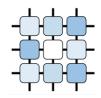


OPPA European Social Fund Prague & EU: We invest in your future.



GAMNEP Game-theoretic approach to network intrusion detection

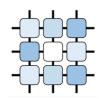
Michal Pechoucek (PI), Karel Bartos , Branislav Bosanky, Martin Grill, Jan Jusko, Pavel Jisl, Martin Komon, Viliam Lisy, Tomas Pevny, Radek Pibil, Martin Rehak, Jan Stiborek, Michal Svoboda

Czech Technical University in Prague

Outline

CAMNEP Intrusion Detection System

GAMNEP Project Objectives


Adversarial Plan Recognition Game (APRG)

Monte-Carlo Tree Search

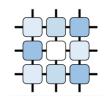
Solving APRG

Experimental Results

CAMNEP: Intrusion detection system

Goal: Identify illegitimate traffic and report it to the operator High accuracy vs. low number of **false positives**

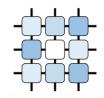
network flow data (no deep packet inspection)

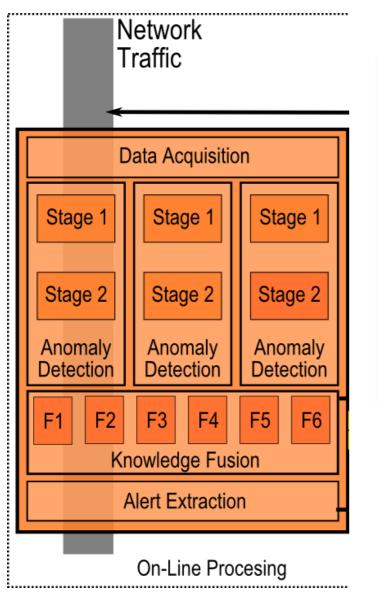

Date flow start	Duration Proto	Src IP Addr:Port	Dst IP Addr:Port	Packets	Bytes	Flows
2009-03-20 01:11:12.923	364.932 TCP	147.251.198.84:2430 ->	· 78.154.195.124:47575	8699	8.1 M	104
2009-03-20 01:12:38.215	276.256 UDP	92.240.244.30:27022 ->	• 147.251.211.107:27005	19266	4.1 M	72
2009-03-20 01:11:51.690	308.352 TCP	62.67.50.133:80 ->	147.251.68.5:3671	41696	53.3 M	55
2009-03-20 01:12:18.467	292.902 TCP	91.66.122.66:53858 ->	• 147.251.215.168:23314	18189	1035699	51
2009-03-20 01:12:01.886	337.372 TCP	64.15.156.212:8000 ->	· 147.251.146.27:1150	2028	2.0 M	47
2009-03-20 01:16:56.525	28.134 TCP	147.251.215.235:2517 ->	· 213.134.25.222:27192	343	269375	45
2009-03-20 01:12:39.400	299.943 UDP	147.175.185.54:1693 ->	• 147.251.206.207:29359	18214	2.4 M	44
2009-03-20 01:15:42.653	15.283 TCP	77.75.73.48:25 ->	• 147.251.4.40:40166	186	16009	43
2009-03-20 01:13:46.343	213.639 TCP	147.251.210.122:55628 ->	66.55.141.34:80	3864	155898	43
2009-03-20 01:08:00.699	578.690 TCP	147.251.211.172:64037 ->	· 217.162.223.125:14817	4900	215352	41

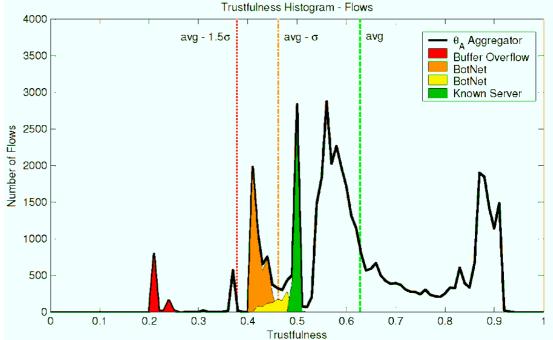
anomaly detection (no pattern matching)

Zero-day attacks

Unusual legitimate behavior (changes in the network) Scalability

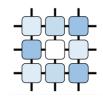

Anomaly Detection

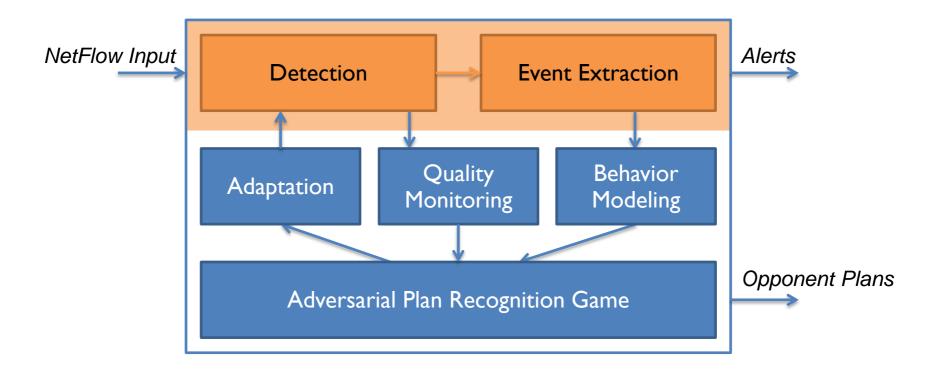


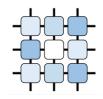

Method/Attack	Malware Brute force	Horizontal scanning	Vertical Sc. Fingerprint.	DoS/DDoS Flooding/Spoof.	
MINDS	***	****	****	***	
Xu	**	****	***	***	
Xu-dst IP	*	*	**	****	
Lakhina - Volume	**	***	***	****	
Lakhina - Entropy	***	****	**	***	
TAPS	***	****	****	**	

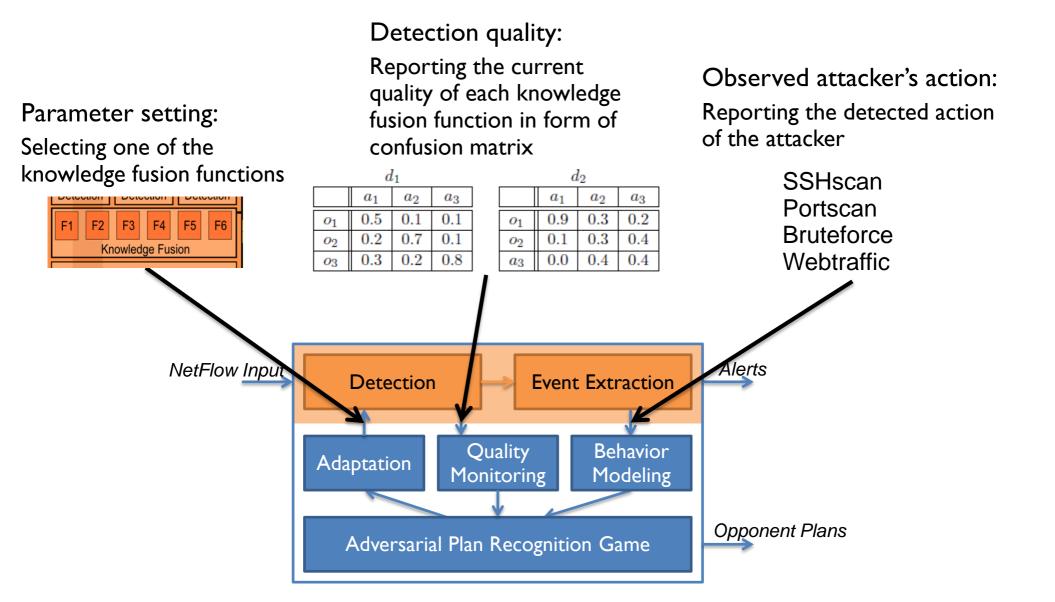
Entropy modeling, Trend modeling, Volume modeling, Principal components analysis, Information-theoretical measures

Inside CAMNEP



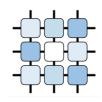



Event Extraction: Converts the statistics into actionable output


GAMNEP Concept

GAMNEP – IDS Interface

Game Model Assumptions


Realistic assumptions

Both players, the attacker and the defender, are **rational** The defender can use only **one classier** at a time The quality of the classifiers **does not change** Both players know the full **plan library** of the attacker The **available classifiers** and their quality are known to both

Simplifying assumptions

Everybody knows when the game starts All actions of the attacker have equal length

Adversarial Plan Recognition Game

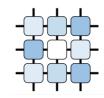
Actions

Attacker: One action per stage from an attack plan Defender: One of the classifiers in each stage

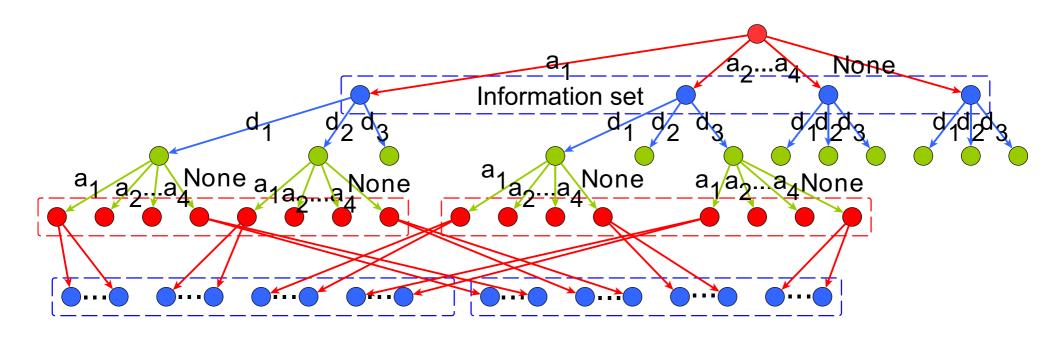
Information

Attacker: Does not gain any information during the game Defender: Noisy observations of the attacker's action in each stage

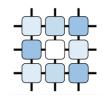
Utilities


Zero-sum: The attacker wants to execute the most dangerous plan unobserved

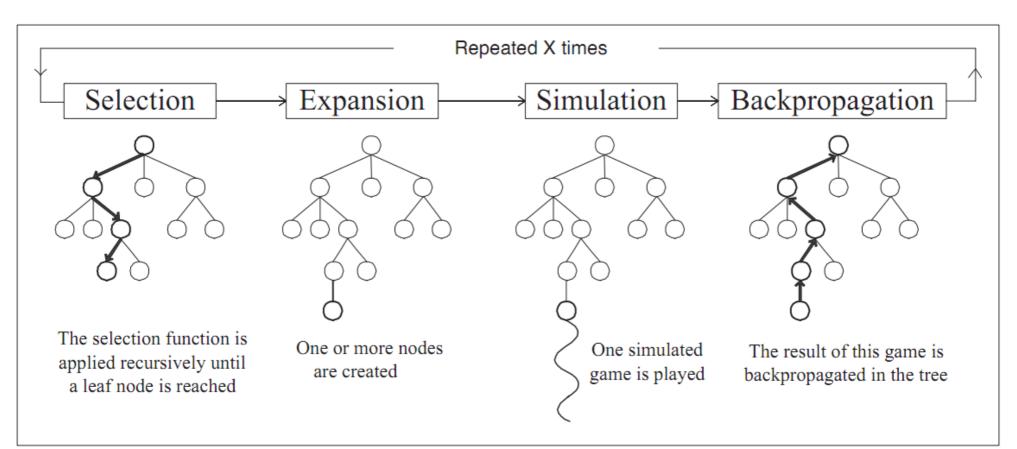
$$u_A(a_1 \dots a_h, d_1 \dots d_h, o_1 \dots o_h) = \frac{g(a_1 \dots a_h)}{1 + \sum_{i \in \{1 \dots h\}; o_i = a_i} 1}$$

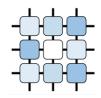

Solution

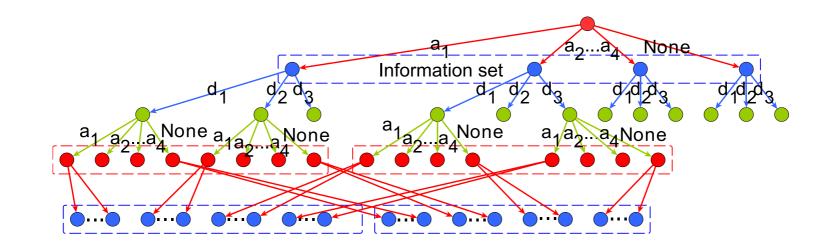
Action selection: Nash equilibrium Plan recognition: The most likely plan of the attacker

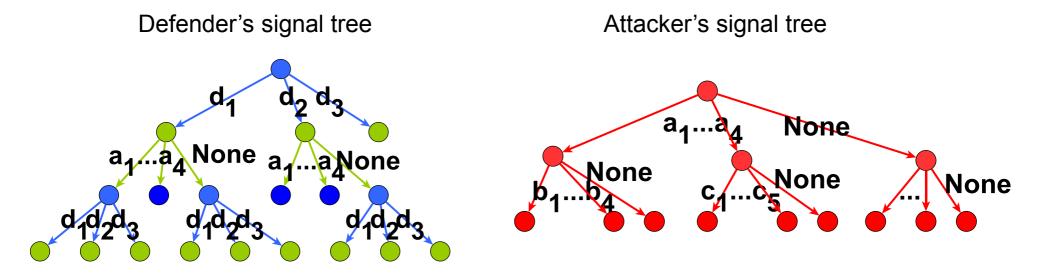

Extensive Form Game Tree

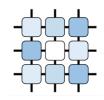
Attacker, Defender, Chance

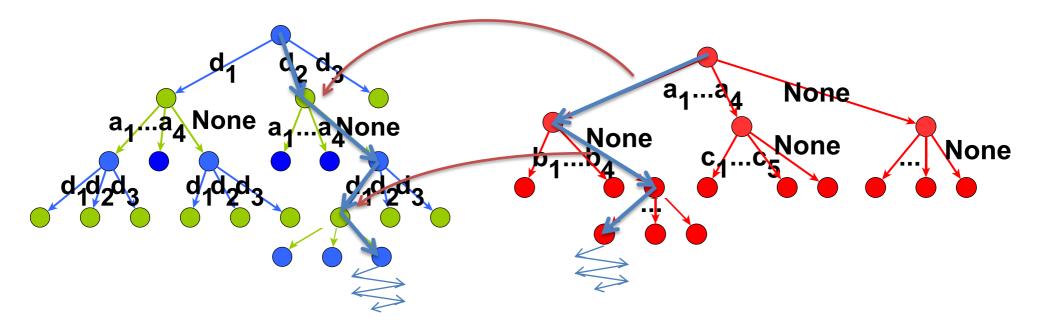

Monte-Carlo Tree Search

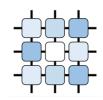

Designed for full information alternating moves games


Very successful in GO


Applied to Amazons, Hex, Arimaa, and many other games


Concurrent MCTS for APRG



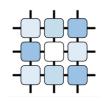

Concurrent MCTS for APRG

- 1. Select a plan in the attacker's tree using MCTS
- 2. Select a "plan" in the defender's tree with observation based on the attacker's plan
- 3. Compute the utility of the pair of plans
- 4. Back-propagate the value in both trees

Selection Strategy for MCTS in APRG

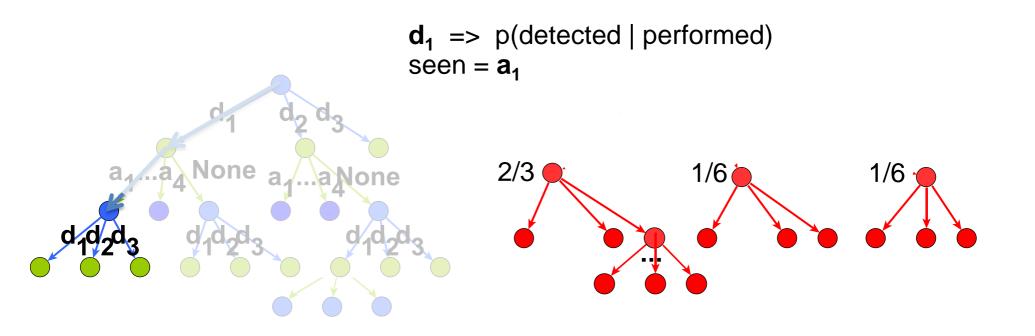
UCT: Standard selection strategy for perfect information games

Does not converge to a good solution with simultaneous moves

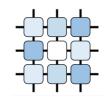

$$c_{t,s} = 2C_p \sqrt{\frac{\ln t}{s}}$$

Exp3.1: No regret strategy non-stochastic bandit problem

Empirical frequencies guaranteed to converge to NE if used by both players in unknown game setting


> for t = 1, 2, ... do Draw action a from distribution p $f_a = f_a + 1$ $G_a = G_a + \frac{g_a}{p_a}$ $p_i = (1 - \gamma) \frac{\exp(\frac{\gamma}{K}G_i)}{\sum_{k=1}^{K} \exp(\frac{\gamma}{K}G_k)} + \frac{\gamma}{K}$ end for

Continuous Reasoning of Observer


What happens in the progress of the game?

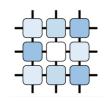
Transition using observations and Bayesian update

The probability of a root is probability of the plan from beginning

Syntetic Experiment Results

The executed plan was

- most likely: 38.6%
- median position: 5


WR – ex post worst selection of classifiers RR – random classifiers selection H,M,L – constant selection of one classifier

GT – the proposed approach (200 runs)

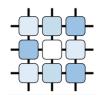
BR – ex post best selection of classifiers

Real World Data Experiments

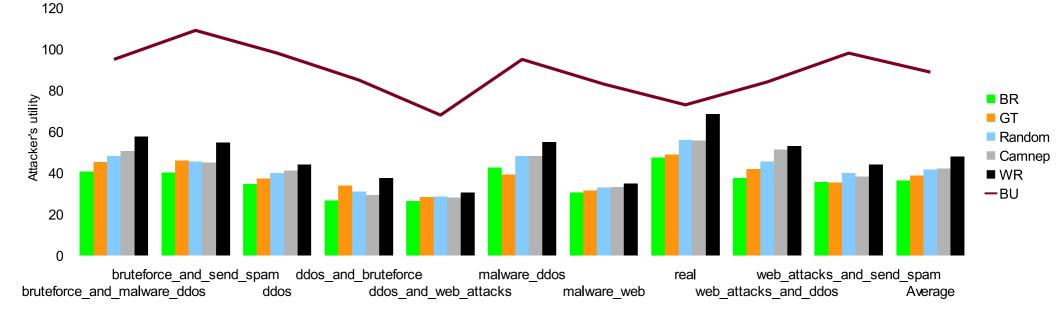
5 minutes long stages

stages with attacker's actions are marked for the experiment

22 defender's classifiers (+ clustering)


$0.6817 \\ 0.0$	$0.0023 \\ 0.3923$	$0.2912 \\ 0.2152$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0113 \\ 0.0$	$0.0113 \\ 0.0$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0023 \\ 0.3923$	$0.0 \\ 0.0002$
0.0	0.25	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.25	0.0
0.0 0.0	$0.0426 \\ 0.0426$	$0.0426 \\ 0.0426$	$0.0091 \\ 0.0091$	$0.0091 \\ 0.0091$	$0.8507 \\ 0.8507$	$0.0 \\ 0.0$	0.0033 0.0033	0.0 0.0	0.0 0.0	0.0 0.0	$0.0426 \\ 0.0426$	$0.0 \\ 0.0$
0.0	0.0426	0.0426	0.0091	0.0091	0.8507	0.0	0.0033	0.0	0.0	0.0	0.0426	0.0
$0.0 \\ 0.0273$	$0.0 \\ 0.0023$	$0.0 \\ 0.0343$	0.0 0.0	0.0 0.0	0.0 0.0	$0.5 \\ 0.0433$	$0.0 \\ 0.4788$	$0.0 \\ 0.3662$	$0.5 \\ 0.0433$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$0.0 \\ 0.0023$	$0.0 \\ 0.0023$
0.0307	0.0026	0.0387	0.0	0.0	0.0	0.0488	0.4127	0.4127	0.0488	0.0	0.0026	0.0026
0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	$0.0 \\ 0.0$	$0.5 \\ 0.0$	0.0 0.0	0.0 0.0	$0.5 \\ 0.0$	$0.0 \\ 1$	$0.0 \\ 0.0$	$0.0 \\ 0.0$
0.0	0.333	0.1826	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4842	0.0002
0.0	0.0048	0.0027	0.0	0.0	0.0	0.0011	0.0016	0.0016	0.0011	0.0	0.0048	0.9822

13 basic attacker's actions with preconditions (PDDL)


DNS requests, Horizontal scan, Port scan, DDOS to specific service, etc.

One real and 10 simulated attacks in the data

Experiment Results

- 36.17 BR ex post optimal selection of the classifiers
- 38.68 GT the proposed approach (limited number of samples)
- 41.48 Random selection of random classifier
- 41.99 Camnep original IDS without strategic reasoning
- 47.88 WR ex post worst selection of classifiers
- 95.00 BU the utility of attacker's plan if it has not been observed

OPPA European Social Fund Prague & EU: We invest in your future.