
IMatching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

C1 C2�1 �24321 1 2 43

�1
�2

1

1 2 3 4 5

5

4

3

2

rays in epipolar plane matching table T

matching table
• rows and columns represent optical rays
• nodes: possible correspondence pairs
• full nodes: correspondences
• numerical values associated with nodes: descriptor similarities see next
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IConstructing A Suitable Image Similarity

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows

in matching table T :

�2l
r

�1
in the left image: L(l)l

• a natural descriptor similarity is sim(l, r) =
‖L(l)−R(r)‖2

σ2
I (l, r)

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2

[
s2
(
L(l)

)
+ s2

(
R(r)

)]
, giving

sim(l, r) = 1−
2 s
(
L(l),R(r)

)
s2
(
L(l)

)
+ s2

(
R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
s
2
(·) is sample (co-)variance (30)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’
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cont’d

• we choose some probability distribution on
[0, 1], e.g. Beta distribution

p1

(
sim(l, r)

)
=

1

B(α, β)
ρ2(α−1)(1− ρ2)β−1

• note that uniform distribution is obtained for
α = β = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

B
e
(ρ

2
;α

,β
)

−2

0

2

4

6

8

10

ρ

−
lo

g
(B

e
(ρ

2
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,β
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α=10, β=1.5

• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1

• perfect similarity is ‘suspicious’ (depends on expected camera noise level)

• from now on we will work with

V1

(
sim(l, r)

)
= − log p1

(
sim(l, r)

)
(31)
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How A Scene Looks in The Filled-In Similarity Table

scene left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscrimiable

• MNCC ρ used
(α = 1.5, β = 1)

• high-correlation structures
correspond to scene objects

constant disparity

• a diagonal in correlation
table

• zero disparity is the main
diagonal

depth discontinuity

• horizontal or vertical jump
in correlation table

large image window

• better correlation

• worse occlusion localization
see next

repeated texture

• horizontal and vertical
block repetition
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Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

α

β

χ

δ

ε

ρ

γ

η

σ

ϕ

κ

λ

µ

ν

τ

• this used really large window of 25× 25 px
• errors depend on the relative contrast across the occlusion boundary
• the direction of ‘overlow’ depends on the combination of texture contrast and edge

contrast
• solutions:

1. small windows (5× 5 typically suffices)
2. eg. ‘guided filtering’ methods for computing image similarity [Hosni 2011]
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IMarroquin’s Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel

SAD(l, r) = ‖L(l)−R(r)‖1 L1 norm instead of the L2 norm in (30); unnormalized

2. represent the dissimilarity table diagonals in a compact form

d = 0

d = 1

d = 2

d = 0

d = 1

d = 2

3. use the ‘image sliding aggregation algorithm’

imr

×
∑ d
iml

win

4. threshold results by maximal allowed dissimilarity
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The Matlab Code for WTA

function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood)

% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);

% computing dissimilarity per pixel (unscaled SAD)
for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end
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WTA: Some Results

thr = 20 thr = 10

• results are bad
• false matches in textureless image regions and on repetitive structures (book shelf)
• a more restrictive threshold (thr=10) does not work as expected
• we searched the true disparity range, results get worse if the range is set wider
• chief failure reasons:

• unnormalized image dissimilarity does not work well
• no occlusion model
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INegative Log-Likelihood of Observed Images

• given matching M what is the likelihood of observed data D?
• we need the ability ‘not to match’
• matches are pairs pi = (li, ri), i = 1, . . . , n
• we will mask-out some matches by a binary label λ ∈ {e, m} excluded, matched

• labeled matching is a set

M =
{(
p1, λ(p1)

)
,
(
p2, λ(p2)

)
, . . . ,

(
pn, λ(pn)

)}
pi are matching table pairs; there are no more than n in the table T

The negative log-likelihood is then the likelihood of data D given labeled matching M

V (D |M) =
∑
pi∈M

V
(
D(pi) | λ(pi)

)
Our choice:

V
(
D(pi) | λ(pi) = e

)
= Ve penalty for unexplained data, Ve ≥ 0

V
(
D(pi) | λ(pi) = m

)
= V1

(
D(l, r)

)
probability of match pi = (l, r) from (31)

• the V
(
D(pi) | λ(pi) = e

)
could also be a non-uniform distribution but the extra effort does not pay off
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IMaximum Likelihood (ML) Matching�1
�2pjpi X(p)

Uniqueness constraint: Each point in the left image matches
at most once and vice versa.

A node set of T that follows the uniqueness constraint is called

matching in graph theory

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

The X(p) is called the X-zone of p and it defines dependencies

• ML matching will observe the uniqueness constraint only

• epipolar lines are independent wrt uniqueness constraint

• we can solve the problem per image lines i independently:

M∗ = arg min
M∈M

∑
p∈M

V
(
D(p) | λ(p)

)
= arg min

M∈M

( ∣∣M |
e
·Ve

︸ ︷︷ ︸
unexplained pixels

+
∑

p∈M : λ(p)=m

V (D(p) | λ(p) = m)

︸ ︷︷ ︸
matching likelihood proper

)

M – set of all perfect labeled matchings, |M |e – number of pairs with λ = e in M , |M |e ≤ n
perfect = every table row (column) contains exactly 1 match

• the total number of individual terms in the sum is n (which is fixed)
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I‘Programming’ The ML Matching Algorithm

• we restrict ourselves to a single (rectified) image line and reduce the problem to min-cost
perfect matching

• extend every matching table pair p ∈ T , p = (j, k) to 4 combinations
(
(j, sj), (k, sk)

)
,

sj ∈ {0, 1} and sk ∈ {0, 1} selects/rejects pixels for matching unlike λ selecting matches

• binary label mjk = 1 then means that (j, sj) matches (k, sk)

(j, 1)

(k, 1) (j, 0)

(k, 0)

Vjk = V (D(j, k) | λjk = m) Vjk = 0

Vjk =
1

2
Ve Vjk =∞

• each (j, 1) either matches some (k, 1) or it ‘matches’ (j, 0)

• each (k, 1) either matches some (j, 1) or (k, 0)

• if M is maximal in the yellow quadrant then there will be n
auxiliary ‘matches’ in the gray quadrant

• otherwise every empty line in the yellow quadrant induces an
empty column in the quadrant, the cost is 2 · 1

2Ve = Ve

• our problem becomes minimum-cost perfect matching in an (m+ n)× (m+ n) table

M+ = arg min
M

∑
j,k

Vjk ·mjk,
∑
k

mjk = 1 for every j,
∑
j

mjk = 1 for every k

• we collect our matches M∗ in the yellow quadrant
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Some Results for the ML Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff
• middle row: Ve set to error rate of 3% (and 61% density is achieved) holes are black

• bottom row: Ve set to density of 76% (and 4.3% error rate is achieved)
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Some Notes on ML Matching

• an algorithm for maximum weighted bipartite matching can be used as well, with V 7→ −V
• maximum weighted bipartite matching = maximum weighted assignment problem

by eg. Hungarian Algorithm

Idea?: This looks simpler: Run matching with Ve = 0 and then threshold the result to
remove bad matches.

Ex: Ve = 8

thresholding

8 3 9

10 6 9

7 1 8

V = 9 + 2 · 8 = 25

our ML matching

8 3 9

10 6 9

7 1 8

V = 9 + 10 + 8 = 27

• our matching gives a better cost,
also greater cardinality (density)

• the idea was not good!

thresholding our ML
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A Stronger Model Needed

• notice many small isolated errors in the ML matching
• we need a continuity model
• does human stereopsis teach us something?

Potential models for M
1. Monotonicity (ie. ordering preserved):

For all (i, j) ∈M, (k, l) ∈M, k > i⇒ l > j

Notation: (i, j) ∈M or j = M(i) – left-image pixel i matches right-image pixel j.

2. Coherence [Prazdny 85]

“the world is made of objects each occupying a well defined 3D volume”

i

k

j l

continuous

monotonic

coherent

non-monotonic non-monotonic monotonic
incoherent coherent coherent model ‘strength’
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IAn Auxiliary Construct: Cyclopean Camera

Cyclopean coordinate u from the psychophysiology of vision [Julesz 1971]

new: u = f
x

z
, known: d = f

b

z
, x =

b

d

u1 + u2

2
⇒ u =

u1 + u2

2

m0 m2 fC1 C2

X
z C

x0
zx z0m1 xmu

b2 b2

X 0
Disparity gradient

[Pollard, Mayhew, Frisby 1985]

DG =
|d− d′|
|u− u′| =

∣∣bf ( 1
z
− 1

z′

)∣∣∣∣f (x
z
− x′

z′

)∣∣ =

= b
|z′ − z|
|xz′ − x′z|

• human stereovision fails to perceive
a continuous surface when disparity
gradient exceeds a limit
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IForbidden Zone and The Ordering Constraint

Forbidden zone F (X): DG > k with boundary b (z′ − z) = ±k (xz′ − x′z)

C2
X = (x; z) X 0 = (x0; z0)m02m01C1 m2m1

F (X) • boundary: a pair of lines in the x− z plane
a degenerate conic

• point x = x′, z = z′ lies on the boundary

• coincides with optical rays for k = 2

• small k means wide F

• disparity gradient limit is exceeded when X ′ ∈ F (X)

• symmetry: X ′ ∈ F (X)⇔ X ∈ F (X ′)

• Obs: X ′ and X swap their order in the other image when X ′ ∈ F (X) k = 2

• real scenes often preserve ordering

• thin and close objects violate ordering see next
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Ordering and Critical Distance κ

C1
X4

C21−2−4−3 1−4−2−3

�
F (X4)X2X1 X3 • object (thick):

• black – binocularly visible
• yellow – half-occluded
• red – ordering violated wrt foreground

• solid red zone of depth κ:

• spatial points visible in neither camera
• bounded by the foreground object

Ordering is violated iff both Xi, Xj s.t.
Xi ∈ F (Xj) are visible in both cameras.

eg. X2, X4

• ordering is preserved in scenes where critical
distances κ are not exceeded, ie. when ‘the
red background hides in the solid red zone’

Thinner objects and/or wider baseline
require flatter scenes to preserve ordering.
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IThe X-zone and the F -zone in Matching Table T

• these are necessary and sufficient conditions for uniqueness and monotonicity

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}Ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈M : pj /∈ F (pi).

• ordering constraint: matched points form a
monotonic set in both images

• ordering is a powerful constraint:
monotonic matchings O(4N )� O(N !) all matchings

in N ×N table

~ 2: how many are there maximal monotonic matchings?

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model
and partly also an occlusion model
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IUnderstanding Matching Table

• this is essentially the picture from Slide 178

right image pixel index

le
ft

 i
m

a
g

e
 p

ix
e

l 
in

d
e

x

depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J

d
k

dk
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Bayesian Decision Task for Matching

Idea: L(d,M) – decision cost (loss) d – our decision (matching) M – true correspondences

Choice: L(d,M) :

{
if d = M then L(d,M) = 0

if d 6= M then L(d,M) = 1
i.e. L(d,M) = [d 6= M ]

Bayesian Loss

L(d | D) =
∑
M∈M

p(M | D)L(d,M)

M – the set of all matchings D = {IL, IR} – data

Solution for the best decision d

d∗ = arg min
d

∑
M∈M

p(M | D) (1− [d = M ]) = arg min
d

(
1−

∑
M∈M

p(M | D)[d = M ]

)
=

= arg max
d

∑
M∈M

p(M | D) [d = M ] = arg max
M

p(M | D) =

= arg min
M

(− log p(M | D))
def
= arg min

M
V (M | D) = arg min

M∈M

(
V (D |M)︸ ︷︷ ︸

likelihood

+V (M)︸ ︷︷ ︸
prior

)

• this is Maximum Aposteriori Probability (MAP) estimate
• other loss functions result in different solutions
• our choice of L(d,M) looks oversimple but it results in algorithmically tractable

problems
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IConstructing The Prior Model Term V (M)

• the prior V (M) should capture
1. uniqueness
2. ordering
3. coherence

M∗ = arg min
M∈M

(
V (D |M) + V (M)

)

• we need a suitable representation to encode V (M)
• Every p = (l, r) of the |I| × |J | matching table T (except for the last row and column)

receives two succesors (l + 1, r) and (l, r + 1)rl p
t

s s
t

• this gives an acyclic directed graph G optimal paths in acyclic graphs are an easier problem
• the set of s-t paths starting in s and ending in t will represent the set of matchings
• all such s-t paths have equal length n = |I|+ |J | − 1

all prospective matchings will have the same number of terms in V (D |M) and in V (M)

3D Computer Vision: VII. Stereovision (p. 182/208) R. Šára, CMP; rev. 18–Dec–2012



Endowing s-t Paths with Useful Properties

• introduce node labels Λ = {m, eL, eR} matched, left-excluded, right-excluded

• s-t path neighbors are allowed only some label combinations:

eLm eL eL

eL

m

eR m

eL

eR

meR
eR

eR

eLeR

Observations
• no two neighbors have label m

• in each labeled s-t path there is at most one transition:
1. m→ eL or eR → m per matching table row,
2. m→ eR or eL → m per matching table column

• pairs labeled m on every s-t path satisfy uniqueness and ordering constraints

• transitions eL → eR or eR → eL along an s-t path allow skipping a contiguous segment in
either or in both images this models half occlusion and mutual occlusion

• disparity change is the number of edges
eL eL

or
eR eR

• a given monotonic matching can be traversed by one or more s-t paths

Labeled s-t paths

P =
(
(p1, λ1), (p2, λ2), . . . , (pn, λn)

) �1 p2 p3p1 pn�n
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The Structure of The Prior Model V (P ) Gives a MC Recognition Problem

ideas:

• we choose energy of path P dependent on its labeling only

• we choose additive penalty per transition eL → eL, eR → eR, and eL → eR, eR → eL

• no penalty for m→ eL, m→ eR

Employing Markovianity
�1 p2 p3p1 pn�n

V (P ) = V (λn, λn−1, . . . , λ1) = V (λn | λn−1, . . . , λ1) + V (λn−1, . . . , λ1) =

= V (λn | λn−1) + V (λn−1, . . . , λ1) = V (λ1) +

n∑
i=2

V (λi | λi−1)

The matching problem is then a decision over labeled s-t paths P ∈ P:

P ∗ = arg min
P∈P

{
Vp1(D | λ1) + V (λ1) +

n∑
i=2

[
Vpi(D | λi) + V (λi | λi−1)

]}
(32)

• the data likelihood term Vpi (D | λi) is the same as in (31) on Slide 164

• note that one can add/subtract a fixed term from any of the functions Vp, V in (32)
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A Choice of V (λi | λi−1)

• A natural requirement: symmetry of probability p(λi, λi−1) = e−V (λi, λi−1)

λi
p(λi, λi−1)

m eL eR

m 0 p(m, e) p(m, e)

λi−1 eL p(m, e) p(e, e) p(eL, eR)

eR p(m, e) p(eL, eR) p(e, e)

3 DOF, 1 constraint ⇒ 2 parameters

α1 =
p(eL, eR)

p(e, e)
0 ≤ α1 ≤ 1

α2 =
p(m, e)

p(e, e)
0 < α2 ≤ 1 + α1

• Result for V (λi | λi−1) (after subtracting common terms):

λi
V (λi | λi−1)

m eL eR

m ∞ 0 0

λi−1 eL ln 1+α1+α2
2α2

ln 1+α1+α2
2

ln 1+α1+α2
2α1

eR ln 1+α1+α2
2α2

ln 1+α1+α2
2α1

ln 1+α1+α2
2

by marginalization:

V (m) = ln
1 + α1 + α2

2α2

V (eL) = V (eR) = 0

parameters
• α1 – likelihood of mutual occlusion (α1 = 0 forbids mutual occlusion)

• α2 – likelihood of irregularity (α2 → 0 helps suppress small objects and holes)

• α, β – similarity model parameters (see V1

(
D(l, r)

)
on Slide 164)

• Ve – penalty for disregarded data (see V (D(pi) | λ(pi) = e) on Slide 170)
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‘Programming’ the Matching Algorithm: 3LDP

• given G, construct directed graph G+

• triple of vertices per node of s-t path representing three hypotheses λ(p) for λ ∈ Λ
• arcs have costs V (λi | λi−1), nodes have costs V (D | λi)
• orientation of G+ is inherited from the orientation of s-t paths
• we converted the shortest labeled-path problem to ordinary shortest path problem

p

s

t

l

r

G

(l − 1, r)

(l, r − 1)

(l + 1, r)

p = (l, r) (l, r + 1)

G+

eLeLeL

eL

eR

eR

eR

eL

m mm

m

m

eReR

neighborhood of p; strong blue edges are of zero penalty
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cont’d: Dynamic Programming on G+

• G+ is a topologically ordered directed graph

• we can use dynamic programming on G+

t

p2

s

p1

q

V ∗s:q(λq) = min
z∈{p1,p2},λz∈Λ

{
V ∗s:z(λz) + Vz(D | λz) + V (λq | λz)

}
V ∗s:q(λq) – cost of min-path from s to label λq at node q

• complexity is O(|I| · |J |), ie. stereo matching on N ×N images needs O(N3) time

• speedup by limiting the range in which the disparities d = l − r are allowed to vary
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Implementation of 3LDP in a few lines of code. . .

#define clamp(x, mi, ma) ((x) < (mi) ? (mi) : ((x) > (ma) ? (ma) : (x)))

#define MAXi(tab,j) clamp((j)+(tab).drange[1], (tab).beg[0], (tab).end[0])

#define MINi(tab,j) clamp((j)+(tab).drange[0], (tab).beg[0], (tab).end[0])

#define ARG_MIN2(Ca, La, C0, L0, C1, L1) if ((C0) < (C1)) { Ca = C0; La = L0; } else { Ca = C1; La = L1; }

#define ARG_MIN3(Ca, La, C0, L0, C1, L1, C2, L2) \

if ( (C0) <= MIN(C1, C2) ) { Ca = C0; La = L0; } else if ( (C1) < MIN(C0, C2) ) { Ca = C1; La = L1; } else { Ca = C2; La = L2; }

void DP3LForward(MatchingTableT tab) {

int i = tab.beg[0]; int j = tab.beg[1];

C_m[j][i-1] = C_m[j-1][i] = MAXDOUBLE;

C_oL[j][i-1] = C_oR[j-1][i] = 0.0;

C_oL[j-1][i] = C_oR[j][i-1] = -penalty[0];

for(j = tab.beg[1]; j <= tab.end[1]; j++)

for(i = MINi(tab,j); i <= MAXi(tab,j); i++) {

ARG_MIN2(C_m[j][i], P_m[j][i],

C_oR[j-1][i] + penalty[2], lbl_oR,

C_oL[j][i-1] + penalty[2], lbl_oL);

C_m[j][i] += 1.0 - tab.MNCC[j][i];

ARG_MIN3(C_oL[j][i], P_oL[j][i], C_m[j-1][i], lbl_m,

C_oL[j-1][i] + penalty[0], lbl_oL,

C_oR[j-1][i] + penalty[1], lbl_oR);

C_oL[j][i] += penalty[3];

ARG_MIN3(C_oR[j][i], P_oR[j][i], C_m[j][i-1], lbl_m,

C_oR[j][i-1] + penalty[0], lbl_oR,

C_oL[j][i-1] + penalty[1], lbl_oL);

C_oR[j][i] += penalty[3];

}

}

void DP3LReverse(double *D, MatchingTableT tab) {

int i,j; labelT La; double Ca;

for(i=0; i<nl; i++) D[i] = nan; /* not-a-number */

i = tab.end[0]; j = tab.end[1];

ARG_MIN3(Ca, La, C_m[j][i], lbl_m,

C_oL[j][i], lbl_oL, C_oR[j][i], lbl_oR);

while (i >= tab.beg[0] && j >= tab.beg[1] && La > 0)

switch (La) {

case lbl_m: D[i] = i-j;

switch (La = P_m[j][i]) {

case lbl_oL: i--; break;

case lbl_oR: j--; break;

default: Error(...);

} break;

case lbl_oL: La = P_oL[j][i]; j--; break;

case lbl_oR: La = P_oR[j][i]; i--; break;

default: Error(...);

}

}
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Some Results: AppleTree

left image right image ML (slide 172)

3LDP (slide 186) näıve DP [Cox et al. 1992] stable segmented 3LDP (see [SP])

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

left image right image ML (slide 172)

3LDP (slide 186) näıve DP stable segmented 3LDP

• näıve DP does not model mutual occlusion

• but even 3LDP has errors in mutually occluded region

• stable segmented 3LDP has few errors in mutually occluded region since it uses a weak form
of ‘image understanding’
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Algorithm Comparison

Winner-Take-All (WTA)
• the ur-algorithm [Marroquin 83] no model

• dense disparity map

• O(N3) algorithm, simple but it rarely works

Maximum Likelihood (ML)

• semi-dense disparity map

• many small isolated errors

• models basic occlusion

• O(N3 log(NV )) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map

• models occlusion in flat, piecewise continuos
scenes

• has ‘illusions’ if ordering does not hold

• O(N3) algorithm

Stable Segmented 3LDP

• better (fewer errors at any given density)

• O(N3 logN) algorithm

• requires image segmentation itself a difficult task
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the
density/accuracy tradeoff

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)
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Part VIII

Shape from Reflectance

31 Reflectance Models (Microscopic Phenomena)

32 Photometric Stereo

33 Image Events Linked to Shape (Macroscopic Phenomena)

mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice
Hall 2003. Chap. 5

additional references

R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451, July 1988.

P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision

and Pattern Recognition, pp. 1060–1066, 1997.
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IBasic Surface Reflectance Mechanismsl n vL
macroscopic scale

n = 1:5 : : :2:3
refration index n = 1optial boundary

air
partiles in medium

microscopic scale

• reflection on (rough) optical boundary
• masking and shadowing
• interreflection

• refraction into the body
• subsurface scattering
• refraction into the air
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IParametric Reflectance Models

Image intensity (measurement) at pixel m given by surface reflectance function R

J(m) = η fi,r(θi, φi; θr, φr) ·
Φe

4π‖L− x‖2︸ ︷︷ ︸
σ

n>l = R(n), l =
L− x

‖L− x‖

η – sensor sensitivity for simplicity, we select η = 2π

fi,r() – bidirectional reflectance distribution function (BRDF)

[fi,r()] = sr−1 how much of irradiance in Wm−2 is
redistributed per solid angle element

L – point light source position

Φe – radiant power of the light source, [Φe] = W

n – surface normal

σ – irradiance of a surfel orthogonal to incident light
direction

Isotropic (Lambertian) reflection [Lambert 1760]

no optical boundary

fi,r(θi, φi; θr, φr) =
ρ

2π
, ρ – albedo

J(m) = σρ cos θi = σρn>l

l n l+ v
x�i �r

�i �r�
L

vV
pixel projected onto surface
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IPhotometric Stereo

Lambertian model (light j ∈ {1, 2, 3}, pixel i ∈ {1, . . . , n})

Jji = (σj lj)
>(ρi ni) = s>j bi

bi – scaled normals, sj – scaled lights

3 independent scaled lights and n scaled normals, one per pixel
(in n pixels); can be stacked in matrices:J11 J12

J21 J22

J31 J32

 =

s>1 b1 s>1 b2

s>2 b1 s>2 b2

s>3 b1 s>3 b2

 =

s>1s>2
s>3

 [b1 b2

]
n = 2 pixels, 3 lights

in general, stacked per columns:

S = [ s1, s2, s3 ] ∈ R3,3 B = [b1, b2, . . . , bn] ∈ R3,n

nilj vi�i
pixel indexing i:

1 2 3 4

8765

9 10 11 12

Solution to Photometric Stereo

J = S>B ⇒ B = S−>J J ∈ R3,n

ρi = ‖bi‖ albedo map, ni =
1

ρi
bi needle map
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Photometric Stereo: Plaster Cast Example

input images (known lights) needle & albedo maps

We have: 1. shape (surface normals), 2. intrinsic texture (albedo)

The shape can be represented as unit normal vectors n or as a gradient field (p, q):

n(u, v) =
(
n1(u, v), n2(u, v), n3(u, v)

)
,

∂z(u, v)

∂u

def
= zu(u, v) = p(u, v) = ± n1(u, v)

2n3(u, v)2 − 1
,

∂z(u, v)

∂v

def
= zv(u, v) = q(u, v) = ± n2(u, v)

2n3(u, v)2 − 1
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IThe Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields p(u, v), q(u, v), find height function z(u, v) such that zu is
close to p and zv is close to q in the sense of a functional norm.

z∗ = arg min
z
Q(z), Q(z) =

∫∫
|zu(u, v)− p(u, v)|2 + |zv(u, v)− q(u, v)|2 du dv

In the Fourier domain this can be written as F(z;ω) = 1
2π

∫∫
z(u, v)e−j(uωu+vωv) du dv

Q(z) =

∫∫
|jωu F(z;ω)−F(p;ω)|2 + |jωv F(z;ω)−F(q;ω)|2︸ ︷︷ ︸

A(F(z;ω))

dω, ω = (ωu, ωv)

and its minimiser is from vanishing formal derivative of A(F(z;ω)) wrt F(z;ω)

[Frankot & Chellappa 1988]

F(z;ω) = − jωu|ω|2 F(p;ω)− jωv
|ω|2 F(q;ω)

[m,n] = size(p);
Wu = fft2(fftshift([-1,0,1]/2),m,n); % discrete differential operator
Wv = fft2(fftshift([-1;0;1]/2),m,n);
Z = -(Wu.*fft2(p) + Wv.*fft2(q))./(abs(Wu).^2 + abs(Wv).^2 + eps);
z = real(ifft2(Z));
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Photometric Stereo: Examples

3 input images surface

3 input images surface

• integrated by the FC algorithm from Slide 197

• bias due to interreflections can be removed [Drew & Funt, JOSA-A 1992]
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IIntegrability of a Vector Field

• not every vector field p(u, v), q(u, v) is integrable (born by a surface z(u, v))
• integrability constraint

pv(u, v) = qu(u, v)

• this is because a regular surface has rot∇z(u, v) = 0 irrotational gradient field

zuv(u, v) = zvu(u, v)

• noise causes non-integrability
• the FC algorithm finds the closest integrable surface

integrable non-integrable non-integrable (noisy)
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Optimal Light Configurations

For n lights S the error ∆b = S−>∆J in normal b due to error ∆J in image is

ε(S) = E
[
∆b>∆b

]
= E

[
∆J>(S>S)−1∆J

]
= σ2 tr

[
(SS>)−1] ≥ 9σ2

n
.

assuming pixel-independent normal camera noise ∆Ji ∼ N(0, σ)

The error ε is minimum if [Drbohlav & Chantler 2005]

SS> =
n

3
I, where S = [s1, s2, . . . , sn]

• either n ≥ 3 equidistant and equiradiant lights on a circle of uniform slant of
arctan

√
2 ≈ 54.74◦

• n− 1 lights in this configuration plus a light parallel to the sum
∑n−1
i=1 si

• or light matrix S is a concatenation of optimal solutions (each of ≥ 3 lights)
eg. 3 optimally placed (s1, s2, s3) + 3 lights (s4, s5, s6) = (s1, s2, s3) + α rotated by angle α around nn 54:74Æ
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Uncalibrated Photometric Stereo

Factorization J = S>B [Hayakawa94]

LS solution by SVD decomposition of J = UDV>

S = D1:3U> scaled pseudo-lights

B = (V1:3)> scaled pseudo-normals V1:3 are columns 1–3

Ambiguity J = S>B = S>A−1︸ ︷︷ ︸
S̄>

AB︸ ︷︷ ︸
B̄

, A ∈ GL(3) [Koenderink94]

information ambiguity

3+ normals B̄ known λI (identity 3× 3 mtx) B̄ = AB ⇒ A B is measured

uniform albedo λR (orthogonal 3× 3 mtx) 6 points: [Drew92]

‖Abi‖ = 1 ⇒ b>i A>Abi = 1 ⇒ A>A ⇒ A up to rot.
(Choleski)

equal light intensity λR ‖sjA−1‖ = 1 ⇒ A up to rot. [Hayakawa94]

integrable normals pv = qu
for n ∼ (p, q, 1)

 λ 0 µ
0 λ ν
0 0 τ

 generalized bas-relief ambiguity
[Yuille99, Fan97, Belhumeur99]

uniform albedo
and integrability

λI

integrability and
2+ specular pts

λI [Drbohlav & Chantler, ICCV 2005]
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IGeneralized Bas Relief Ambiguity (GBR)

GBR maps surface z′(u, v) = λz(u, v) + µu+ ν v, i.e. it maps normals to n′ = Gn, where

G =

λ 0 −µ
0 λ −ν
0 0 1


Obs: If normals change n′ = Gn and lights change l′ = G−> l then Lambertian shading does not
change:

n′
>

l′ = (n>G>)(G−>l) = n>l

nl l0
f(t) 0:6f(t) + 0:5t

t n0
Reproduced from [Belhumeur et al. 1997]

Obs: Shadow boundaries of surface S illuminated by light l are identical to those of surface S′
transformed by GBR G and illuminated by light l′ = G−>l

weak assumptions [Belhumeur et al. 1997]
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IA Quick Glance at the Classical Differential Geometry of Surfaces

Darboux frame

n
n+ dn

ds s

tθ
κθ = t>θ

dn

ds
normal curvature, direction θ

κ1, κ2 principal curvatures

K = κ1 · κ2 Gaussian curvature

H = κ1 + κ2 mean curvature

κθ = κ1 cos2 θ + κ2 sin2 θ

umbilical elliptical parabolic hyperbolic
convex κ1 = κ2 > 0 κ1 > 0, κ2 > 0 κ1 > 0, κ2 = 0 κ1 > 0, κ2 < 0

concave κ1 < 0, κ2 < 0

the transition elliptic → parabolic → hyperbolic occurs at parabolic lines

non-umbilical surface like a torus
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IOccluding Contour Structure

smooth self-occlusion contour (back)
not smooth contour (mane)

• surface curves are tangent to smooth
self-occlusion contour

• isophotes are surface curves ⇒ their
density approaches infinity on smooth
self-occlusion contour

vn t�rI
n = Q>t optical plane normal

K = κs κt → sign(K) = sign(κt)

κs > 0 – curvature in the direction of sight
κt – occluding contour curvature

xst = 0 since xs ' v [Koenderink 84]

• this is a basis for
shape from occluding contour
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Self-Shadow Contour Structurel
• loci where occluding and self-shadow

meet: the projection of light direction
vector to image plane is tangent to the
contour there
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Isophotes on Simple Lambertian Surfaces

n

l

l

n n

l

Surface is parameterized by: σ – slant, τ – tilt, where n>l = cosσ
• isophotes – green

• apex – where n ' l

• isophotes parallel to rulings on developable surfaces

• illuminant on cylinder axis: constant reflectance cylindrical part illumination w/o shading

• in general: isophotes are parallel to zero-curvature principal direction
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Isophotes on a Complex Surface

shaded Lambertian surface isophotes w/ approximate parabolic curves

singular image points
• Lambertian apex: move with light, n = l (T1)

• extrema and saddles on parabolic lines: move along parabolic lines (T2)

• planar points: do not move (not shown)

• specular points: move with light and/or viewer but slower (not shown)

[Koenderink & van Doorn 1980]
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The Crater Illusion
Ambiguity in Local Shading and The Human Vision Preference

Apollo 17 landing site (Taurus-Littrow); courtesy of NASA

Shading at Lambertian apex:

K2 = det
(
HG−1

)
2H2 −K = −

1

2
tr
(
HG−1

)
H =

[
Iuu Iuv
Iuv Ivv

]
image Hessian

G =

[
1 + l21 l1l2
l1l2 1 + l22

]
from light dir. l = (l1, l2, l3)

bottom: crater-like surface
top: surface illuminated from lower-left

and top-right

Apex: Up to 4 solutions for surface
principal curvatures:

convex/concave × elliptic/hyperbolic
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Thank You
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 18–Dec–2012
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)
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