$      | Ini       |
| $E \setminus F$                 | (set difference)                 | $E \wedge \neg F$ | Co<br>sat |
| $\overline{E}$                  | (complement)                     | $\neg E$          | Pla       |
| the empty set $\emptyset$       |                                  | L                 | SA<br>-   |
| the universal set               |                                  | Т                 | Be<br>cui |
|                                 |                                  | 1                 |           |

| question about sets | question about formulae                                                    |  |  |
|---------------------|----------------------------------------------------------------------------|--|--|
| $E \subseteq F$ ?   | $E \models F$ ?                                                            |  |  |
| $E \subset F$ ?     | $E \models F$ and $F \not\models E$ ?                                      |  |  |
| E = F?              | $E \models F$ and $F \not\models E$ ?<br>$E \models F$ and $F \models E$ ? |  |  |

### Automated AI) Planning

Logic

Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

# Propositional Logic: Inference

- Whether φ ⊨ ψ is true can be tested by enumerating all different interpretations involving the propositional symbols in φ and ψ
- Bad news: exponential time as there 2<sup>n</sup> assignments (0/1) to n propositional symbols
- This time cannot be improved in worst case (unless P=NP), but approaches that run much faster in practice exist
- General idea is to combine case analysis and inference
- Exhaustive procedure above based exclusively on case analysis, even worse, deals with *full* assignments
- More about this in a few slides ...

### Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

# Propositional Logic: Inference

- Whether φ ⊨ ψ is true can be tested by enumerating all different interpretations involving the propositional symbols in φ and ψ
- Bad news: exponential time as there 2<sup>n</sup> assignments (0/1) to n propositional symbols
- This time cannot be improved in worst case (unless P=NP), but approaches that run much faster in practice exist
- General idea is to combine case analysis and inference
- Exhaustive procedure above based exclusively on case analysis, even worse, deals with *full* assignments
- More about this in a few slides ...

### Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Let P be a set of propositional symbols. A propositional formula  $\Phi$  is called a CNF if it has the form

$$\Phi = \varphi_1 \wedge \dots \wedge \varphi_m$$

where each  $\varphi_i$  has the form  $\phi_i = (l_1 \vee \cdots \vee l_k)$  and each  $l_j$  is a literal over P

- in other words, a conjunction of disjunctions of literals
- why called "normal form"?

## CNF → formula == a set of constraints

• in CNFs, each constraint  $\varphi_i$  is called a clause, each clause being a set of literals

SAT is the decision problem of determining whether a given CNF formula is satisfiable

### Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

Let P be a set of propositional symbols. A propositional formula  $\Phi$  is called a CNF if it has the form

$$\Phi = \varphi_1 \wedge \dots \wedge \varphi_m$$

where each  $\varphi_i$  has the form  $\phi_i = (l_1 \vee \cdots \vee l_k)$  and each  $l_j$  is a literal over P

- in other words, a conjunction of disjunctions of literals
- why called "normal form"?
- $CNF \rightsquigarrow formula == a set of constraints$ 
  - in CNFs, each constraint  $\varphi_i$  is called a clause, each clause being a set of literals

SAT is the decision problem of determining whether a given CNF formula is satisfiable

### Automated (AI) Planning

Logic Propositional logic Inference in PL

Constraint satisfaction

Planning via SAT

- Given a set Φ of constraints over variables (e.g., clauses over propositional variables), infer new constraints
- Inference: some reasoning (= proof theory) *R* that is sound
  - if R infers  $\varphi$  from  $\Phi,$  then  $\Phi\models\varphi$
- $\Phi \cup \{\varphi\}$  is logically equivalent to  $\Phi$  ... but  $\Phi \cup \{\varphi\}$  can be "more informative"
  - e.g., there may be constraints  $\psi$  that R can infer in one step from  $\Phi \cup \{\varphi\},$  but not from  $\Phi$
- Typically one computes a fixpoint: propagation

### Automated (AI) Planning

### Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Given clauses  $\varphi' = \varphi \cup \{p\}$  and  $\psi' = \psi \cup \{\neg p\}$ , we allow the inference

$$\frac{\varphi \cup \{p\} \quad \psi \cup \{\neg p\}}{\varphi \lor \psi}$$

That is,  $\varphi \lor \psi$  can be added as a **new clause** 

- Since p and  $\neg p$  cannot be simultaneously true, we have to make true at least one of  $\varphi$  and  $\psi$
- Resolution is complete:  $\Phi$  is unsatisfiable iff  $\{\} \in R^+(\Phi)$

### Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# k-Resolution and Unit Propagation

- A full (complete) constraint propagation is exponentially costly: it solves the original decision problem
- We need more restricted reasoning that will still give us some information/simplification
- k-resolution: in

$$\frac{\varphi \cup \{p\} \quad \psi \cup \{\neg p\}}{\varphi \lor \psi}$$

require that either  $|\varphi \cup \{p\}| \le k$  or  $|\psi \cup \{\neg p\}| \le k$ 

• Unit propagation == 1-resolution is the most wide-spread techniques in implemented SAT solvers

### Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Unit Propagation

## Fixpoint application of

$$\frac{\varphi \cup \{\bar{l}\} \qquad \{l\}}{\varphi}$$

## Procedure unit-propagation

while TRUE do  

$$\begin{aligned}
\Phi' &:= \Phi \\
\text{forall } \psi \in \Phi, \ \psi = \{l\} \ \text{do} \\
\text{forall } \phi \in \Phi, \ \overline{l} \in \phi \ \text{do} \\
\Phi' &:= \Phi' \cup \{\phi \setminus \{\overline{l}\} \\
\text{if } \Phi' = \Phi \ \text{then stop} \\
\Phi &:= \Phi'
\end{aligned}$$

### Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking

Planning via SAT

# Unit Propagation

## Procedure unit-propagation

while TRUE do  $\Phi' := \Phi$ forall  $\psi \in \Phi$ ,  $\psi = \{l\}$  do forall  $\phi \in \Phi$ ,  $\overline{l} \in \phi$  do  $\Phi' := \Phi' \cup \{\phi \setminus \{\overline{l}\}\}$   $\Phi' := \Phi' \setminus \phi$ forall  $\varphi \in \Phi'$ ,  $l \in \varphi$  do  $\Phi' := \Phi' \setminus \varphi$ if  $\Phi' = \Phi$  then stop  $\Phi := \Phi'$ 

### Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Unit Propagation

## Procedure unit-propagation

while TRUE do  $\begin{aligned}
\Phi' &:= \Phi \\
\text{forall } \psi \in \Phi, \ \psi = \{l\} \ \text{do} \\
\text{forall } \phi \in \Phi, \ \overline{l} \in \phi \ \text{do} \\
\Phi' &:= \Phi' \cup \{\phi \setminus \{\overline{l}\}\} \\
\Phi' &:= \Phi' \setminus \phi \\
\text{forall } \varphi \in \Phi', \ l \in \varphi \ \text{do} \\
\Phi' &:= \Phi' \setminus \varphi \\
\text{if } \Phi' &= \Phi \ \text{then stop} \\
\Phi &:= \Phi'
\end{aligned}$ 

## Examples

$$\label{eq:alpha} \begin{split} & \triangleright \; \{\{\neg A, \neg B, \neg C, D\}, \{\neg A, B\}, \{A\}, \{\neg A, \neg B, \neg C, \neg D\}, \{\{\neg A, \neg B, C\}\}\} \\ & \triangleright \; \{\{\neg A, B\}, \{\neg B, C\}, \{\neg C, A\}, \{A, C\}, \{\neg B, \neg C\}\} \end{split}$$

### Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Backtracking search

## Backtracking over variable values

## Procedure backtracking-search

bool **Solve**  $(\Phi, \text{ partial assignment } \omega)$   $(\Phi', \omega') := constraint-propagation(\Phi, \omega)$  **if**  $\Phi'$  is self-contradictory **then return** FALSE select a variable v not assigned by  $\omega'$  **if** no such variable exists **then return** TRUE **forall**  $c \in dom(v)$  **do if Solve** $(\Phi', \omega' \cup \{v := c\})$  **then return** TRUE **return** FALSE

### Automated (AI) Planning

### Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Davis-Putnam-Logeman-Loveland Algorithm (DPLL)

## Procedure DPLL

bool DPLL ( $\Phi$ , partial assignment  $\omega$ ) ( $\Phi', \omega'$ ) := unit-propagation( $\Phi, \omega$ ) if  $\Phi'$  contains empty clause then return FALSE select a variable v not assigned by  $\omega'$ if no such variable exists then return TRUE if DPLL( $\Phi', \omega' \cup \{v := 1\}$ ) then return TRUE if DPLL( $\Phi', \omega' \cup \{v := 0\}$ ) then return TRUE return FALSE Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Davis-Putnam-Logeman-Loveland Algorithm (DPLL)

## Procedure DPLL

bool DPLL ( $\Phi$ , partial assignment  $\omega$ ) ( $\Phi', \omega'$ ) := unit-propagation( $\Phi, \omega$ ) if  $\Phi'$  contains empty clause then return FALSE select a variable v not assigned by  $\omega'$ if no such variable exists then return TRUE if DPLL( $\Phi', \omega' \cup \{v := 1\}$ ) then return TRUE if DPLL( $\Phi', \omega' \cup \{v := 0\}$ ) then return TRUE return FALSE

### Examples

$$\begin{split} & \triangleright \ \left\{ \{A,B,C\},\{\neg A,\neg B\},\{\neg A,\neg C\},\{\{\neg B,\neg C\}\} \right\} \\ & \triangleright \ \left\{ \{\neg A,B\},\{\neg B,C\},\{\neg C,A\},\{A,C\},\{\neg B,\neg C\} \right\} \end{split}$$

### Automated (AI) Planning

### Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

- currently very large SAT problems can be solved
- criterion for variable selection is critical
- additional key components
  - randomization (in selection) + restarts (???)
  - clause learning (...)
  - engineering issues (e.g., caching)
- from 50 variables, 200 constraints in early 90's to 1000000 variables and 5000000 constraints these days (from  $10^{15}$  to  $10^{300000}$ )

### Automated (AI) Planning

### Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Progress of SAT solvers

| Instance        | Posit' 94 | Grasp' 96 | Sato' 98 | Chaff' 01 |
|-----------------|-----------|-----------|----------|-----------|
| ssa2670-136     | 40,66s    | 1,2s      | 0,95s    | 0,02s     |
| bf1355-638      | 1805,21s  | 0,11s     | 0,04s    | 0,01s     |
| pret150_25      | >3000s    | 0,21s     | 0,09s    | 0,01s     |
| dubois100       | >3000s    | 11,85s    | 0,08s    | 0,01s     |
| aim200-2_0-no-1 | >3000s    | 0,01s     | 0s       | 0s        |
| 2dlxbug005      | >3000s    | >3000s    | >3000s   | 2,9s      |
| c6288           | >3000s    | >3000s    | >3000s   | >3000s    |

### Automated (AI) Planning

### Logic

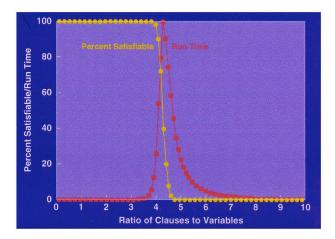
Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Behind the curtains

## (Marques Silva, 02)

## Phase Transition and Computational Hardness



Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

Behind the curtains

(Selman, Levesque, and David Mitchell, 92)

Backtrack-style search on hard problems characterized by:

- Erratic behavior of time complexity distribution
- Distributions have "heavy tails"
  - infinite mean ? infinite variance ?

Standard Distribution (finite mean & variance)



HEAVY TAILED DISTRIBUTION (infinite mean & variance)

### Automated (AI) Planning

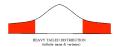
### Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Idea: Randomized Restarts





Randomize the backtrack strategy

- add noise to the heuristic branching (variable choice) function
- **cutoff** and **restart** search after a fixed number of backtracks
  - critical parameter: cutoff threshold

Works?

- provably eliminates heavy tails
- practice: rapid restarts with low cutoff can dramatically improve performance (Gomes and Selman 1998, 1999)
- exploited in most (all?) current SAT solvers

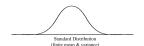
Automated (AI) Planning

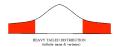
Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Idea: Randomized Restarts





Randomize the backtrack strategy

- add noise to the heuristic branching (variable choice) function
- cutoff and restart search after a fixed number of backtracks
  - critical parameter: cutoff threshold

Works?

- provably eliminates heavy tails
- practice: rapid restarts with low cutoff can dramatically improve performance (Gomes and Selman 1998, 1999)
- exploited in most (all?) current SAT solvers

Automated (AI) Planning

Logic

Constraint satisfaction Constraint propagation Backtracking search

Planning via SAT

# Planning via SAT: Motivation and idea

## Motivation observation

- solvers are developed for many NP-complete classes of problems
- progress is not uniform (reasons?)
- progress in solving SAT is probably most prominent

### Idea (Kautz & Selman, 91-96)

- Maybe we should teach SAT solvers to solve planning?
- Problem: Strips planning is PSPACE-complete
- Solution: Bounded-Strips planning is in NP

### Automated (AI) Planning

### Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

# Planning via SAT: Motivation and idea

## Motivation observation

- solvers are developed for many NP-complete classes of problems
- progress is not uniform (reasons?)
- progress in solving SAT is probably most prominent

## Idea (Kautz & Selman, 91-96)

- Maybe we should teach SAT solvers to solve planning?
- Problem: Strips planning is PSPACE-complete
- Solution: Bounded-Strips planning is in NP

### Automated (AI) Planning

### Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

# Planning as Satisfiability

Transform Planning into a series of SATs

```
Procedure planning-as-SAT(\Pi = (P, A, I, G))

b = 0

while TRUE do

\Phi(\Pi, b) := a CNF that is satisfiable iff
```

there exists a plan with b steps

```
if \mathsf{DPLL}(\Phi(\Pi, b), \emptyset) then
```

output Plan encoded by a satisfying assignment

b := b + 1

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## Questions

- What notions of "steps" can we use?
- What do we know about the found plan?
- What should be the connection between the set of plans for  $\Pi$  and the set of satisfying assignments to  $\Phi(\Pi, b)$ ?
- What can we say about the completeness of the algorithm?

### Automated (AI) Planning

### Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## How to encode *b*-step Strips plan existence as a CNF?

Many possible answers. Most (in use to date) share:

- Time steps  $0 \le t \le b$
- Fact variables  $p_t$ : is p TRUE or FALSE at t?
- Action variables *a<sub>t</sub>*: is *a* applied at *t* or not?
- The size of the encoding grows linearly in b
  - but is it a linear grows in the size of the input?

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## The Linear Encoding, I Sequential planning

- Problem  $\Pi = (P, A, I, G)$ , time steps  $0 \le t \le b$
- Decision variables
  - $p_t$  for all  $p \in P, 0 \le t \le b$  $a_t$  — for all  $a \in A, 0 \le t \le b - 1$
- Initial State Clauses: "specify initial state" for all p ∈ P: {p<sub>0</sub>} if p ∈ I, and {¬p<sub>0</sub>}, otherwise
- Goal Clauses: "specify goal values" for all p ∈ G: {p<sub>b</sub>}

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## The Linear Encoding, II Sequential planning

- Action Precondition Clauses:
   "action implies its preconditions" for all a ∈ A, p ∈ pre(a), 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, p<sub>t</sub>}
- Action Effect Clauses:
  "action implies its add/delete effects"
  for all a ∈ A, p ∈ add(a), 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, p<sub>t+1</sub>}
  for all a ∈ A, p ∈ del(a), 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, ¬p<sub>t+1</sub>}

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## The Linear Encoding, III Sequential planning

Positive Frame Axioms:
 "if a is applied and p ∉ del(a) was true, then p is still true"

for all  $a \in A, p \notin del(a), 0 \le t \le b - 1$ :  $\{\neg a, \neg p_t, p_{t+1}\}$ 

Negative Frame Axioms:
 "if a is applied and p ∉ add(a) was false, then p is still false"

for all  $a \in A, p \notin \mathsf{add}(a), 0 \le t \le b - 1$ :  $\{\neg a, p_t, \neg p_{t+1}\}$ 

 Linearity (Exclusion) Constraints:
 "apply exactly one action at each time step" for all a, a' ∈ A, 0 ≤ t ≤ b − 1: {¬a, ¬a'<sub>t</sub>} for all 0 ≤ t ≤ b − 1: A<sub>t</sub> (do we really need them?)

### Automated (AI) Planning

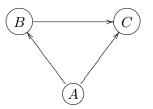
Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information





• 
$$P = \{A, B, C, visB, visC\}, I = \{A\}, G = \{visB, visC\}$$

Actions

$$\begin{aligned} drAB &= \{\{A\}, \{B, visB\}, \{A\}\} \\ drAC &= \{\{A\}, \{C, visC\}, \{A\}\} \\ drBC &= \{\{B\}, \{C, visC\}, \{B\}\} \end{aligned}$$

Blackboard: Linear encoding for b = 1

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex

## A Basic Parallel Encoding, I Parallel planning

- Problem  $\Pi = (P, A, I, G)$ , noops-extended actions  $A^N$ , time steps  $0 \le t \le b$
- Decision variables

$$p_t$$
 — for all  $p \in P, 0 \le t \le b$   
 $a_t$  — for all  $a \in A^N, 0 \le t \le b - 1$ 

 Initial State Clauses: "specify initial state" for all p ∈ P: {p<sub>0</sub>} if p ∈ I, and {¬p<sub>0</sub>}, otherwise

• Goal Clauses: "specify goal values"  
for all 
$$p \in G$$
:  $\{p_b\}$ 

#### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## A Basic Parallel Encoding, II Parallel planning

 Action Precondition Clauses:
 "action implies its preconditions" for all a ∈ A<sup>N</sup>, p ∈ pre(a), 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, p<sub>t</sub>}

 Action Interference Clauses:
 "do not apply interfering actions in the same time step" for all a, a' ∈ A<sup>N</sup>, a ¼a', 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, ¬a'<sub>t</sub>} Automated (AI) Planning

Encodings

 Fact Achievement Clauses:
 "fact implies disjunction of its achievers" for all p ∈ P, 1 ≤ t ≤ b: {¬p<sub>t</sub>} ∪ {a<sub>t-1</sub>|p ∈ add(a)}

### Do we need anything else?

## A Basic Parallel Encoding, II Parallel planning

 Action Precondition Clauses:
 "action implies its preconditions" for all a ∈ A<sup>N</sup>, p ∈ pre(a), 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, p<sub>t</sub>}

 Action Interference Clauses:
 "do not apply interfering actions in the same time step" for all a, a' ∈ A<sup>N</sup>, a ¼a', 0 ≤ t ≤ b − 1: {¬a<sub>t</sub>, ¬a'<sub>t</sub>} Automated (AI) Planning

Encodings

 Fact Achievement Clauses:
 "fact implies disjunction of its achievers" for all p ∈ P, 1 ≤ t ≤ b: {¬p<sub>t</sub>} ∪ {a<sub>t-1</sub>|p ∈ add(a)}

### Do we need anything else?

- Optimal parallel plans are often shorter than optimal sequential plans
- Linearity constraints typically dominate the linear encodings

So in parallel planning-as-SAT we (typically) need fewer iterations and (always) consider smaller formulas!

#### Automated (AI) Planning

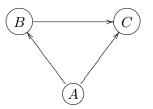
Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information





• 
$$P = \{A, B, C, visB, visC\}, I = \{A\}, G = \{visB, visC\}$$

Actions

$$\begin{aligned} drAB &= \{\{A\}, \{B, visB\}, \{A\}\} \\ drAC &= \{\{A\}, \{C, visC\}, \{A\}\} \\ drBC &= \{\{B\}, \{C, visC\}, \{B\}\} \end{aligned}$$

Blackboard: Basic parallel encoding for b = 1

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex

2-planning graphs extend 1-planning graphs by keeping track of **mutex pairs**; pairs that cannot be **simultaneously** achieved in *i* steps:

- action pair mutex at *i* if actions interfere or their preconditions mutex at *i*
- atom pair mutex at i if all supporting action pairs are mutex at i - 1
- a set of atoms C is mutex at i if it contains a mutex pair at i

Resulting graph:

- $P_0 = \{ p \in I \}$
- $A_i = \{a \in A^N \mid Prec(a) \subseteq P_i \text{ and not mutex at } i\}$
- P<sub>i+1</sub> = {p ∈ Add(a) | a ∈ A<sub>i</sub>}, with sets of action/atom mutex pairs defined as above.

#### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Encodings Mutex information

## The Planning Graph Based Encoding, I

- Problem  $\Pi = (P, A, I, G)$ , noops-extended actions  $A^N$ , time steps  $0 \le t \le b$
- Fact layers  $P_{(t)}$ , action layers  $A_{(t)}$ , fact mutexes (layers)  $EP_{(t)}$ , action mutexes (layers)  $EA_{(t)}$
- Decision variables

 $\begin{array}{l} p_t & - \text{ for all } p \in P, 1 \leq t \leq b \\ a_t & - \text{ for all } a \in A^N, 0 \leq t \leq b-1 \end{array}$ 

- Goal Clauses: "specify goal values" for all  $p \in G$ :  $\{p_b\}$
- Action Precondition Clauses: "action implies its preconditions" for all  $a \in A^N, p \in pre(a), 1 \le t \le b - 1$ :  $\{\neg a_t, p_t\}$

### Automated (AI) Planning

\_ogic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## The Planning Graph Based Encoding, II

 Action Mutex Clauses: "do not apply mutex actions in the same time step"

> for all  $0 \le t \le b - 1, a, a' \in A_{(t)}, \{a, a'\} \in EA_{(t)}$ :  $\{\neg a_t, \neg a'_t\}$

- Fact Achievement Clauses:
   "fact implies disjunction of its achievers" for all p ∈ P, 1 ≤ t ≤ b: {¬p<sub>t</sub>} ∪ {a<sub>t-1</sub>|p ∈ add(a)}
- Fact Mutex Clauses: "do not make two mutex facts TRUE" for all  $1 \le t \le b, p, p' \in P_{(t)}, \{p, p'\} \in EP_{(t)}$ :  $\{\neg p_t, \neg p'_t\}$

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

# Basic Parallel vs. PG-Based Encoding, I

- PG-Based Encoding == Basic Parallel Encoding pruned and enhanced by information contained in 2-Planning Graph
- Pruned: less decision variables  $p_t$  and  $a_t$ , less redundant exclusion clauses
  - Example: We don?t need vars for the initial facts since pre(a) ⊆ I holds anyway for all a ∈ A<sub>(0)</sub>
- Enhanced: more non-trivial (temporal) exclusion clauses  $\{\neg a_t, \neg a_t'\}$  and  $\{\neg p_t, \neg p_t'\}$

#### Automated (AI) Planning

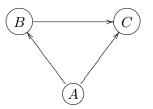
\_ogic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information





• 
$$P = \{A, B, C, visB, visC\}, I = \{A\}, G = \{visB, visC\}$$

Actions

$$\begin{aligned} drAB &= \{\{A\}, \{B, visB\}, \{A\}\} \\ drAC &= \{\{A\}, \{C, visC\}, \{A\}\} \\ drBC &= \{\{B\}, \{C, visC\}, \{B\}\} \end{aligned}$$

Blackboard: PG-based encoding for b = 1

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

# Basic Parallel vs. PG-Based Encoding, I (Recall)

- PG-Based Encoding == Basic Parallel Encoding pruned and enhanced by information contained in 2-Planning Graph
- Pruned: less decision variables  $p_t$  and  $a_t$ , less redundant exclusion clauses
  - Example: We don?t need vars for the initial facts since pre(a) ⊆ I holds anyway for all a ∈ A<sub>(0)</sub>
- Enhanced: more non-trivial (temporal) exclusion clauses  $\{\neg a_t, \neg a_t'\}$  and  $\{\neg p_t, \neg p_t'\}$

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## Basic Parallel vs. PG-Based Encoding, II

- All new clauses (the pruned  $\{\neg p_t\}$  and  $\{\neg a_t\}$ , and all new exclusion clauses) follow from the Basic Parallel CNF  $\Phi$
- By constructing 2-planning graph and basic our SAT encoding on it ...
  - ... we do some of the reasoning devoted to the SAT solver with a specialized algorithm instead
  - But why this part of work and not all the work?
- Potentially exponential savings
  - suppose (since) the SAT solver uses, in constraint propagation, 1-Resolution only
  - for exclusion relations we need 2-Resolution! [Brafman, JAIR-2001]
- What sort of resolution do we need to capture k-planning graphs in the constraint propagation procedure?

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

# Basic Parallel vs. PG-Based Encoding, II

- All new clauses (the pruned  $\{\neg p_t\}$  and  $\{\neg a_t\}$ , and all new exclusion clauses) follow from the Basic Parallel CNF  $\Phi$
- By constructing 2-planning graph and basic our SAT encoding on it ...
  - ... we do some of the reasoning devoted to the SAT solver with a specialized algorithm instead
  - But why this part of work and not all the work?
- Potentially exponential savings
  - suppose (since) the SAT solver uses, in constraint propagation, 1-Resolution only
  - for exclusion relations we need 2-Resolution! [Brafman, JAIR-2001]
- What sort of resolution do we need to capture k-planning graphs in the constraint propagation procedure?

Automated (AI) Planning

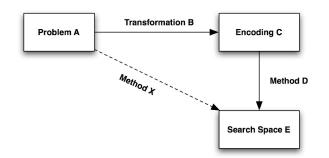
Logic

Constraint satisfaction

Planning via SAT

Framework Encodings Mutex information

## In Front of the Curtains



Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

- What are A, B, C, D, E in our case?
- What is X?

# A Very Simple Encoding

### Use a 1-planning graph

- Problem Π = (P, A, I, G), noops-extended actions A<sup>N</sup>, time steps 0 ≤ t ≤ b, action layers A<sub>(t)</sub>
- Decision variables:  $a_t$  for all  $0 \le t \le b-1$  and  $a \in A_{(t)}$

### Goal Clauses: "at least one achiever"

• for all  $p \in G$ :  $\{a_{b-1} | a \in A_{(b-1)}, g \in \mathsf{add}(a)\}$ 

## • Action Precondition Clauses: "action implies disjunction of its precondition achievers" for all $1 \le t \le b - 1, a \in A_{(t)}, p \in pre(a)$ : $\{\neg a_t\} \cup \{a'_{t-1} | a' \in A_{(t-1)}, p \in add(a')\}$

• Action Interference Clauses: as in basic parallel encoding

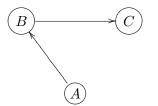
### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT





• 
$$P = \{A, B, C\}, I = \{A\}, G = \{C\}$$

Actions

 $drAB = \{\{A\}, \{B\}, \{A\}\} \\ drBC = \{\{B\}, \{C\}, \{B\}\} \}$ 

Blackboard: "Very simple" encoding for b = 2

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

### Procedure DPLL

bool **DPLL** ( $\Phi$ , partial assignment  $\omega$ ) ( $\Phi', \omega'$ ) := unit-propagation( $\Phi, \omega$ ) if  $\Phi'$  contains empty clause then return FALSE select a variable v not assigned by  $\omega'$ if no such variable exists then return TRUE if **DPLL**( $\Phi', \omega' \cup \{v := 1\}$ ) then return TRUE if **DPLL**( $\Phi', \omega' \cup \{v := 0\}$ ) then return TRUE return FALSE

### Automated (AI) Planning

### Logic

Constraint satisfaction

Planning via SAT

## Behind the Curtains, Unit Propagation, I

### propagate $a_t = \mathsf{TRUE}$

set a IN at tif t > 0 then forall  $p \in \text{pre}(a)$ if all  $a' \in A_{(t-1)}, p \in \text{add}(a')$  are OUT at t-1 then fail if all  $a' \in A_{(t-1)}, p \in \text{add}(a')$  are OUT at t-1, except a''then propagate a'' IN at t-1forall  $a' \in A_{(t)}$  that interfere with apropagate a' OUT at t

#### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

## Behind the Curtains, Unit Propagation, II

## propagate $a_t = \mathsf{FALSE}$

set a OUT at tif t = b - 1 then forall  $g \in add(a) \cap G$ if all  $a' \in A_{(t)}, g \in add(a')$  are OUT at t then fail if all  $a' \in A_{(t)}, g \in add(a')$  are OUT at t, except a''then propagate a'' IN at t - 1if t < b - 1 then ???

#### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

# Behind the Curtains, DPLL

- DPLL makes commitments of the form "I will/won't apply action *a* at time *t*"
- The search state is a sequence of such commitments
- d0 "I will move the truck from x to y at time 17"
- d1 UP: "truck at x at time 17", "truck at y at time 18"
- d1 "I will sell the truck at time 7"
- d2 UP: "no truck at time  $8, \ldots, 25$ "
- d2 FALSE
- d1 "I will not sell the truck at time 7"
  - The order of commitments in the sequence is independent of the time steps *t*
  - ... this is why we also call this undirected search

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

# Behind the Curtains, DPLL

- DPLL makes commitments of the form "I will/won't apply action *a* at time *t*"
- The search state is a sequence of such commitments
- d0 "I will move the truck from x to y at time 17"
- d1 UP: "truck at x at time 17", "truck at y at time 18"
- d1 "I will sell the truck at time 7"
- d2 UP: "no truck at time  $8, \ldots, 25$ "
- d2 FALSE
- d1 "I will not sell the truck at time 7"
  - The order of commitments in the sequence is independent of the time steps *t*
  - ... this is why we also call this undirected search

### Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT

# Branching in Planning: A Big Picture

- Forward: state-space; extend plan head, totally (possibly weakly) ordered
- Backward: regression-space; extend plan tail; totally (possibly weakly) ordered
- **Temporal**: for action a and time i, create splits a[i] = TRUE / a[i] = FALSE
- POCL: Partial Order Causal Link Planning
  - next ...

Automated (AI) Planning

Logic

Constraint satisfaction

Planning via SAT



# OPPA European Social Fund Prague & EU: We invest in your future.