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Constraint Satisfaction Problem

Given < X, D, C > where:
@ X = {xy,..,X,} is a set of n variables.
@ D =1{di,...,d,} is a set of n domains.
@ C ={c1,..,cm} is a set of m constraints.

Find solution = (x; = v1 € di, ..., X, = v, € d,) such that for all
constraints, value combinations are allowed by relations.

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables
in X and their values from D, so that P(X,D) — {0,1}
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Multi-agent Constraint Satisfaction

Given < X, D, C, A > where:
@ X = {xy,..,X,} is a set of n variables.
@ D={d,...,dn} is a set of n domains.
@ C ={c1,..,cm} is a set of m constraints.

@ A=1{a1,..,a,} is a set of n agents, not necessarily all
different.

Find solution = (x; = v; € d1, ..., X, = Vv, € d,;) such that for all
constraints, value combinations are allowed by relations.
= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables
in X and their values from D, so that P(X,D) — {0,1}

Tuesday, November 27, 12



Example

{ T3: ‘
| {a,b}
. {ab |
T5:
{a,b}
T1: |
{a,b}
f T4:
\ {a,b,c}
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Example
CSP model:

@ Variables = choice of frequency
@ Domains = frequency bands
@ Constraints = inequalities between overlapping ranges

@ Agents control transmitters

/[XZ:{a, }} 7£ "[x3:{a, }}\
7&

£
N

/
[xl:{a, }J [XS:{a, }]
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\[x4: {a, ,C}J/
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Multi-agent Constraint Satisfaction

Given < X, D, C, A > where:
@ X = {xy,..,X,} is a set of n variables.
@ D={d,...,dn} is a set of n domains.
@ C ={c1,..,cm} is a set of m constraints.

@ A=1{a1,..,a,} is a set of n agents, not necessarily all
different.

Find solution = (x; = v; € d1, ..., X, = Vv, € d,;) such that for all
constraints, value combinations are allowed by relations.
= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables
in X and their values from D, so that P(X,D) — {0,1}
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Multiagent Constraint Optimization

Given < X, D, C, A > where:

@ X = {xy,..,X,} is a set of n variables.
@ D =1{di,...,d,} is a set of n domains.
@ C ={c1,..,cm} is a set of m constraints.

@ A=1{a1,..,a,} is a set of n agents, not necessarily all
different.

Find solution = (x; = v € dy, ..., X, = v, € d,) such that for all
the overall cost of the assignment is minimized

Cost ({vi,..;Vn}) = Z Cz‘({Vl,..,V-n})

Ve, el
C = represented as a list of cost functions on 1 ... n variables in
X and their values from D, so that P(X,D) — R
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Solving CSP Ol

e Importance of CSP: large theory and tools for computing solutions

e 2 common methods:

— backtrack search: assign one variable at a time, backtrack when no
assignment without satisfying constraints.

— local search: start with random assignment, make local changes to reduce
number of constraint violations.
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Multiagent/Distributed CSP & COP

Problem is distributed in a network of agents.

Each variable belongs to one agent who is responsible for setting
its value (typically these are connected to complex local
subproblems).

Constraints are known to all agents with variables in it.

Distributed # parallel: distribution of variables to agents cannot be
chosen to optimize performance.

WHY?
— Real world problems are distributed, no agreement on a common model.

— Costly to formalize constraints and preferences for all possible cases.

— No trusted third party, privacy concerns.

— but generally not efficiency!
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Multiagent/Distributed CSP & COP

e Top-down approaches:
— Pruning algorithms: used mainly as a preprocessing step
* Filtering, Hyper-resolution
— Search algorithms:
* Chronological (Synchronous) Backtracking,
* Asynchronous Backtracking, ADOPT

e Bottom-up approaches:
* Distributed breakout

10
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Multiagent/Distributed CSP & COP

e Top-down approaches:
— Pruning algorithms: used mainly as a preprocessing step
* Filtering, Hyper-resolution
— Search algorithms:
* Chronological (Synchronous) Backtracking,
— A few agents are active, most are waiting
— Active agents take decisions with updated information
— Low degree of concurrency / poor robustness
— Algorithms: direct extensions of centralized ones
* Asynchronous Backtracking, ADOPT
— All agents are active simultaneously
— Information is less updated, obsolescence appears
— High degree of concurrency / robust approaches

— Algorithms: new approaches
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Domain Pruning Algorithms Ol

e Filtering algorithm:

— For each node Z; repeatadly execute Revise(x;, ;) with each neighbour z;.

procedure Revise(z;, ;)
forall v; € D; do

if there is no value v; € D; such that v; is consistent with v; then
| delete v; from D,

e Filtering terminates when no further elimination happens:
— The solution is found if there is one value for each variable only
— If there is an empty set assigned for one of the variables, -> no solution

— If there is non-singleton set for one variable, the result is nonconlusive

12
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Domain Pruning Algorithms

{red}

X3
{red, blue} . {red, blue, green}

13

Ol




Domain Pruning Algorithms

{red}

X3
{sed: blue} . {red, blue, green}
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Domain Pruning Algorithms

{red}

X3
{sed: blue} . {#eds blue, green}
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Domain Pruning Algorithms

{red}

X3
{sed: blue} . {sed—blaes green}
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Domain Pruning Algorithms

{red} {red}

X3

{red, blue} . {red, blue, green} {red, blue}
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Domain Pruning Algorithms

{red} {red}

X3

{red, blue} . {red, blue, green}
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Domain Pruning Algorithms

{red} {red}

X3
{red, blue} . {red, blue, green}

{red, blue}

{red, blue} # {red, blue}

19

Tuesday, November 27, 12

Ol



Domain Pruning Algorithms

{red}

X3

{red, blue} # {red, blue, green}

{red, blue}

{red, blue} # {red, blue}

20

{red}

{red, blue} # {red, blue}
{red, blue, green}

) - -

X2 X3
{red, blue, green} # {red, blue, green}
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Filtering based on hyper-resolution Ol
e Works with the concept of forbidden combinations: NOGOOD (NG)

—example: —(z; = red Az, = red)

e Unit resolution:

{red}

r, = red
—(z; =red N\ xy = red)

—(xo = red)

X3

_ {red, blue} ' {red,blué,green}
e Hyper-resolution:

A VA, V---V A,
—'(Al/\Al,l/\Al,Q/\°")
ﬁ(142/\142’1/\142-’2/\"')

—1(14.,", N Am.,l A Arn,? AREE )

~(Ay A ANAg Ao ANAp i A---)
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Filtering based on hyper-resolution Ol

e Each agent repeatedly generates new constraints for his neighbors,
notifies them of these new constraints, and prunes his own domain
based on new constraints passed to him by his neighbors.

procedure ReviseHR(NG;, NG?)
repeat

NG; — NG; UNG;T
let NG denote the set of new Nogoods that 7 can derive from NG; and
his domain using hyper-resolution
if NG is nonempty then
send the Nogoods NG to all neighbors of @
if {} € NG then
| stop

until there is no change in i’s set of Nogoods N G,

22

Tuesday, November 27, 12



Filtering based on hyper-resolution Ol

e As hyper-resolution is sound and complete for propositional logic it
gave a rise to an efficient while complete distributed CSP algorithm.

e The algorithm is guaranteed to converge in the sense that after
sending and receiving a finite number of messages, each agent will
stop sending messages and generating Nogoods.

23
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Filtering based on hyper-resolution Ol

NOGOODS:

{»’131 = red,rs = Ted}, {5131 = red,rs = red}

{red, blue}

{x, = blue,zy = blue}, {x, = blue,x3 = blue}

ry =redV x; = blue
—(z; =red N\ xo = red)
= (2, = blue N\ x3 = blue)

—(xo = red N\ x3 = blue)

NOGOODS:
{25 = red, x5 = blue} {xs = blue,x3 = red}.

Ty = redV xo = blue
ro = red N\ x3 = blue)
o = blue N\ x3 = blue)

al
al

—(x3 = blue)

similarly:

—(x3 = red)
24
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Chronological Backtracking Ol

Agents agree on an variable order and repeat:

@ send partial solution up to xx_1 to k-th agent.
@ k-th agent generates the next extension to this partial solution.
© if solution cannot be extended consistently, kK «+ k — 1.
@ if solution can be extended consistently, k < k + 1.
@ if Kk <1, stop: unsolvable.
Q if kK > n, assigment = solution.
a1wa2 ()m ak m (man
z\\ /% \\~f’£ \\~«’:1

Backtrack
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Chronological Backtracking Ol

Agents agree on an variable order and repeat:

@ send partial solution up to xx_1 to k-th agent.
@ k-th agent generates the next extension to this partial solution.
© if solution cannot be extended consistently, kK «+ k — 1.
@ if solution can be extended consistently, k < k + 1.
@ if Kk <1, stop: unsolvable.
Q if kK > n, assigment = solution.
a1wa2 ()m ak m (man
z\\ /% \\~f’£ \\~«’:1

Backtrack
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Towards optimization:
Synchronous branch-bounds

e Extend synchronous backtracking to optimization
— every constraint contributes a cost.
— upper bound = lowest cost of full assignment found so far.
— partial assignment extended while cost < upper bound.

— result = solution with lowest cost

27
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Improvements Ol

Synchronous backtracking allows common CSP heuristics:
@ forward checking: send partial solution to all higher agents.

@ dynamic variable ordering: select next variable according to
domain size.

@ backjumping: reduce k to last variable involved in conflict.

Forward e ——

Checking .l T ~o
= ~ -~ ~~‘~ S~
B o e —— So -~ So
S ~ =~ ~
" A ~ W

(x1=v1) (x1=v1,x2=v2) » (x1=v1,..,xk=vk) (x1=v1,...,xn=vn)
Q) P _ ]
x1 ~ 7 X2 \~~-———” xk XI

BacKirack Backjump
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Improvements Ol

Distributed forward checking:
@ A(xk) sends (x1 = vi,..,xk = vx) to all A(xj), j > k

@ A(xj) removes inconsistent values and initiates backtrack at
X whenever domain becomes empty

Can be done aynchronously (asynchronous forward checking)
Dynamic variable ordering:

@ A(xj) sends back size of remaining domain for x;
@ A(xk) chooses smallest one to be xx.1

Backjumping:
reduce k to last variable involved in current conflict.

29
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Performance metrics Ol

@ non-concurrent constraint checks (NCCC): longest chain of
constraint checks with serial dependency (ignores message
delivery time).

@ concurrent time: (simulated) time taken in parallel execution.

@ wall clock time (time taken by the simulator).

@ number of messages (ignores computation time and size of
messages).

@ amount of information exchanged (ignores computation time).

30
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Asynchronous backtracking (ABT) Ol

e Assumptions:

— Agents communicate by sending messages, agent send messages to others,
iff it knows their identifiers (directed communication/no broadcasting)

— The delay transmitting a message is finite but random, for any pair of
agents, messages are delivered in the order they were sent

— Agents know only the constraints in which they are involved

— Each agent owns a single variable, constraints are binary

— Asynchronous algorithm: Agents work in parallel without synchronization.
* all agents active, take a value and inform
* no agent has to wait for other agents

— Global priority ordering among variables, and agents (to avoid cycles)

— Constraints are directed: from higher-priority to lower-priority agents

« ABT plays in asynchronous distributed context the same role as
backtracking in centralized
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ABT: Core principles Ol

e Higher priority agent (j) informs the lower one (k) of its assignment

e Lower priority agent (k) evaluates the constraint with its own
assignment

— If permitted: no action

— else: look for a value consistent with |

* If it exists k takes that value

* else the agent view of k becomes a NOGOOD (constraint) & backtrack

« NOGOQOD: conjunction of (variable, value) pairs of higher priority
agents, which removes a value of the current one

— are required to ensure systematic traversal of search space in
asynchronous, distributed context
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How ABT operates! Ol

ABT agents: asynchronous action; spontaneous assignment

Assignment: j takes value a, j informs lower priority agents

Backtrack: k has no consistent values with higher-priority agents,

k resolves nogoods and sends a backtrack message

New links: j receives a nogood mentioning i, unconnected with J; j
asks / to set up a link

Stop: "no solution” detected by an agent, stop

Solution: when agents are silent for a while (quiescence), every

constraint is satisfied => solution; detected by specialized
algorithms
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ABT Data Structures

o AgentView (current assignment context):

— values of higher-priority constrained agents

« NOGOOD store: each removed value has justifying NOGOOD

— stored NOGOOD must be active wrt to AgentView

34

/

X: X
a

=
b

a

b

d

= b

anj

X; =

Ol

Tuesday, November 27, 12



ABT message passing

when received (Ok?, (A;, d;)) do
add (A,, d;) to agent_view
L check_agent_view
when received (Nogood, nogood) do
add nogood to Nogood list
forall (A;, d;.) € nogood, if A, is not a neighbor of A; do
add (A;., d) to agent_view
L request Ay to add A; as a neighbor
 check_agent_view

procedure check_agent_view
when agent_view and current_value are inconsistent do

if no value in D; is consistent with agent_view then
| backtrack

else
select d € D, consistent with agent_view

current_value «— d
send (ok?, (A4;, d)) to lower-priority neighbors

3!

Ol
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ABT message passing Ol

procedure backtrack

nogood < some inconsistent set, using hyper-resolution or similar procedure
if nogood is the empty set then
‘ broadcast to other agents that there is no solution

terminate this algorithm
else
select (A;,d;) € nogood where A; has the lowest priority in nogood
send (Nogood, nogood) to A;
remove (A;,d;) from agent_view
check_agent_view

36
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Example Ol

Variables x,, x,,x5; D, ={b, a}, D,={a}, D,={a, b}

3 agents, lex ordered: % le e
Agent1l Agent?2 Agent3

2 difference constraints: ¢,; and c,;

Constraint graph: G .
Value-sending agents: x, and x, ) X
/ %

X

Constraint-evaluating agent: x; ,

Each agent checks constraints of incoming links: Agent,
and Agent, check nothing, Agent, checks c,; and c,;

37
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Example

D,={ba} X4

20
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temporary
deleted

Example

D,={ba} X4

o v
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temporary

Example

deleted
D,={ba} X1
b X{ .
X, = +
X b=x,#a
D3={ar b} 3

A link request

Dl={b,a} Xl
\ } D,={a}

=a
D3={OJ"}

<4V
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temporary

Example

deleted
D,={ba} X1
b X{ .
X; = +
X b=x,#a
D3={ar b} 3

A link request

D,={b,a} %1
\}Dz {a}

=a
D3={0:5}

“+1
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temporary

Example

deleted
D,={ba} X1
b X{ .
X; = +
X b=x,#a
D3={ar b} 3

A link request

D,={b,a} %1
\}Dz {a}

=d
D3={0:5}
DI:{V’G} X1 :>X1 ¢ b
= D,={a}
Z
X2 =a
D;={a, b} X3

s VA
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temporary

Example

deleted
D,={ba} X1
b X{ .
X; = +
X b=x,#a
D3={ar b} 3

A link request

D,={b,a} %1
\}Dz {a}

=d
D3={0:5}
DI:{V’G} X1 :>X1 ¢ b
= D,={a}
Z
X2 =a
D;={a, b} X3

<40
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Exam Ie X2: 3 7+ x3:5 O'
p #/( ;7o J\#

/ N
x1:a [XS: 3 j
=] =

message(s) | action
a> | OK(x1=a)
az | OK(xp=a)
d4g DK(x1=a)
as | 0OK(x3=a)
DK(X4=a)

eeeeeeeeeeeeeeeeeeeee



Exam Ie X2: a # > x3: 2
P #/( ;A }\#

=)

e #

message(s) | action
ay | OK(x3=a) | x2 <D
az | OK(xp=a) X3 < b
d4 OK(x1=a) Xg4 <— b
as | OK(xz=a) | x5 < b

DK(X4=a)

N

G

Ol
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ExamPIe X2 # X3:
AN,
/ AW
[xl:a{ &7
message(s) | action
az | OK(xo=b) | x3 < a
as | OK(x3=b) | x5 < a

OK (x2=b)

eeeeeeeeeeeeeeeeeeeee



E | Ol
xample 7/( }#of }\#

‘ :
(- { [/7 )

T~

message(s) | action
as | OK(x3=a) inconsistent!
X3 — a = Xsg 75 a
Xg = b= Xg 75 b

as sends a nogood to ay:
v = b, cond = (x3 = a), tag = x5 cost = 1
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Example X2: # > x3:2 Ol
e Az ) { N

/ N

x1: a [xS:a ]
| { / S
\[x4: j/

message(s) | action
as | OK(x3=a) inconsistent!
X3 — a = Xsg 75 a
X, =b= X5 #Db

as sends a nogood to ay:
v = b, cond = (x3 = a), tag = x5 cost = 1
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Example X2: # > x3:2 Ol
e Az ) { N

/ N

x1: 2 [XS: b ]
| { y S
\{ch j/

message(s) | action
as | OK(x3=a) inconsistent!
X3 — a = Xsg 75 a
Xg = b= Xg 75 b

as sends a nogood to ay:
v = b, cond = (x3 = a), tag = x5 cost = 1
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Example

Figure 1.6: Cycle 1 of ABT for four
queens. All agents are active.

50
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Example

Figure 1.7: Cycle 2 of ABT for four
queens. Ao, As; and A, are active. The
Nogood message is A, = 1 A Ay, =

Figure 1.6: Cycle 1 of ABT for four
queens. All agents are active.

Figure 1.8: Cycle 3. Only Aj; is active.
- The Nogood message is A, = 1 —

A, £ 3.
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Example

Figure 1.7: Cycle 2 of ABT for four
queens. As, A; and A, are active. The
Nogood message is A, = 1 N Ay, =

52

Figure 1.8: Cycle 3. Only A; is active.
The Nogood message is A, = 1 —

A, #3.

Ol
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Example Ol

Figure 1.8: Cycle 3. Only A; is active. Figure 1.9: Cycles 4 and 5. A,, As and
The Nogood message is A, = 1 — A, are active. The Nogood message is
A27é3 A1:1AA2:4—>A3#4

53
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Example

Figure 1.10: Cycle 6. Only A, is active.
The Nogood messageis A; = 1NAy =

Figure 1.9: Cycles 4 and 5. A,, As and
A, are active. The Nogood message is

A1:1AA2=4—>A3#4

Figure 1.11: Cycles 7 and 8. A; is ac-
tive in the first cycle and A, is active in
the second. The Nogood messages are

A1=1—>A27é4andA17él.

54
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Example

Figure 1.11: Cycles 7 and 8. Aj is ac-
tive in the first cycle and A, is active in
the second. The Nogood messages are

A1=1—>A27é4andA17é1.

Figure 1.13: Cycle 10. Only A; is ac-

tive.
55
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