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Problem Statement

Integer Linear Programming (ILP)

The ILP problem is given by matrix A ∈ Rm×n and vectors b ∈ Rm and
c ∈ Rn. The goal is to find a vector x ∈ Zn such that A · x ≤ b and cT · x
is the maximum.

Usually, the problem is given as max
{
cT · x : A · x ≤ b, x ∈ Zn

}
.

A large number of practical optimization problems can be modeled
and solved using Integer Linear Programming - ILP.
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Comparison of ILP and LP

The ILP problem differs from the LP problem in allowing only
integer-valued variables. If some variables can contain real numbers,
the problem is called Mixed Integer Programming - MIP. Often MIP is
also called ILP, and we will use the term ILP when at least one

variable has integer domain.

If we solve the ILP problem by an LP algorithm and then just round

the solution, we could not only get the suboptimal solution, we can
also obtain a solution which is not feasible.

While the LP is solvable in polynomial time, ILP is NP-hard, i.e.
there is no known algorithm which can solve it in polynomial time.

Since the ILP solution space is not a convex set, we cannot use
convex optimization techniques.
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Example ILP1a: 2-Partition Problem

2-Partition Problem

Instance: Number of banknotes n ∈ Z+ and their values p1, . . . , pn,
where pi∈1..n ∈ Z+.

Decision: Is there a subset S ⊆ {1, . . . , n} such that∑
i∈S pi =

∑
i /∈S pi?

The decision problem, which can be written while using the equation
above as an ILP constraint (but we write it differently).

xi = 1 iff i ∈ S

This is one of the “easiest”
NP-complete problems.

min 0
subject to:∑

i∈1..n xi ∗ pi = 0.5 ∗
∑

i∈1..n pi

parameters: n ∈ Z+, pi∈1..n ∈ Z+

variables: xi∈1..n ∈ {0,1}
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Example ILP1b: Fractional Variant of the 2-Part. Prob.

We allow division of banknotes such that xi∈1..n ∈ 〈0, 1〉. The solution
space is a convex set - the problem can be formulated by LP:

min 0
subject to:∑

i∈1..n xi ∗ pi = 0.5 ∗
∑

i∈1..n pi
xi ≤ 1 i ∈ 1..n

parameters: n ∈ Z+
0 , pi∈1..n ∈ Z+

0

variables: xi∈1..n ∈ R+
0

For example: p = [100, 50, 50, 50, 20, 20, 10, 10] the fractional variant
allows for x = [0, 0, 0.9, 1, 1, 1, 1, 1] and thus divides the banknotes
into equal halves 100 + 50 + 5 = 45 + 50 + 20 + 20 + 10 + 10, but
this instance does not have a non-fractional solution.
For some non-fractional instances we can easily find that they cannot
be partitioned (e.g. when the sum of all values divided by the greatest
common divisor is not an even number), however we do not know any
alg that can do it in polynomial time for any non-fractional instance.

Z. Hanzálek (CTU FEE) Integer Linear Programming (ILP) February 19, 2013 6 / 43



Example ILP1c: 2-Partition Prob. - Optimization Version

The decision problem can be solved by an optimization algorithm
while using a threshold value (here 0.5 ∗

∑
i∈1..n pi ) and comparing

the optimal solution with the threshold.
Moreover, when the decision problem has no solution, the
optimization algorithm returns a value that is closest to the threshold.

min Cmax

subject to: ∑
i∈1..n xi ∗ pi ≤ Cmax∑

i∈1..n(1− xi) ∗ pi ≤ Cmax

parameters: n ∈ Z+
0 , pi∈1..n ∈ Z+

0

variables: xi∈1..n ∈ {0, 1}, Cmax ∈ R+
0

Application: the scheduling of nonpreemptive tasks {T1,T2, ...,Tn} with
processing times [p1, p2, ..., pn] on two parallel identical processors and
minimization of the completion time of the last task (i.e. maximum
completion time Cmax) - P2 ||Cmax . The fractional variant of 2-partition
problem corresponds to the preemptive scheduling problem.
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Example ILP2a: Shortest Paths

Shortest Path in directed graph

Instance: digraph G with n nodes, distance matrix c : V × V → R+
0

and two nodes s, t ∈ V .

Goal: find the shortest path from s to t or decide that t is
unreachable from s.

LP formulation using a physical analogy:

node = ball

edge = string (we consider a
symmetric distance matrix c)

node s is fixed, other nodes are
pulled by gravity

tightened string = shortest path

max lt
subject to:

ls = 0
lj ≤ li + ci ,j i ∈ 1..n, j ∈ 1..n

parameters: n ∈ Z+
0 , ci∈1..n,j∈1..n ∈ R+

0

variables: li∈1..n ∈ R+
0

Is it a polynomial problem?
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Example ILP3: Traveling Salesman Problem

Asymmetric Traveling Salesman Problem

Instance: complete digraph Kn (n ≥ 3), distance matrix
c : V × V → Q+.

Goal: find the shortest cycle (i.e. a closed oriented walk) going
through all nodes.

xi ,j = 1 iff node i is in the cycle just before node j

The enter and leave constraints do not capture the TSP completely, since
any disjoint cycle (i.e. consisting of several sub-tours) will satisfy them.
We use si , the “time” of entering node i , to eliminate the sub-tours.

min
∑

i∈1..n

∑
j∈1..n ci ,j ∗ xi ,j

subject to: ∑
i∈1..n xi ,j = 1 j ∈ 1..n enter once∑
j∈1..n xi ,j = 1 i ∈ 1..n leave once

si + ci ,j − (1− xi ,j) ∗M ≤ sj i ∈ 1..n, j ∈ 2..n cycle indivisibility

parameters: M ∈ Z+
0 , n ∈ Z+

0 , ci∈1..n,j∈1..n ∈ Q+

variables: xi∈1..n,j∈1..n ∈ {0, 1}, si∈1..n ∈ R+
0
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Algorithms

The most successful methods to solve the ILP problem are:

Enumerative Methods

Branch and Bounds

Cutting Planes Methods

Ralph Gomory and Vašek Chvátal are prominent personalities in the field
of ILP. Some of the solution methods are called: Gomory’s Cuts or
Chvátal-Gomory’s cuts.
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Enumerative Methods

Based on the idea of inspecting all possible solutions.

Due to the integer nature of the variables, the number of solutions is
countable, but their number is huge. So this method is usually suited
only for smaller instances with a small number of variables.

The LP problem is solved for every combination of discrete variables.
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Enumerative Methods

max −2x1 + x2

s.t. 9x1 − 3x2 ≥ 11

x1 + 2x2 ≤ 10

2x1 − x2 ≤ 7

x1, x2 ≥ 0, x1, x2 ∈ Z+
0

The figure below shows 10 feasible solutions. The optimal solution is
x1 = 2, x2 = 2 with an objective function value of −2.
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Branch and Bound Method

The method is based on splitting the solution space into disjoint sets.

It starts by relaxing on the integrality of the variables and solves the

LP problem.

If all variables xi are integers, the computation ends. Otherwise
one variable xi /∈ Z is chosen and its value is assigned to k .

Then the solution space is divided into two sets - in the first one we
consider xi ≤ ⌊k⌋ and in the second one xi ≥ ⌊k⌋+ 1.

The algorithm recursively repeats computation for the both new
sets till feasible integer solution is found.
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Branch and Bound Method

By branching the algorithm creates a solution space which can be
depicted as a tree.

A node represents the partial solution.

A leaf determines some (integer) solution or “bounded” branch
(infeasible solution or the solution which does not give a better value
than the best solution found up to now)

As soon as the algorithm finds an integer solution, its objective
function value can be used for bounding

The node is discarded whenever z , its (integer or real) objective
function value, is worse than z∗, the value of the best known solution

The ILP algorithm often uses an LP simplex method because after
adding a new constraint it is not needed to start the algorithm again, but
it allows one to continue the previous LP computation while solving the
dual simplex method.
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Branch and Bound

If there are two feasible solutions,
the one with the best

z = best(z’, z ).’’
choose
objective function

function  z  = ILP(A,b,c,z  )

RETURN
(optimal solution, z  =z)

RETURN
(infeasible solution, z  = -    )

Is there any
feasible solution?

Are  all
xi

integers?

Solve corresponding LP problem

YES NO

NO

YES

*

8*

*

RETURN
(solution is worse than

the best known solution)

If z > z

NO

*

*

YES

Select  xi and k.

z’ = ILP(A’,b’, c, z  )
x

assign it to
Solve recursively two problems
The f i

and the second one with +1

irst one with x <  k

’ ’ ’
<   k

z’ = ILP(A’ ,b’ , c, z  )

_

_

*

*
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Branch and Bound - Example
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ILP Solution Space

max z = 3x1 + 4x2

s.t. 5x1 + 8x2 ≤ 24

x1, x2 ∈ Z+
0

What is optimal
solution?

Can we use LP to solve
ILP problem?
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Rounding is not always good choice

max z = 3x1 + 4x2

LP solution z = 14.4 for
x1 = 4.8, x2 = 0

Round, get infeasible
solution x1 = 5, x2 = 0

Truncate, get z = 12 for
x1 = 4, x2 = 0

Optimal solution is
z = 13 for x1 = 3, x2 = 1

Z. Hanzálek (CTU FEE) Integer Linear Programming (ILP) February 19, 2013 18 / 43



Why integer programming?

Advantages of using integer variables

more realistic (it does not make sense to produce 4.3 cars)

flexible - e.g. binary variable can be used to model the decision
(logical expression)

we can formulate NP-hard problems

Drawbacks

harder to create a model

usually suited to solve the problems with less than 1000 integer
variables
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Special Cases of ILP - Example ILP2b: Shortest Paths

Shortest path in a graph

Instance: digraph G , incidence matrix w : V × E → {−1, 0, 1},
distance vector c ∈ R+

0 and two nodes s, t ∈ V .

Goal: find the shortest path from s to t or decide that t is
unreachable from s.

LP formulation:

xj = 1 iff edge j is
chosen

For every node except s
and t we enter the node
as many times as we
leave it

min
∑

j∈1..m cj ∗ xj
subject to:∑

j∈1..m ws,j ∗ xj = 1 source s∑
j∈1..m wt,j ∗ xj = −1 sink t∑
j∈1..m wi ,j ∗ xj = 0 i ∈ V \ {s, t}

pars: wi∈1..n,j∈1..m ∈ {−1, 0, 1}, cj∈1..m ∈ R+
0

vars: xj∈1..m ∈ R+
0

The returned values of xi are integers (binary) even though it is LP. Why?
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Special Cases of ILP

The General ILP task can not be solved in polynomial time, however there
are special cases which can be.

Definition - Totally unimodular matrix

Matrix A = [aij ] of size m/n is totally unimodular if

1 The determinant of every square submatrix of matrix A is equal 0, +1
or -1.

Note: aij ∈ {0, 1,−1} is necessary for A to be totally unimodular.
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Totally Unimodular Matrix

Lemma

The ILP task with a totally unimodular matrix A and integer vector b can
be solved by a simplex algorithm and the solution will be an integer.

Lemma

The ILP task with a totally unimodular matrix A and integer vector b can
be solved in polynomial time.

Lemma

Let A be matrix of size m/n such that

1 aij ∈ {0, 1,−1}, i = 1, ...,m, j = 1, ..., n

2 each column in A contains one non-zero element or exactly two
non-zero elements +1 and −1

Then matrix A is totally unimodular.
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Problem Formulation Using ILP - Real Estate Investment

We consider 6 buildings for investment.
The price and rental income for each of them are listed in the table.

building 1 2 3 4 5 6

price[mil. Kč] 5 7 4 3 4 6
income[thousands Kč] 16 22 12 8 11 19

Goal:

maximize income

Constraints:

investment budget is 14 mil Kč

each building can be bought only once
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Problem Formulation Using ILP - Real Estate Investment

We consider 6 buildings for investment.
The price and rental income for each of them are listed in the table.

building 1 2 3 4 5 6

price[mil. Kč] 5 7 4 3 4 6
income[thousands Kč] 16 22 12 8 11 19

Goal:

maximize income

Constraints:

investment budget is 14 mil Kč

each building can be bought only once

Formulation

xi = 1 if we buy building i

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6
s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14
xi∈1···6 ∈ {0, 1}
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Adding Logical Formula x1 ⇒ x3

Another constraint:

If building 1 is selected, then building 3 is not selected.

x1 x3 x1 ⇒ x3
0 0 1
0 1 1
1 0 1
1 1 0
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Adding Logical Formula x1 ⇒ x3

Another constraint:

If building 1 is selected, then building 3 is not selected.

x1 x3 x1 ⇒ x3
0 0 1
0 1 1
1 0 1
1 1 0

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6
s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14

x1 + x3 ≤ 1
xi∈1···6 ∈ {0, 1}

Z. Hanzálek (CTU FEE) Integer Linear Programming (ILP) February 19, 2013 24 / 43



Adding Logical Formula x2 ⇒ x1

Another constraint:

if building 2 is selected, then building 1 is selected too

x1 x2 x2 ⇒ x1
0 0 1
0 1 0
1 0 1
1 1 1
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x1 x2 x2 ⇒ x1
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Adding Logical Formula x2 ⇒ x1

Another constraint:

if building 2 is selected, then building 1 is selected too

x1 x2 x2 ⇒ x1
0 0 1
0 1 0
1 0 1
1 1 1

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6
s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14

x2≤ x1
xi∈1···6 ∈ {0, 1}
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Adding Logical Formula x2 XOR x1

Another constraint:

either building 4 is chosen or building 5 is chosen, but not both

x4 x5 x4 XOR x5
0 0 0
0 1 1
1 0 1
1 1 0
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Adding Logical Formula x2 XOR x1

Another constraint:

either building 4 is chosen or building 5 is chosen, but not both

x4 x5 x4 XOR x5
0 0 0
0 1 1
1 0 1
1 1 0

max z = 16x1+22x2+12x3+ 8x4+11x5+19x6
s.t. 5x1 + 7x2 + 4x3+ 3x4 + 4x5 + 6x6≤ 14

x4 + x5 = 1
xi∈1···6 ∈ {0, 1}
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Adding Logical Formula - Homework

Formulate:

building 1 must be chosen but building 2 can not

at least 3 estates must be chosen

exactly 3 estates must be chosen

if estates 1 and 2 have been chosen, then estate 3 must be chosen
too (x1 AND x2) ⇒ x3

exactly 2 estates can not be chosen
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Problem Formulation Using ILP - Cloth Production

Labor costs, material demand and profit are listed in the table

product T-shirt shirt trousers capacity

labor costs 3 2 6 150
material 4 3 4 160
profit 6 4 7Goal:

maximize the profit

Constraints:

labor capacity is 150 person-hours
material capacity is 160 meters
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Problem Formulation Using ILP - Cloth Production

Labor costs, material demand and profit are listed in the table

product T-shirt shirt trousers capacity

labor costs 3 2 6 150
material 4 3 4 160
profit 6 4 7Goal:

maximize the profit

Constraints:

labor capacity is 150 person-hours
material capacity is 160 meters

Formulation

xi is the amount of product i

max z = 6x1+4x2+7x3
s.t. 3x1+2x2+6x3≤ 150

4x1+3x2+4x3≤ 160
xi∈1···3 ∈ Z+

0

Z. Hanzálek (CTU FEE) Integer Linear Programming (ILP) February 19, 2013 28 / 43



Adding Relationship between Binary and Integer Variable

Another constraint:

the fixed cost has to be covered to rent the machine

product T-shirt shirt trousers

machine cost 200 150 100
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Adding Relationship between Binary and Integer Variable

Another constraint:

the fixed cost has to be covered to rent the machine

product T-shirt shirt trousers

machine cost 200 150 100

Formulation

add binary variable yi such that yi = 1 when the machine producing
product i is the rent

the objective function will be changed to
max z = 6x1 + 4x2 + 7x3 − 200y1 − 150y2 − 100y3

join binary yi with integer xi
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Adding Relationship between Binary and Integer Variable

Machine i is rented when product i is produced. We join binary yi with
integer xi such that:

yi = 0 iff xi = 0

yi = 1 iff xi ≥ 1
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Adding Relationship between Binary and Integer Variable

Machine i is rented when product i is produced. We join binary yi with
integer xi such that:

yi = 0 iff xi = 0

yi = 1 iff xi ≥ 1

For range xi ∈ 〈0, 100〉 these relations can be written as inequalities

xi ≤ 100 ∗ yi

xi ≥ yi ...we can omit this inequality due to the objective function
(xi = 0, yi = 1 will not be chosen because we want xi to be maximal
and yi minimal)
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Considering Several Values

Another constraint:

Total amount of work can be 40, 80 or 120 hours in order to better fit
the work contract

We only want some values of person-hours to be available:

3x1 + 2x2 + 6x3 = either 40 or 80 or 120

Can be formulated using a set of additional variables vi∈1...3 ∈ {0, 1} as
follows:

3x1 + 2x2 + 6x3 = 40v1 + 80v2 + 120v3∑3
i=1 vi = 1
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At least One of Two Constraints Must be Valid

While modeling problems using ILP, we often need to express that the
first, the second or both constraints hold. For example, xi∈1...4 ∈ 〈0, 5〉,
xi∈1...4 ∈ R

holds 2x1 + x2 ≤ 5
or 2x3 − x4 ≤ 2

or both

This can be modeled by a big M, i.e. big positive number (here 15), and
variable y ∈ {0, 1} so it can “switch off” one of the inequalities.

2x1 + x2 ≤ 5 +M · y
2x3 − x4 ≤ 2 +M · (1− y)
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At least One of Two Constraints Must be Valid

for y = 0 inequalities:

2x1 + x2 ≤ 5 +M · y
2x3 − x4 ≤ 2 +M · (1− y)

reduce to:

2x1 + x2 ≤ 5
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At least One of Two Constraints Must be Valid

for y = 0 inequalities:

2x1 + x2 ≤ 5 +M · y
2x3 − x4 ≤ 2 +M · (1− y)

reduce to:

2x1 + x2 ≤ 5

for y = 1 inequalities:

2x1 + x2 ≤ 5 +M · y
2x3 − x4 ≤ 2 +M · (1− y)

reduce to:

2x3 − x4 ≤ 2
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At least One of Two Constraints Must be Valid -

Homework

Find the solution space of the system of inequalities:

2x1 + x2 ≤ 5 +M · y
2x1 − x2 ≤ 2 +M · (1− y)

y ∈ {0, 1}

Find the solution space of the system of inequalities. Note that the
equations correspond to parallel lines. Is it possible to find x1, x2 such
that both equations are valid simultaneously?

2x1 + x2 ≤ 5 +M · y
2x1 + x2 ≥ 10 +M · (1− y)

y ∈ {0, 1}
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At least One of Two Constraints Must be Valid

Example: Non-preemptive Scheduling

1
∣∣∣rj , d̃j

∣∣∣Cmax ... NP-hard problem

Instance: A set of non-preemptive tasks T = {T1, . . . ,Ti , . . .Tn}
with release date r and deadline d̃ should be executed on one
processor. The processing times are given by vector p.

Goal: Find a feasible schedule represented by start times s that
minimizes completion time Cmax = maxi∈〈1,n〉 si + pi or decide that it
does not exist.

Example:

processor - joiner

Ti - chair to be produced

ri - time, when the material is available

d̃i - time when the chair must be completed

si - time when the chair production starts

si + pi - time when th echair production endsZ. Hanzálek (CTU FEE) Integer Linear Programming (ILP) February 19, 2013 35 / 43



At least One of Two Constraints Must be Valid

Example: Non-preemptive Scheduling

Since at the given moment, at most, one task is running on a given
resource, therefore, for all task pairs Ti ,Tj it must hold:

1 Ti precedes Tj (sj ≥ si + pi)

2 or Tj precedes Ti (si ≥ sj + pj)

Note that (for pi > 0) both inequalities can’t hold simultaneously.
We need to formulate that at least one inequality holds. We will use
variable xij ∈ {0, 1} such that xij = 1 if Ti preceds Tj .
For every pair Ti ,Tj we introduce inequalities:

sj +M · (1− xij) ≥ si + pi “switched off” when xij = 0
si +M · xij ≥ sj + pj “switched off” when xij = 1
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Scheduling - Illustration of Non-convex Space

si ≥ ri i ∈ 1..n release date

d̃i ≥ si + pi i ∈ 1..n deadline
sj +M · (1− xij) ≥ si + pi i ∈ 1..n, j < i Ti precedes Tj

si +M · xij ≥ sj + pj i ∈ 1..n, j < i Tj precedes Ti

For example: pi = 2, pj = 3, ri = rj = 0, d̃i = 9, d̃j = 10

Non-convex 2D space is a projection of two cuts of a 3D polytope
(determined by the set of inequalities) in planes x = 0 and x = 1.
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At least K of N Constraints Must Hold

We have N constraints and we need at least K of them to hold.
Constraints are of type:

f (x1, x2, . . . , xn) ≤ b1
f (x1, x2, . . . , xn) ≤ b2

...
f (x1, x2, . . . , xn) ≤ bN

Can be solved by introducing N variables yi∈1...N ∈ {0, 1} such that

f (x1, x2, . . . , xn) ≤ b1 +M · y1
f (x1, x2, . . . , xn) ≤ b2 +M · y2

...
f (x1, x2, . . . , xn) ≤ bN +M · yN∑N

i=1 yi = N − K

If K = 1 and N = 2 we can use just one variable yi and represent its
negation as a (1− yi ), see above slides for details.
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ILP Solvers

CPLEX - proprietary http://www.ilog.com/products/cplex/

MOSEK - proprietary http://www.mosek.com/

GLPK - free http://www.gnu.org/software/glpk/

LP SOLVE - free http://groups.yahoo.com/group/lp_solve/

GUROBI

YALMIP - Matlab toolbox for modelling ILP problems
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Cutting Planes Method

Another group of algorithms are cutting planes methods. Its general idea
is (similarly to the branch and bound method) to repeat the solution of LP
problems. It iteratively adds a constraint that cuts off part of the solution
space. The new constraint must fulfill these conditions:

The solution found by LP becomes infeasible

All integer solutions feasible in the last step have to remain feasible.

Among the best known methods are Dantzig Cuts, Gomory Cuts and
Chvátal-Gomory Cuts.
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Gomory Cuts

Algorithm

1 (Initialization) Solve the problem as an LP by a simplex algorithm

2 (Optimality test) If the solution is an integer, the computation ends

3 (Reduction) Add new constraint (Gomory cut) into the simplex table.
Optimize the problem by dual LP, then goto 2

min x1 + 2x2
s.t. −3x1 + 4x2 ≤ 6

4x1 + 3x2 ≤ 12
x1, x2 ≥ 0, x1, x2 ∈ Z
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ILP - Conclusion

NP-complete problem.

Used to formulate majority of combinatorial problems.

Often solved by branch and bound method.
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