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1 Scheduling
Scheduling, generally speaking, deals with assigning tasks to resources in time. Let’s have a set of tasks,
a set of resources (processors) on which these tasks can be executed, a set of constraints and an optimality
criterion. Each task, typically denoted as Ti, is characterized by the time needed by resource to process it -
processing time pi and by assigning to the resource(s). Moreover, task Ti can be specified by the following
parameters:

• The time at which task Ti is ready for processing - release time ri,

• A time limit by which task Ti should be completed - due date di,

• A time limit by which task Ti must be completed - deadline d̃i,

• A priority which expresses the relative urgency of task Ti - weight wi.

α|β|γ notation, so called Graham-Blazewicz, is commonly used to describe the scheduling problems [1, 2]:

• α contains the characteristics of resources: the number (1-∞) and type (P -parallel identical, Q-
parallel uniform...)

• β specifies the characteristics of tasks and additional resources: rj - each task has release time, pmtn
- preemption is allowed...

• γ denotes an optimality criterion: Cmax - minimise schedule length, Lmax - minimise max. lateness,∑
Uj - minimise the number of tasks exceeding their due date...

For example, P2||Cmax is a formal notation of the scheduling problem where two parallel identical proces-
sors are available and objective is to minimise the schedule length (even this “simple” problem is NP-hard).
The output of the scheduling is an assignment of tasks to resources in time and it is mostly depicted as a
Gantt chart [1] where an independent variable is a discrete time (x-axis) and dependent variable is utilisa-
tion of resources/processors (y-axis).

2 Branch and Bound algorithm
The Branch and Bound (B&B) algorithm is used to solve discrete optimization problems [1]. This algo-
rithm gradually constructs a tree of partial solutions which are expanded further (branch). If B&B finds an
infeasible partial solution or a partial solution such that it is worse than the best found solution, the node
with this partial solution is not expanded (bound). The search tree is an acyclic graph with one root. Each
node of this graph corresponds to one partial solution and tree leaves represent a complete solution. The
subtree can be eliminated if:
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a) It does not contain any feasible solution.

b) It does not contain an optimal solution.

Basically, the second choice meets the first choice. However, it is appropriate to consider them separately
for the algorithm construction.
Generally there are two main methods of the solution space searching:

a) Breadth-first search.

b) Depth-first search.

In our case - the application of the Branch and Bound algorithm in the scheduling, it is advantageous to use
the depth-first search since each obtained feasible solution increases the probability of eliminating other
parts of the tree without their complete search.

3 An example - Bratley’s algorithm
An example of the use of the Branch and Bound algorithm in the scheduling is a problem formally denoted
as 1|rj , d̃j |Cmax. It is scheduling on a single processor while each task has a specified release time and
deadline, i.e. a time window in which the task has to be processed. The objective is to minimise the
schedule length. This problem also belongs to the NP-hard problems, so there is no deterministic algorithm
running in polynomial time to solve it. The problem can be solved, for example, by Bratley’s algorithm [1]
which is based on the branch and bound algorithm. The goal is to search the solution space in the form of
a tree where each end-node (leaf) represents one solution of the problem. Other nodes are partial solutions
consisting of some tasks which are ordered. The tree can be pruned on conditions that:

1) Some tasks exceed their deadline.

2) The estimate of the result of the best possible solution in the subtree is worse than the best achieved
result so far.

3) A partial solution is optimal.

Ad 1) Let’s have node n. If there is no option to add arbitrary task at node n without exceeding its deadline
then the partial schedule will never result in the feasible solution. Therefore, all descendants of node n can
be eliminated. This follows from the fact that if any of these tasks exceeds its deadline at node n, it will
certainly exceed its deadline if scheduled later.
Ad 2) The upper bound of the schedule length has to be calculated at the beginning, e.g. UB = max d̃j
for ∀j. At each node, the estimate of the best possible final solution (lower bound) based on the current

partial solution can be determined as LB = max

(
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)
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, max
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(rj + pj)

)
, where

c is the current schedule length (i.e. the completion time of the last task) and V is the set of tasks being
not scheduled yet. If LB > UB than the particular part of the tree can be eliminated because the further
branching of the current node cannot find the optimal solution.
Ad 3) If the release time property is satisfied then the partial schedule is optimal and only the current node
is expanded further. Going back in the tree of partial solutions cannot return a better schedule. Release
time property says that if the length of the partial solution is less than or equal to the lowest value of the
release time of hitherto unscheduled tasks, the partial solution is optimal.

An input example of the problem 1|rj , d̃j |Cmax is on the left side in Figure 1. It is a problem with
four tasks having their own processing time, release time and deadline. The problem is solved by Bratley’s
algorithm based on the branch and bound algorithm. The final solution in the form of a Gantt chart is on the
right side in Figure 1. The search tree has 4! = 24 leaves. If input has 10 tasks the number of combinations
of ordered tasks (i.e. leaves of the tree) will be 3628800 and in the case of 15 tasks it will be much more -
1.3 · 1012. So it is clearly seen that the number of possible combinations is already very high for relatively
small instances and searching the entire solution space is completely insoluble.
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Input:
p=(2,1,2,2)
r=(4,1,1,0)
d̃=(7,5,6,4)
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Figure 1: An example of the problem 1|rj , d̃j |Cmax and its solution

In this instance, we will construct a search tree as follows:

1) Create four branches from the root node where each of the resulting node corresponds to the assign-
ment of one task to the schedule at the first position.

2) Branch the previous nodes to three new nodes because one position is already assigned.

3) Branch the previous nodes to two new nodes.

4) At the last step, there is only one branch from previous nodes to the leaves of the tree.

The number of leaves is 24 (see above) and the tree has 5 levels including the root node. The search tree
which was pruned based on the above mentioned conditions is depicted in Figure 2. The result in the form
of a Gantt chart is on the right side in Figure 1.
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Figure 2: The pruned search tree

A seminar assignment: Let’s have this input: p=(3,4,1,2), r=(5,2,1,0), d̃=(10,7,4,3). Solve this
problem graphically (as shown in Figure 2) using Bratley’s algorithm.
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A homework assignment: Implement Bratley’s algorithm as a recursive function in Matlab. As an
input consider three vectors — processing time p, release time r and deadline d̃. The output will be the
assignment of the tasks to the processor and the final schedule length. You can use data (input/output)
stated in Figure 1 to verify your algorithm.

Note: The skeleton of the algorithm can be found at the subject homepage.
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