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What is Constraint Programming?

What is Constraint Programming?

Sudoku is Constraint Programming
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Motivation - Sudoku

Assign digits to blank fields such that:
digits distinct per rows, columns, blocks
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Z. Hanzálek (CTU FEE) Constraint Programming May 16, 2011 5 / 33



Sudoku

Assign digits to blank fields such that:
digits distinct per rows, columns, blocks
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Assign digits to blank fields such that:
digits distinct per rows, columns, blocks
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Sudoku - propagation in the lower left block

No blank field in the block can have value of 3,6,8
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Sudoku - propagation in the lower left block

No blank field in the block can have value of 3,6,8
- propagate to all blank fields

Use the same propagation for rows and columns
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Sudoku - propagation in one field

Prune digits from fields such that:
digits distinct per rows, columns, blocks
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Z. Hanzálek (CTU FEE) Constraint Programming May 16, 2011 12 / 33



Sudoku - propagation in one field

Prune digits from fields such that:
digits distinct per rows, columns, blocks
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Sudoku - iterated propagation

Iterate propagation for rows, columns and blocks

When to stop?
What if more assignments exist?
What if no assignment exists?
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Sudoku is constraint programming

Sudoku:

Variables - fields

assign values - digits
maintain domain of variable -
set of possible values

Constraints - numbers in row,
column and box must vary

relations among variables
disable certain combinations
of values

Constraint programming is declarative programming:

Model: variables, domains, constraints

Solver: propagation, searching
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Constraint Satisfaction Problem - formally

Constraint Satisfaction Problem (CSP) is defined by triplet (X ,D,C ),
where:

X = {x1, . . . , xn} is finite set of variables

D = {D1, . . . ,Dn} is finite set of domains of variables

C = {C1, . . . ,Ct} is finite set of constraints.

Domain Di = {v1, . . . , vk} is finite set of all possible values of xi .

Constraint Ci is couple (Si ,Ri ) where Si ⊆ X and Ri is relation relation
over the set of variables Si . For Si = {xi1 , . . . , xir } is Ri ⊆ Di1 × · · · × Dir .

CSP is NP-complete problem.
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Terminology - CSP, CSOP, Constraint Solving and CP

Solution to (CSP) is complete assignment of values from domains
to variables such that all constraints are satisfied

it is a decision problem.

Constraint Satisfaction Optimization Problem (CSOP) is defined by
(X ,D,C , f (X )) where f (X ) is objective function. The search is not
finished, when the first acceptable solution was found, but it is
finished when the optimal solution was found (using branch&bound
method for example).

Constraint Solving is defined by (X ,D,C ) where Di is defined on R

(e.g. solution of the set of linear equations-inequalities).

Constraint Programming, CP includes Constraint Satisfaction and
Constraint Solving.
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How it works - Search and Propagation

Example: x ∈ {3, 4, 5}, y ∈ {3, 4, 5}, x ≥ y , y > 3
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How it works - Search and Propagation

Example: x ∈ {3, 4, 5}, y ∈ {3, 4, 5}, x ≥ y , y > 3

1 propagate y > 3: x ∈ {3, 4, 5}, y ∈ {4, 5}
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How it works - Search and Propagation

Example: x ∈ {3, 4, 5}, y ∈ {3, 4, 5}, x ≥ y , y > 3

1 propagate y > 3: x ∈ {3, 4, 5}, y ∈ {4, 5}
2 propagate x ≥ y : x ∈ {4, 5}, y ∈ {4, 5}
3 propagation alone is not enough

product of the domains (incl. x = 4, y = 5) is a superset of solution
the search helps - we create subproblems
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How it works - Search and Propagation

Example: x ∈ {3, 4, 5}, y ∈ {3, 4, 5}, x ≥ y , y > 3

1 propagate y > 3: x ∈ {3, 4, 5}, y ∈ {4, 5}
2 propagate x ≥ y : x ∈ {4, 5}, y ∈ {4, 5}
3 propagation alone is not enough

product of the domains (incl. x = 4, y = 5) is a superset of solution
the search helps - we create subproblems

4 in subproblems we use propagation again

x ∈ {4, 5}

x = 4

y ∈ {4, 5}

x ∈ {4}
y ∈ {4}

x ∈ {5}
y ∈ {4, 5}

x 6= 4

y = 4

x ∈ {5}
y ∈ {4}

x ∈ {5}
y ∈ {5}

y 6= 4

The search can be driven by
various means (order of the
variables, division of
domain/domains).

By propagation of
constraints we filter
domains of variables.
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Comparison with ILP

In both cases we deal with declarative programming

Performance differs from problem to problem

CSP allows to formulate complex constraints
(ILP uses inequalities only, CSP uses arbitrary relation - e.g. binary
relation may be given by a set of compatible tuples)

CSP is more flexible, formulation is easier to understand

it is difficult to represent continuous problems by CSP

finiteness of domains can be bypassed by using hybrid approaches
- e.g. combination with LP

CP is new technique, it is more open
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Example: Search and Propagation

Complete search (for example Depth First Search):
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Example: Search and Propagation

Initial propagation of constraints:

Z. Hanzálek (CTU FEE) Constraint Programming May 16, 2011 21 / 33



Example: Search and Propagation

Choose x1 = 2 and propagate constraints:
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Example: Search and Propagation

Choose x1 = 3 and propagate constraints:
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Example: Search and Propagation

Choose x2 = 1 and propagate constraints:
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Example: Search and Propagation

Choose x2 = 2 and propagate constraints:
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Arc consistency

We will continue to consider only binary CSP, where every constraint is
binary relation

general (n-ary) CSP can be converted to binary CSP
binary CSP can be represented by digraph G

nodes are variables
if there is a constraint involving xi , xj , then the nodes xi , xj are
interconnected by arcs (xi , xj) and (xj , xi )

Arc consistency is an essential method for propagation.

Arc (xi , xj) is Arc Consistent, AC iff for each value a ∈ Di there
exists value b ∈ Dj such that assignment xi = a, xj = b meets all
binary constraints for variables xi , xj .

A CSP is arc consistent if all arc are arc consistent.

Note that AC is oriented - consistence of arc (xi , xj) does not
guarantee consistence of arc (xj , xi ).

There are other local consistencies (path consistency, k-consistency,
singleton arc consistency,...). Some of them are stronger some are weaker.
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REVISE procedure

From domain Di delete any value a, which is not consistent with
domain Dj .

procedure REVISE
Input: Indexes i , j . Revised domain Di . Domain Dj .

Set of constraints C .
Output: Binary variable deleted indicating deletion of some value

from Di . Revised domain Di .

deleted := 0;
for a ∈ Di do

if there is no b ∈ Dj ; xi = a, xj = b satisfies all constraints on xi , xj
then

Di := Di \ a; // delete a from Di

deleted := 1;

end

end
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Example: application of REVISE

CSP with variables X = {x1, x2, x3},
constraints x1 > x2, x2 6= x3, x2 + x3 > 4,
and domains D1 = {1, 2, 3},D2 = {1, 2, 3},
D3 = {2, 3}.

revised arc deleted revised domain (x1, x2) (x2, x1) (x2, x3) (x3, x2)

(x1, x2) 11) D1 = {2, 3} consist nonconsist nonconsist consist

(x2, x1) 32) D2 = {1, 2} consist consist nonconsist nonconsist

(x2, x3) 13) D2 = {2} nonconsist consist consist nonconsist

(x3, x2) 24) D3 = {3} nonconsist consist consist consist

After revision, some the arcs are still nonconsistent

the reason is that some of the domains have been reduced

continue in revision till all arc are consistent (without consistence
check - see AC-3)

revised arc deleted revised domain (x1, x2) (x2, x1) (x2, x3) (x3, x2)

(x1, x2) 25) D1 = {3} consist consist consist consist
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Arc Consistency - AC-3 algorithm

Maintain a queue of arcs to be revised (the arc is added into queue only if
it’s consistency could have been affected by reduction of the domain).

procedure AC-3
Input: X ,D,C and graph G .
Output: Binary variable fail indicating no solution in this part of the

state space. The set of revised domains D.

fail = 0;Q := E (G ); // initialize Q by arcs of G

while Q 6= ∅ do
select and delete arc (xk , xm) from Q;
(deleted ,Dk)=REVISE(k ,m,Dk ,Dm,C );
if deleted then

if Dk = ∅ then fail = 1 and EXIT ;
Q := Q ∪ {(xi , xk) such that (xi , xk) ∈ E (G ) and i 6= m};

end

end

Note: revision of (xk , xm) does not change arc consistency of (xm, xk).
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Example: iteration of AC-3

CSP with variables X = {x1, x2, x3}, constraints x1 = x2, x2 + 1 = x3 and
domains D1 = {1, 2, 3},D2 = {1, 2, 3},D3 = {1, 2, 3}.

Initialization: Q = {(x1, x2), (x2, x1), (x2, x3), (x3, x2)}
revise (x1, x2)
D1 = {1, 2, 3},D2 = {1, 2, 3},D3 = {1, 2, 3}
Q = {(x2, x1), (x2, x3), (x3, x2)}
revise (x2, x1)
D1 = {1, 2, 3},D2 = {1, 2, 3},D3 = {1, 2, 3}
Q = {(x2, x3), (x3, x2)}
revise (x2, x3)

D1 = {1, 2, 3},D2 = {1, 2}1),D3 = {1, 2, 3}
Q = {(x3, x2), (x1, x2)}
revise (x3, x2)

D1 = {1, 2, 3},D2 = {1, 2},D3 = {2, 3}2)

Q = {(x1, x2)}
revise (x1, x2)

D1 = {1, 2}3),D2 = {1, 2},D3 = {2, 3}
Q = ∅
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Global constraints

Global constraint

capture specific structure of the problem

use this structure to efficient propagation using specialized
propagation algorithm

Example: On set X = {x1, . . . , xn} we apply constraint xi 6= xj ∀i 6= j

This can be formulated by (n2 − n)/2 disequalities.

Second option is global constraint alldifferent, which uses a
matching algorithm in bipartite graph, where one side represents
variables and the other side represents values.

Other examples of global constraints:

scheduling (edge-finder)

graph algorithms (clique, cycle)

finite state machine

bin-packing
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Tools for solving CSP

Proprietary:

SICStus Prolog

ILOG CP, CP Optimizer (C++)

ILOG OPL Studio (OPL)

Koalog (Java)

Open source:

ECLiPSe (Prolog)

Gecode (C++)

Choco Solver (Java)

Python constraints
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