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Coming up with heuristics in a principled way

General procedure for obtaining a heuristic

Solve an easier version of the problem.

Two common methods:

relaxation: consider less constrained version of the problem

abstraction: consider smaller version of real problem

In the previous chapter, we have studied relaxation, which has
been very successfully applied to satisficing planning.

Now, we study abstraction, which is one of the most prominent
techniques for optimal planning.
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Abstracting a transition system

Abstracting a transition system means dropping some
distinctions between states, while preserving the transition
behaviour as much as possible.

An abstraction of a transition system T is defined by an
abstraction mapping α that defines which states of T
should be distinguished and which ones should not.

From T and α, we compute an abstract transition system
T ′ which is similar to T , but smaller.

The abstract goal distances (goal distances in T ′) are used
as heuristic estimates for goal distances in T .
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Abstracting a transition system: example

Example (15-puzzle)

A 15-puzzle state is given by a permutation 〈b, t1, . . . , t15〉 of
{1, . . . , 16}, where b denotes the blank position and the other
components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8–15, i. e., two states are distinguished iff they differ in
the position of the blank or one of the tiles 1–7:

α(〈b, t1, . . . , t15〉) = 〈b, t1, . . . , t7〉

The heuristic values for this abstraction correspond to the cost
of moving tiles 1–7 to their goal positions.
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Abstraction example: 15-puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

real state space

16! = 20922789888000 ≈ 2 · 1013 states
16!
2 = 10461394944000 ≈ 1013 reachable states
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Abstraction example: 15-puzzle

2 6

5 7

3 4 1

1 2 3 4

5 6 7

abstract state space

16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 states

16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 reachable states
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Computing the abstract transition system

Given T and α, how do we compute T ′?

Requirement

We want to obtain an admissible heuristic.
Hence, h∗(α(s)) (in the abstract state space T ′) should never
overestimate h∗(s) (in the concrete state space T ).

An easy way to achieve this is to ensure that all solutions in T
also exist in T ′:

If s is a goal state in T , then α(s) is a goal state in T ′.
If T has a transition from s to t, then T ′ has a transition
from α(s) to α(t).
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Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for α:

For a given state s, the abstract state α(s) must be
efficiently computable.

For a given abstract state α(s), the abstract goal distance
h∗(α(s)) must be efficiently computable.

There are different ways of achieving these requirements:

pattern database heuristics (Culberson & Schaeffer, 1996)

merge-and-shrink abstractions (Dräger, Finkbeiner &
Podelski, 2006)

structural patterns (Katz & Domshlak, 2008)
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Practical requirements for abstractions: example

Example (15-puzzle)

In our running example, α can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
most common algorithms precompute all abstract goal
distances prior to search by performing a backward breadth-first
search from the goal state(s). The distances are then stored in
a table (requires about 495 MB of RAM).
During search, computing h∗(α(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.
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Multiple abstractions

One important practical question is how to come up with
a suitable abstraction mapping α.

Indeed, there is usually a huge number of possibilities, and
it is important to pick good abstractions (i. e., ones that
lead to informative heuristics).

However, it is generally not necessary to commit to a
single abstraction.
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Combining multiple abstractions

Maximizing several abstractions:

Each abstraction mapping gives rise to an admissible
heuristic.

By computing the maximum of several admissible
heuristics, we obtain another admissible heuristic which
dominates the component heuristics.

Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:

In some cases, we can even compute the sum of individual
estimates and still stay admissible.

Summation often leads to much higher estimates than
maximization, so it is important to understand when it is
admissible.
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Maximizing several abstractions: example

Example (15-puzzle)

mapping to tiles 1–7 was arbitrary
; can use any subset of tiles

with the same amount of memory required for the tables
for the mapping to tiles 1–7, we could store the tables for
nine different abstractions to six tiles and the blank

use maximum of individual estimates
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Adding several abstractions: example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1st abstraction: ignore precise location of 8–15

2nd abstraction: ignore precise location of 1–7

; Is the sum of the abstraction heuristics admissible?
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Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15

2nd abstraction: ignore precise location of 1–7

; The sum of the abstraction heuristics is not admissible.
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Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15 and blank

2nd abstraction: ignore precise location of 1–7 and blank

; The sum of the abstraction heuristics is admissible.
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Our plan for the lecture

In the following, we take a deeper look at abstractions and
their use for admissible heuristics.

In the rest of this chapter, we formally introduce
abstractions and abstraction heuristics and study some of
their most important properties.

In the following chapters, we discuss some particular
classes of abstraction heuristics in detail, namely pattern
database heuristics, merge-and-shrink abstractions, and
structural patterns.
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1 Abstractions informally

2 Abstractions formally

3 Projection abstractions (PDBs)

4 Merge-and-shrink abstractions

5 Generalized additive heuristics

6 Structural-pattern abstractions
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Transition systems

Definition (transition system)

A transition system is a 5-tuple T = 〈S,L, T, I,G〉 where

S is a finite set of states (the state space),

L is a finite set of (transition) labels,

T ⊆ S × L× S is the transition relation,

I ⊆ S is the set of initial states, and

G ⊆ S is the set of goal states.

We say that T has the transition 〈s, l, s′〉 if 〈s, l, s′〉 ∈ T .

Note: For technical reasons, the definition slightly differs from
our earlier one. (It includes explicit labels.)
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Transition systems: example

Note: To reduce clutter, our figures usually omit arc labels and
collapse transitions between identical states. However, these
are important for the formal definition of the transition system.
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Transition systems of SAS+ planning tasks

Definition (transition system of an SAS+ planning task)

Let Π = 〈V, I,O,G〉 be an SAS+ planning task.
The transition system of Π, in symbols T (Π), is the transition
system T (Π) = 〈S′, L′, T ′, I ′, G′〉, where

S′ is the set of states over V ,

L′ = O,

T ′ = {〈s′, o′, t′〉 ∈ S′ × L′ × S′ | appo′(s′) = t′},
I ′ = {I}, and

G′ = {s′ ∈ S′ | s′ |= G}.
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Example task: one package, two trucks

Example (one package, two trucks)

Consider the following SAS+ planning task 〈V, I,O,G〉:
V = {p, tA, tB} with

Dp = {L,R,A,B}
DtA

= DtB
= {L,R}

I = {p 7→ L, tA 7→ R, tB 7→ R}
O = {pickupi,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {dropi,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei,j,j′ | i ∈ {A,B}, j, j′ ∈ {L,R}, j 6= j′}, where

pickupi,j = 〈ti = j ∧ p = j, p := i〉
dropi,j = 〈ti = j ∧ p = i, p := j〉
movei,j,j′ = 〈ti = j, ti := j′〉

G = (p = R)
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Transition system of example task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

State {p 7→ i, tA 7→ j, tB 7→ k} is depicted as ijk.

Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupA,L.
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Abstractions

Definition (abstraction, abstraction mapping)

Let T = 〈S,L, T, I,G〉 and T ′ = 〈S′, L′, T ′, I ′, G′〉
be transition systems with the same label set L = L′,
and let α : S → S′.

We say that T ′ is an abstraction of T with abstraction
mapping α (or: abstraction function α) if

for all s ∈ I, we have α(s) ∈ I ′,
for all s ∈ G, we have α(s) ∈ G′, and

for all 〈s, l, t〉 ∈ T , we have 〈α(s), l, α(t)〉 ∈ T ′.
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Abstraction heuristics

Definition (abstraction heuristic)

Let Π be an SAS+ planning task with state space S, and let A
be an abstraction of T (Π) with abstraction mapping α.

The abstraction heuristic induced by A and α, hA,α, is the
heuristic function hA,α : S → N0 ∪ {∞} which maps each state
s ∈ S to h∗A(α(s)) (the goal distance of α(s) in A).

Note: hA,α(s) =∞ if no goal state of A is reachable from α(s)
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Abstraction heuristics: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hA,α({p 7→ L, tA 7→ R, tB 7→ R}) = 3



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

Transition
systems

Abstractions

Abstraction
heuristics

Additivity

Refinements

Practice

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Additive
heuristics

Structural
Patterns

Performance

Consistency of abstraction heuristics

Theorem (consistency and admissibility of hA,α)

Let Π be an SAS+ planning task, and let A be an abstraction
of T (Π) with abstraction mapping α.
Then hA,α is safe, goal-aware, admissible and consistent.
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Orthogonality of abstraction mappings

Definition (orthogonal abstraction mappings)

Let α1 and α2 be abstraction mappings on T .

We say that α1 and α2 are orthogonal if for all transitions
〈s, l, t〉 of T , we have αi(s) = αi(t) for at least one i ∈ {1, 2}.
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Affecting transition labels

Definition (affecting transition labels)

Let T be a transition system, and let l be one of its labels.
We say that l affects T if T has a transition 〈s, l, t〉 with s 6= t.

Theorem (affecting labels vs. orthogonality)

Let A1 be an abstraction of T with abstraction mapping α1.
Let A2 be an abstraction of T with abstraction mapping α2.

If no label of T affects both A1 and A2, then α1 and α2 are
orthogonal.
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Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?
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Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?
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Orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hA1,α1 , . . . , hAn,αn be abstraction heuristics for the same
planning task Π such that αi and αj are orthogonal for all
i 6= j.
Then

∑n
i=1 h

Ai,αi is a safe, goal-aware, admissible and
consistent heuristic for Π.
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

transition system T
state variables: first package, second package, truck
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

LIL

LIR
LRR LRL

ILR

ILL

IIL IIR

IRR

IRL

RLR RLL
RIL

RIR

RRR RRL

abstraction A1

mapping: only consider state of first package
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

LIL

LIR
LRR LRL

ILR

ILL

IIL IIR

IRR

IRL

RLR RLL
RIL

RIR

RRR RRL

abstraction A1

mapping: only consider state of first package
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

ILL

ILR
RLR RLL

LIR

LIL

IIL IIR

RIR

RIL

LRR LRL
IRL

IRR

RRR RRL

abstraction A2 (orthogonal to A1)
mapping: only consider state of second package
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

ILL

ILR
RLR RLL

LIR

LIL

IIL IIR

RIR

RIL

LRR LRL
IRL

IRR

RRR RRL

abstraction A2 (orthogonal to A1)
mapping: only consider state of second package
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Abstractions of abstractions

Theorem (transitivity of abstractions)

Let T , T ′ and T ′′ be transition systems.

If T ′ is an abstraction of T
and T ′′ is an abstraction of T ′,
then T ′′ is an abstraction of T .

If T ′ is a homomorphic abstraction of T
and T ′′ is a homomorphic abstraction of T ′,
then T ′′ is a homomorphic abstraction of T .
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Abstractions of abstractions: example
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transition system T
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Abstractions of abstractions: example
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Transition system T ′ as an abstraction of T
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Abstractions of abstractions: example
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Transition system T ′ as an abstraction of T



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

Transition
systems

Abstractions

Abstraction
heuristics

Additivity

Refinements

Practice

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Additive
heuristics

Structural
Patterns

Performance

Abstractions of abstractions: example
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Transition system T ′′ as an abstraction of T ′
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Abstractions of abstractions: example
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Transition system T ′′ as an abstraction of T
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Coarsenings and refinements

Terminology: Let T be a transition system,
let T ′ be an abstraction of T with abstraction mapping α, and
let T ′′ be an abstraction of T ′ with abstraction mapping α′.

Then:

〈T ′′, α′ ◦ α〉 is called a coarsening of 〈T ′, α〉, and

〈T ′, α〉 is called a refinement of 〈T ′′, α′ ◦ α〉.

Theorem (heuristic quality of refinements)

Let hA,α and hB,β be abstraction heuristics for the same
planning task Π such that 〈A, α〉 is a refinement of 〈B, β〉.
Then hA,α dominates hB,β.

In other words, hA,α(s) ≥ hB,β(s) for all states s of Π.
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Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:

we want to obtain an informative heuristic, but

want to keep its representation small.

Abstractions have small representations if they have

few abstract states and

a succinct encoding for α.
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Counterexample: one-state abstraction
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One-state abstraction: α(s) := const.

+ very few abstract states and succinct encoding for α

− completely uninformative heuristic
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Counterexample: identity abstraction

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Identity abstraction: α(s) := s.

+ perfect heuristic and succinct encoding for α

− too many abstract states
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Counterexample: perfect abstraction
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Perfect abstraction: α(s) := h∗(s).

+ perfect heuristic and usually few abstract states

− usually no succinct encoding for α
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Automatically deriving good abstraction heuristics

Abstraction heuristics for planning: main research problem

Automatically derive effective abstraction heuristics
for planning tasks.

Next we

; study three state-of-the-art approaches
to exploiting abstractions in practice

; consider more closely the issue of additivity
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Outline

1 Abstractions informally

2 Abstractions formally

3 Projection abstractions (PDBs)

4 Merge-and-shrink abstractions

5 Generalized additive heuristics

6 Structural-pattern abstractions
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Pattern database heuristics

The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

The first use for domain-independent planning
is due to Edelkamp (2001).

Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern
databases more effectively, how to find good patterns, etc.

Pattern databases are a very active research area both in
planning and in (domain-specific) heuristic search.

For many search problems, pattern databases are
the most effective admissible heuristics currently known.
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Pattern database heuristics informally

Pattern databases: informally

A pattern database heuristic for a planning task is an
abstraction heuristic where

some aspects of the task are represented in the abstraction
with perfect precision, while

all other aspects of the task are not represented at all.

Example (15-puzzle)

Choose a subset T of tiles (the pattern).

Faithfully represent the locations of T in the abstraction.

Assume that all other tiles and the blank can be anywhere
in the abstraction.
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Projections

Formally, pattern database heuristics are induced abstractions
of a particular class of homomorphisms called projections.

Definition (projections)

Let Π be an SAS+ planning task with variable set V and state
set S. Let P ⊆ V , and let S′ be the set of states over P .

The projection πP : S → S′ is defined as πP (s) := s|P
(with s|P (v) := s(v) for all v ∈ P ).

We call P the pattern of the projection πP .

In other words, πP maps two states s1 and s2 to the same
abstract state iff they agree on all variables in P .
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Pattern database heuristics

Abstraction heuristics for projections are called pattern
database (PDB) heuristics.

Definition (pattern database heuristic)

The abstraction heuristic induced by πP is called a
pattern database heuristic or PDB heuristic.
We write hP as a short-hand for hπP .

Why are they called pattern database heuristics?

Heuristic values for PDB heuristics are traditionally stored
in a 1-dimensional table (array) called a pattern database
(PDB). Hence the name “PDB heuristic”.
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Example: transition system
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Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}
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Example: projection

Abstraction induced by π{package}:
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h{package}(LRR) = 2
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Example: projection (2)

Abstraction induced by π{package,truck A}:
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h{package,truck A}(LRR) = 2
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Example: projection (2)

Abstraction induced by π{package,truck A}:
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Pattern collections

The space requirements for a pattern database grow
exponentially with the number of state variables in the
pattern.

This places severe limits on the usefulness of single PDB
heuristics hP for larger planning task.

To overcome this limitation, planners using pattern
databases work with collections of multiple patterns.

When using two patterns P1 and P2, it is always possible
to use the maximum of hP1 and hP2 as an admissible and
consistent heuristic estimate.

However, when possible, it is much preferable to use the
sum of hP1 and hP2 as a heuristic estimate, since
hP1 + hP2 ≥ max{hP1 , hP2}.
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Criterion for additive patterns

Theorem (additive pattern sets)

Let P1, . . . , Pk be patterns for an SAS+ planning task Π.

If there exists no operator that has an effect on a variable
vi ∈ Pi and on a variable vj ∈ Pj for some i 6= j, then∑k

i=1 h
Pi is an admissible and consistent heuristic for Π.

A pattern set {P1, . . . , Pk} which satisfies the criterion of the
theorem is called an additive pattern set or additive set.
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Finding additive pattern sets

The theorem on additive pattern sets gives us a simple criterion
to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i. e., a set of patterns),
we can use this information as follows:

1 Build the compatibility graph for C.

Vertices correspond to patterns P ∈ C.
There is an edge between two vertices iff no operator
affects both incident patterns.

2 Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.

Computing large cliques is an NP-hard problem, and a
graph can have exponentially many maximal cliques.
However, there are output-polynomial algorithms for
finding all maximal cliques (Tomita, Tanaka & Takahashi,
2004) which have led to good results in practice.
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The canonical heuristic function

Definition (canonical heuristic function)

Let Π be an SAS+ planning task, and let C be a pattern
collection for Π.

The canonical heuristic hC for pattern collection C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP (s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic hC is admissible and consistent.
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Canonical heuristic function: example

Example

Consider a planning task with state variables V = {v1, v2, v3}
and the pattern collection C = {P1, . . . , P4} with
P1 = {v1, v2}, P2 = {v1}, P3 = {v2} and P4 = {v3}.
There are operators affecting each individual variable, and the
only operators affecting several variables affect v1 and v3.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2, P3}, {P3, P4}

What is the canonical heuristic function hC?

Answer: hC = max {hP1 , hP2 + hP3 , hP3 + hP4}
= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}
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Canonical heuristic function: example

Example

Consider a planning task with state variables V = {v1, v2, v3}
and the pattern collection C = {P1, . . . , P4} with
P1 = {v1, v2}, P2 = {v1}, P3 = {v2} and P4 = {v3}.
There are operators affecting each individual variable, and the
only operators affecting several variables affect v1 and v3.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2, P3}, {P3, P4}

What is the canonical heuristic function hC?

Answer: hC = max {hP1 , hP2 + hP3 , hP3 + hP4}
= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}
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Canonical heuristic function: example

Example

Consider a planning task with state variables V = {v1, v2, v3}
and the pattern collection C = {P1, . . . , P4} with
P1 = {v1, v2}, P2 = {v1}, P3 = {v2} and P4 = {v3}.
There are operators affecting each individual variable, and the
only operators affecting several variables affect v1 and v3.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2, P3}, {P3, P4}

What is the canonical heuristic function hC?
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Canonical heuristic function: example

Example

Consider a planning task with state variables V = {v1, v2, v3}
and the pattern collection C = {P1, . . . , P4} with
P1 = {v1, v2}, P2 = {v1}, P3 = {v2} and P4 = {v3}.
There are operators affecting each individual variable, and the
only operators affecting several variables affect v1 and v3.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2, P3}, {P3, P4}

What is the canonical heuristic function hC?

Answer: hC = max {hP1 , hP2 + hP3 , hP3 + hP4}
= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}
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How good is the canonical heuristic function?

The canonical heuristic function is the best possible
admissible heuristic we can derive from C using the
additivity criterion of orthogonality.

However, even better heuristic estimates can be obtained
from projection heuristics using a more general additivity
criterion based on an idea called cost partitioning.
; more on that later.
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Outline

1 Abstractions informally

2 Abstractions formally

3 Projection abstractions (PDBs)

4 Merge-and-shrink abstractions

5 Generalized additive heuristics

6 Structural-pattern abstractions
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Beyond pattern databases

Despite their popularity, pattern databases have some
fundamental limitations (; example on next slides).

In this chapter, we study a recently introduced class of
abstractions called merge-and-shrink abstractions.

Merge-and-shrink abstractions can be seen as a
proper generalization of pattern databases.

They can do everything that pattern databases can do
(modulo polynomial extra effort).
They can do some things that pattern databases cannot.

Initial experiments with merge-and-shrink abstractions
have shown very promising results.

They have provably greater representational power than
pattern databases for many common planning domains.
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Back to the running example
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Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}
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Example: projection

Project to {package}:
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Example: projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR
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Example: projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR
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Limitations of projections

How accurate is the PDB heuristic?

consider generalization of the example:
N trucks, M locations (fully connected), still one package

consider any pattern that is proper subset of variable set V

h(s0) ≤ 2 ; no better than atomic projection to package

These values cannot be improved by maximizing over several
patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with
h(s0) ≥ 3 for tasks of this kind of any size.
Time and space requirements are polynomial in N and M .
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Merge-and-shrink abstractions: main idea

Main idea of merge-and-shrink abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.
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The need for succinct abstraction mappings

One major difficulty for non-PDB abstractions is to
succinctly represent the abstraction mapping.

For pattern databases, this is easy because the abstraction
mappings – projections – are very structured.

For less rigidly structured abstraction mappings, we need
another idea.
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Merge-and-shrink abstractions: idea

The main idea underlying merge-and-shrink abstractions is
that given two abstractions A and A′, we can merge them
into a new product abstraction.

The product abstraction captures all information of both
abstractions and can be better informed than either.
It can even be better informed than their sum.

By merging a set of very simple abstractions, we can in
theory represent arbitrary abstractions of an SAS+ task.

In practice, due to memory limitations, such abstractions
can become too large. In that case, we can shrink them by
abstracting them further using any abstraction on an
intermediate result, then continue the merging process.
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Running example: explanations

Atomic projections – projections to a single state variable
– play an important role in this chapter.

Unlike previous chapters, transition labels are critically
important in this chapter.

Hence we now look at the transition systems for atomic
projections of our example task, including transition labels.

We abbreviate operator names as in these examples:

MALR: move truck A from left to right
DAR: drop package from truck A at right location
PBL: pick up package with truck B at left location

We abbreviate parallel arcs with commas and wildcards (?)
in the labels as in these examples:

PAL, DAL: two parallel arcs labeled PAL and DAL
MA??: two parallel arcs labeled MALR and MARL



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

PDB limitations

Main ideas

Running
example

Synchronized
products

Definition

Example

Properties

M&S
Algorithm

Additive
heuristics

Structural
Patterns

Performance

Running example: atomic projection for package

T π{package} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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Running example: atomic projection for truck A

T π{truck A} :

L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

PDB limitations

Main ideas

Running
example

Synchronized
products

Definition

Example

Properties

M&S
Algorithm

Additive
heuristics

Structural
Patterns

Performance

Running example: atomic projection for truck B

T π{truck B} :

L R

PBL,DBL,MA??,
PA?,DA?

MBLR

MBRL

PBR,DBR,MA??,
PA?,DA?
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Synchronized product of transition systems

Definition (synchronized product of transition systems)

For i ∈ {1, 2}, let Ti = 〈Si, L, Ti, Ii, Gi〉 be transition systems
with identical label set.

The synchronized product of T1 and T2, in symbols T1 ⊗ T2, is
the transition system T⊗ = 〈S⊗, L, T⊗, I⊗, G⊗〉 with

S⊗ := S1 × S2

T⊗ := {〈〈s1, s2〉, l, 〈t1, t2〉〉 | 〈s1, l, t1〉 ∈ T1 and
〈s2, l, t2〉 ∈ T2}

I⊗ := I1 × I2
G⊗ := G1 ×G2
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Synchronized product of functions

Definition (synchronized product of functions)

Let α1 : S → S1 and α2 : S → S2 be functions with identical
domain.

The synchronized product of α1 and α2, in symbols α1 ⊗ α2, is
the function α⊗ : S → S1 × S2 defined as
α⊗(s) = 〈α1(s), α2(s)〉.
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Example: synchronized product

T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : S⊗ = S1 × S2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

A

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

AL
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : I⊗ = I1 × I2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

L ⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

R

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

LR
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : G⊗ = G1 ×G2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

R ⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

RL
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l, 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

PAL

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

PAL,DAL,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

PAL
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l, 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

M???

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

MALR

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

MALR
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l, 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
PBL

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
PAR,DAR,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

PBL
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Example: computation of synchronized product

T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l, 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

M???

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

PAL,DAL,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

MB??
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Synchronized products are abstractions

Theorem (synchronized products are abstractions)

For i ∈ {1, 2}, let Ti be an abstraction of transition system T
with abstraction mapping αi.

Then T⊗ := T1 ⊗ T2 is an abstraction of T with abstraction
mapping α⊗ := α1 ⊗ α2, and 〈T⊗, α⊗〉 is a refinement of
〈T1, α1〉 and of 〈T2, α2〉.
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Synchronized products of projections

Corollary (Synchronized products of projections)

Let Π be an SAS+ planning task with variable set V , and let
V1 and V2 be disjoint subsets of V .
Then T πV1 ⊗ T πV2 = T πV1∪V2 .
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Recovering T (Π) from the atomic projections

By repeated application of the corollary, we can recover all
pattern database abstractions of an SAS+ planning task
from the abstractions for atomic projections.

In particular, by computing the product of all atomic
projections, we can recover the abstraction for the identity
abstraction id = πV .

Corollary (Recovering T (Π) from the atomic projections)

Let Π be an SAS+ planning task with variable set V .
Then T (Π) =

⊗
v∈V T

π{v} .

This is an important result because it shows that the
abstractions for atomic projections contain all information
of an SAS+ task.



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

Generic merge-and-shrink abstractions: outline

Using the results from the previous section, we can develop the
ideas of a generic abstraction computation procedure that
takes all state variables into account:

Initialization step: Compute all abstract transition systems
for atomic projections to form the initial abstraction
collection.

Merge steps: Combine two abstractions in the collection
by replacing them with their synchronized product.
(Stop once only one abstraction is left.)

Shrink steps: If the abstractions in the collection are too
large to compute their synchronized product, make them
smaller by abstracting them further (applying an arbitrary
homomorphism to them).

We explain these steps with our running example.
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Initialization step: atomic projection for package

T π{package} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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Initialization step: atomic projection for truck A

T π{truck A} :

L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
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Initialization step: atomic projection for truck B

T π{truck B} :

L R

PBL,DBL,MA??,
PA?,DA?

MBLR

MBRL

PBR,DBR,MA??,
PA?,DA?

current collection: {T π{package} , T π{truck A} , T π{truck B}}
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First merge step

T1 := T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

current collection: {T1, T π{truck B}}
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Need to simplify?

If we have sufficient memory available, we can now
compute T1 ⊗ T π{truck B} , which would recover the
complete transition system of the task.

However, to illustrate the general idea, let us assume that
we do not have sufficient memory for this product.

More specifically, we will assume that after each product
operation we need to reduce the result abstraction to four
states to obey memory constraints.

So we need to reduce T1 to four states. We have a lot of
leeway in deciding how exactly to abstract T1.

In this example, we simply use an abstraction that leads to
a good result in the end.
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First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL
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MARL
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MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR
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First shrink step

T2 := some abstraction of T1
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First shrink step

T2 := some abstraction of T1

LL LR
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First shrink step

T2 := some abstraction of T1
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First shrink step

T2 := some abstraction of T1

LL LR

A

B
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First shrink step

T2 := some abstraction of T1

LL LR
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First shrink step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB??

MB??

M???D?R

P?R

M???

PBL

DBL

P?L

D?L
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First shrink step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB??

MB??

M???D?R

P?R

M???

PBL

DBL

P?L

D?L

current collection: {T2, T π{truck B}}
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Second merge step

T3 := T2 ⊗ T π{truck B} :

LRL

LRR

LLL

LLR

IL

IR

RL

RR

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

DAR

PAR

D?R

P?R

P?L

D?
L

PAL

DAL

M
A

L
R

M
A

R
L

M
A

L
R

M
A

R
L

PBLDBL

MA??

MA?? MA??

MA??

current collection: {T3}
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Another shrink step?

Normally we could stop now and use the distances in the
final abstraction as our heuristic function.

However, if there were further state variables to integrate,
we would simplify further, e. g. leading to the following
abstraction (again with four states):

LRR
LLL
LRL
LLR

I R

M??? M???M???

M?RL

M?LR

P?L

D?L

D?R

P?R

We get a heuristic value of 3 for the initial state, better
than any PDB heuristic that is a proper abstraction.

The example generalizes to more locations and trucks,
even if we stick to the size limit of 4 (after merging).
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How to represent the abstraction mapping?

Idea: the computation of the abstraction mapping follows the
sequence of product computations

For the atomic abstractions for π{v}, we generate a
one-dimensional table that denotes which value in Dv
corresponds to which abstract state.

During the merge (product) step A := A1 ⊗A2, we
generate a two-dimensional table that denotes which pair
of states of A1 and A2 corresponds to which state of A.

During the shrink (abstraction) steps, we make sure that
the simplified table stays in sync with each individual
merge step.



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

How to represent the abstraction mapping? (ctd.)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

Once we have computed the final abstraction, we compute
all abstract goal distances and store them in a
one-dimensional table.

At this point, we can throw away all the abstractions
– we just need to keep the tables.

During search, we do a sequence of table lookups to
navigate from the atomic abstraction states to the final
abstraction state and heuristic value
; 2|V | lookups, O(|V |) time

Again, we illustrate the process with our running example.
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Abstraction mapping example: atomic abstractions

Computing abstraction mappings for the atomic abstractions is
simple. Just number the states (domain values) consecutively
and generate a table of references to the states:

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

Abstraction mapping example: atomic abstractions

Computing abstraction mappings for the atomic abstractions is
simple. Just number the states (domain values) consecutively
and generate a table of references to the states:

0

2

3

1

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

L R A B

0 1 2 3
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Abstraction mapping example: merge step

For product abstractions A1 ⊗A2, we again number the
product states consecutively and generate a table that links
state pairs of A1 and A2 to states of A:

LL LR

AL AR

BL BR

RL RR
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Abstraction mapping example: merge step

For product abstractions A1 ⊗A2, we again number the
product states consecutively and generate a table that links
state pairs of A1 and A2 to states of A:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Maintaining the mapping when shrinking

The hard part in representing the abstraction mapping is
to keep it consistent when shrinking.

In theory, this is easy to do:

When combining states i and j, arbitrarily use one of them
(say i) as the number of the new state.
Find all table entries in the table for this abstraction which
map to the other state j and change them to i.

However, doing a table scan each time two states are
combined is very inefficient.

Fortunately, there also is an efficient implementation
which takes constant time per combination.



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

Towards a concrete algorithm

We have now described how merge-and-shrink
abstractions work in general.

However, we have not said how exactly to decide

which abstractions to combine in a merge step and
when and how to further abstract in a shrink step.

There are many possibilities here (just like there are many
possible PDB heuristics).

Only one concrete method, called hHHH, has been explored
so far in planning, which we will now discuss briefly.



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Merge steps and
shrink steps

Abstraction
mapping

Concrete
algorithm

Additive
heuristics

Structural
Patterns

Performance

Generic algorithm template

Generic abstraction computation algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction in abs

N : parameter bounding number of abstract states

Questions for practical implementation:

Which abstractions to select? ; merging strategy

How to shrink an abstraction? ; shrinking strategy

How to choose N? ; usually: as high as memory allows
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Merging strategy

Which abstractions to select?

hHHH: Linear merging strategy

In each iteration after the first, choose the abstraction
computed in the previous iteration as A1.
; fully defined by an ordering of atomic projections

Rationale: only maintains one “complex” abstraction at a time

hHHH: Ordering of atomic projections

Start with a goal variable.

Add variables that appear in preconditions of operators
affecting previous variables.

If that is not possible, add a goal variable.

Rationale: increases h quickly
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Shrinking strategy

Which abstractions to shrink?

hHHH: only shrink the product

If at all possible, don’t shrink atomic abstractions, but only
product abstractions.

Rationale: Product abstractions are more likely to contain
significant redundancies and symmetries.
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Shrinking strategy (ctd.)

How to shrink an abstraction?

hHHH: f -preserving shrinking strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

hHHH: Tie-breaking criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be
explored by A∗, so inaccuracies there matter less
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Outline

1 Abstractions informally

2 Abstractions formally

3 Projection abstractions (PDBs)

4 Merge-and-shrink abstractions

5 Generalized additive heuristics

6 Structural-pattern abstractions
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Transition systems of SAS+ planning tasks
Extension

Definition (transition system of an SAS+ planning task)

Let Π = 〈V, I,O,G〉 be an SAS+ planning task.
The transition system of Π, in symbols T (Π), is the transition
system T (Π) = 〈S,L, T, I,G〉, where

S is the set of states over V ,

L = O,

T = {〈s, o, t〉 ∈ S × L× S | appo(s) = t},
I = I, and

G = {s ∈ S | s |= G}.
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Transition systems of SAS+ planning tasks
Extension

Definition (transition system of an SAS+ planning task)

Let Π = 〈V, I,O,G, cost〉 be an SAS+ planning task with
cost : O → R0+ ∪ {∞}.
The transition system of Π, in symbols T (Π), is the transition
system T (Π) = 〈S,L, T, I,G〉, where

S is the set of states over V ,

L = O,

T = {〈s, o, t〉 ∈ S × L× S | appo(s) = t},
I = I, and

G = {s ∈ S | s |= G}.

In short: labels of T (Π) are getting annotated with operator
costs in Π.
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Orthogonality of abstraction mappings
Reminder

Definition (orthogonal abstraction mappings)

Let α1 and α2 be abstraction mappings on T .

We say that α1 and α2 are orthogonal if for all transitions
〈s, l, t〉 of T , we have αi(s) = αi(t) for at least one i ∈ {1, 2}.

What if α1 and α2 are non-orthogonal?

Definition (orthogonal action counting)

Let Π = 〈V, I,O,G, cost〉 be an SAS+ planning task,
and T1 and T2 be two abstractions of T (Π).

We say that action counting in T1 and T2 is orthogonal if for all
operators o ∈ O, we have costi(o) = 0 for at least one
i ∈ {1, 2}.
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Orthogonality of action counting

Definition (orthogonal abstraction mappings)

Let α1 and α2 be abstraction mappings on T .

We say that α1 and α2 are orthogonal if for all transitions
〈s, l, t〉 of T , we have αi(s) = αi(t) for at least one i ∈ {1, 2}.

What if α1 and α2 are non-orthogonal?

Definition (orthogonal action counting)

Let Π = 〈V, I,O,G, cost〉 be an SAS+ planning task,
and T1 and T2 be two abstractions of T (Π).

We say that action counting in T1 and T2 is orthogonal if for all
operators o ∈ O, we have costi(o) = 0 for at least one
i ∈ {1, 2}.
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Action counting orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hT1,α1 , . . . , hTn,αn be abstraction heuristics for the same
planning task Π such that action counting in Ti and Tj is
orthogonal for all i 6= j.
Then

∑n
i=1 h

Ti,αi is a safe, goal-aware, admissible and
consistent heuristic for Π.

What next?

1 Can we further generalize this (sufficient) condition for
additivity?

2 If so, can it be practical?
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Action counting orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hT1,α1 , . . . , hTn,αn be abstraction heuristics for the same
planning task Π such that action counting in Ti and Tj is
orthogonal for all i 6= j.
Then

∑n
i=1 h

Ti,αi is a safe, goal-aware, admissible and
consistent heuristic for Π.

What next?

1 Can we further generalize this (sufficient) condition for
additivity?

2 If so, can it be practical?
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Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the
operator costs cost, cost1, . . . , costk. Let {hi}ki=1 be a set of
arbitrary admissible heuristic functions for {Πi}ki=1, respectively.

If holds cost(o) ≥
∑k

i=1 costi(o) for all operators o, then∑k
i=1 hi is an admissible heuristic for Π.
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Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the
operator costs cost, cost1, . . . , costk. Let {hi}ki=1 be a set of
arbitrary admissible heuristic functions for {Πi}ki=1, respectively.

If holds cost(o) ≥
∑k

i=1 costi(o) for all operators o, then∑k
i=1 hi is an admissible heuristic for Π.

Observations

Generalizes action counting orthogonality

No idea what partition is better? ; Uniform partition?
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Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the
operator costs cost, cost1, . . . , costk. Let {hi}ki=1 be a set of
arbitrary admissible heuristic functions for {Πi}ki=1, respectively.

If holds cost(o) ≥
∑k

i=1 costi(o) for all operators o, then∑k
i=1 hi is an admissible heuristic for Π.

Observations

Generalizes action counting orthogonality

No idea what partition is better? ; Uniform partition?

Still, how to choose among the alternative cost partitions?
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Optimal action cost partitioning

Problem statement

Given

1 a (costs attached) transition system T ,

2 a set of (costs attached) abstractions {Ti}ki=1 of T with
abstraction mappings {αi}ki=1, respectively, and

3 a state s in T ,

determine optimal additive heuristic for T on the basis of
{Ti}ki=1, that is

hopt(s) = max
{costi}

k∑
i=1

h∗i (αi(s)).
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Problems on the way

Optimal additive heuristic for T on the basis of {Ti}ki=1

hopt(s) = max
{costi}

k∑
i=1

h∗i (αi(s)).

Challenges

1 Infinite space of alternative choices {costi}ki=1

2 The optimal choice is state-dependent

3 The process is fully unsupervised
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The LP trick

Main Idea

Instead of, given an action cost partition {costi}ki=1,
independently searching each abstraction Ti using
dynamic programming

1 compile SSSP problem over each Ti into a linear program
Li with action costs being free variables

2 combine L1, . . . ,Lk with additivity constraints
cost(o) ≥

∑k
i=1 costi(a)

3 solution of the joint LP ; hopt(s)
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The LP trick

Main Idea

Instead of, given an action cost partition {costi}ki=1,
independently searching each abstraction Ti using
dynamic programming

1 compile SSSP problem over each Ti into a linear program
Li with action costs being free variables

2 combine L1, . . . ,Lk with additivity constraints
cost(o) ≥

∑k
i=1 costi(a)

3 solution of the joint LP ; hopt(s)
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Single-Source Shortest Paths: LP Formulation

LP formulation

Given: digraph G = (N,E), source node v ∈ N
LP variables: d(v′) ; shortest-path length from v to v′

LP:

max
~d(·)

∑
v′

d(v′)

s.t. d(v) = 0
d(v′′) ≤ d(v′) + w(v′, v′′), ∀(v′, v′′) ∈ E
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Step 1: Compile each SSSP over Ti into Li

LP formulation

Given: abstraction Ti, state s of concrete system T
LP variables: {d(s′) | s′ ∈ Si} ∪ {d(Gi)} ∪ {cost(o, i)}
LP:

max d(Gi)

s.t.


d(s′) ≤ d(s′′) + cost(o, i), ∀〈s′, o, s′′〉 ∈ Ti
d(s′) = 0, s′ = αi(s)
d(Gi) ≤ d(s′), s′ ∈ G(i)
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Step 2: Properly combine {Li}ki=1

LP formulation

Given: abstractions {Ti}ki=1 state s of T
LP variables:

⋃k
i=1{d(s′) | s′ ∈ Si} ∪ {d(Gi)} ∪ {cost(o, i)}

LP:

max
k∑
i=1

d(Gi)

s.t. ∀i


d(s′) ≤ d(s′′) + cost(o, i), ∀〈s′, o, s′′〉 ∈ Ti
d(s′) = 0, s′ = αi(s)
d(Gi) ≤ d(s′), s′ ∈ G(i)

∀o ∈ O : cost(o) ≥
k∑
i=1

cost(o, i)
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Outline

1 Abstractions informally

2 Abstractions formally

3 Projection abstractions (PDBs)

4 Merge-and-shrink abstractions

5 Generalized additive heuristics

6 Structural-pattern abstractions
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Limitations of Explicit Abstractions

Both PDBs and merge-and-shrink are explicit abstractions:
abstract spaces are searched exhaustively

PDBs dimensionality = O(1), size of the abstract space is O(1)
M&S dimensionality = Θ(|V |), size of the abstract space is O(1)

; (often) price in heuristic accuracy in long-run
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Abstractions: Extending the definition

Definition (abstraction, abstraction mapping)

Let T = 〈S,L, T, I,G, 〉 and T ′ = 〈S′, L′, T ′, I ′, G′, 〉
be transition systems with the same label set L = L′,
, and let α : S → S′.

We say that T ′ is an abstraction of T with abstraction
mapping α if

for all s ∈ I, we have α(s) ∈ I ′,
for all s ∈ G, we have α(s) ∈ G′, and

for all 〈s, l, t〉 ∈ T , we have 〈α(s), l, α(t)〉 ∈ T ′ .
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Abstractions: Extending the definition

Definition (abstraction, abstraction mapping)

Let T = 〈S,L, T, I,G, C〉 and T ′ = 〈S′, L′, T ′, I ′, G′, C′〉
be transition systems with the same label set L = L′,
C : S → R0+, C′ : S′ → R0+, and let α : S → S′.

We say that T ′ is an abstraction of T with abstraction
mapping α if

for all s ∈ I, we have α(s) ∈ I ′,
for all s ∈ G, we have α(s) ∈ G′, and

for all 〈s, l, t〉 ∈ T , we have h∗(α(s), α(t)) ≤ C(l).
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Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time
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Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How

Abstracting Π by an instance of a tractable fragment of
cost-optimal planning

/ not many such known tractable fragments

, should find more, and useful for us!
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Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How

Abstracting Π by an instance of a tractable fragment of
cost-optimal planning

/ not many such known tractable fragments

, should find more, and useful for us!
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Here Come the Forks!
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Running Example

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

V = {p1, p2, c1, c2, c3, t}
dom(p1) = dom(p2) = {A,B,C,D,E, F,G, c1, c2, c3, t}
dom(c1) = dom(c2) = {A,B,C,D}
dom(c3) = {E,F,G}
dom(t) = {D,E}
s0, G 7→ see picture

A 7→ loads, unloads, single-segment movements
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Causal Graph + Domain Transition Graphs

A

C

D

B

E

F

G

D E at A at B at C at D at E at F at G

in c!

in c" in t

in c#

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

c! c" c# t

p! p"

p1, p2

c1, c2 c3

t

CG(Π)
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Fork-Decomposition (Additive Abstractions)

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

CG(Π)

{ΠGf
v

,ΠG if
v

}v∈V

ΠGf
c1

ΠG if
p1

Π

+ ensuring proper action cost partitioning
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Action Cost Partitioning = Gluing Things Together

;
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Works?
Problem!

Forks and Inverted Forks are Hard ...

/ Even non-optimal planning for problems with
fork and inverted fork causal graphs is
NP-complete (D & Dinitz, 2001).

/ Even if the domain-transition graphs of all
variables are strongly connected, optimal
planning for forks and inverted forks remains
NP-hard (Helmert, 2003-04).

; Shall we give up?
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Tractable Cases of Planning with Forks

Theorem (forks)

Cost-optimal planning for fork problems with root r ∈ V is
poly-time if |dom(r)| = 2.

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with root
r ∈ V is poly-time if |dom(r)| = O(1).
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Tractable Cases of Planning with Forks
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Theorem (inverted forks)

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with root
r ∈ V is poly-time if |dom(r)| = d = O(1).

Proof sketch (Construction)

(1) Create all Θ(dd) cycle-free paths from s0[r] to G[r] in
DTG(r,Π).

(2) For each u ∈ pred(r), and each x, y ∈ dom(u), compute
the cost-minimal path from x to y in DTG(u,Π).

(3) For each path in DTG(r,Π) generated in step (1),
construct a plan for Π based on that path for r, and the
shortest paths computed in (2).

(4) Take minimal cost plan from (3).
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Mixing Causal-Graph & Variable-Domain
Decompositions

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

{ΠGf
v

,ΠG if
v

}v∈V

CG(Π)

ΠGf
c1

ΠG if
p1

Π

φc1,i : dom(c1) !→ {0, 1} φ′

p1,i : dom(p1) !→ {0, . . . , k}

ΠG if

p1,i
ΠGf

c1,i

+ ensuring proper action cost partitioning



Automated
(AI) Planning

Abstractions:
informally

Abstractions:
formally

PDB
heuristics

Merge &
Shrink
Abstractions

M&S
Algorithm

Additive
heuristics

Structural
Patterns

Performance

Planning / Logistics-00
Expanded nodes

# h∗ HHH105 hF hFI + opt
nodes time nodes time nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4
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Planning / Logistics-00
Expanded nodes and Time

# h∗ HHH105 hF hFI + opt
nodes time nodes time nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4
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Planning / Logistics-00
Shall we redefine the notion of success?...

# h∗ HHH105 hF hFI + opt
nodes time nodes time ♠ nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4
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Planning / Logistics-00
No. Structural pattern databases!

# h∗ HHH105 hF hFI + opt
nodes time nodes time ♠ nodes time

01 20 21 0.05 21 10.49 0.27 21 20.82
02 19 20 0.04 20 10.4 0.27 20 20.36
03 15 16 0.05 16 5.18 0.27 16 10.85
04 27 28 0.33 28 22.81 0.33 28 47.42
05 17 18 0.34 18 11.72 0.33 18 21.63
06 8 9 0.33 9 2.99 0.33 9 8.89
07 25 26 1.11 26 26.88 0.41 26 53.81
08 14 15 1.12 15 10.37 0.43 15 21.19
09 25 26 1.14 26 27.78 0.41 26 51.52
10 36 37 4.55 37 426.07 3.96 37 973.46
11 44 2460 4.65 1689 14259.8 4.25 45 1355.23
12 31 32 6.5 32 374.48 4.68 32 876.9
13 44 7514 6.84 45 702.29 4.63 45 1621.74
14 36 37 8.94 37 474.8 5.12 37 1153.85
15 30 31 8.84 31 448.86 5.12 31 1052.46
16 45 29319 17.35 46 3517.25 24.73 46 7635.96
17 42 1561610 45.61 43 3297.69 24.13 43 7192.51
18 48 199428 24.95 697 24.73 49 10014.3
19 60 21959 33.61 61 15625.5
20 42 6095 24.9 43 4325.45 29.61 43 9470.85
21 68 106534 61.54 69 22928.4
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Empirical Evaluation

domain solved hF hI hFI MS104 MS105 HSP∗F Gamer blind hmax
airport 20 16 17 16 16 16 15 11 17 20
blocks 30 21 18 18 18 20 30 30 18 18
depots 7 7 4 4 7 4 4 4 4 4
driverlog 12 11 12 11 12 12 9 11 7 8
freecell 5 5 4 4 5 1 5 2 4 5
grid 2 1 1 1 2 2 0 2 1 2
gripper 20 7 7 7 7 7 6 20 7 7
logistics 22 22 16 16 16 21 16 20 10 10
logistics 7 6 4 5 4 5 3 6 2 2
miconic 85 51 50 50 54 55 45 85 50 50
mprime 25 21 18 21 21 12 8 9 19 24
mystery 20 20 16 20 16 12 11 8 17 17
openstacks 7 7 7 7 7 7 7 7 7 7
pathways 4 4 4 4 3 4 4 4 4 4
pipes-notank 22 14 15 14 20 12 13 11 14 17
pipes-tank 14 10 9 7 13 7 7 6 10 10
psr-small 50 48 49 48 50 50 50 47 48 49
rovers 7 6 7 6 6 7 6 5 5 6
satellite 6 6 6 6 6 6 5 6 4 5
schedule 44 43 34 39 20 0 11 3 28 30
tpp 6 6 6 6 6 6 5 5 5 6
trucks 9 6 7 7 6 5 9 3 5 7
zenotravel 11 11 11 11 11 11 8 10 7 8

solved 435 349 322 328 326 282 277 315 293 316
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