
ICholeski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find ds such that −
k∑
r=1

L>r νr(θ
s) =

( k∑
r=1

L>r Lr + λ diagL>r Lr
)
ds

This is a linear set of equations Ax = b, where

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse and symmetric, A−1 is dense direct matrix inversion is prohibitive

Choleski: Every symmetric positive definite matrix A can be decomposed to
A = LL>, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL> transforms the problem to solving LL>x︸ ︷︷ ︸
c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q

L>x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj
)

back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121c + 66pc ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A [Triggs et al. 1999]

• λ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.

[p,q] = size(A);
if p ~= q, error ’Matrix must be square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix must be positive definite’; end
L(i,i) = sqrt(a);

end
end
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IGauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem, Slide 124

mi ' PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L
>
r Lr is singular

Solutions

• fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

• imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. ‖Xi‖2 = 1 this way we can represent points at infinity

• using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrix can be represented by Cayley transform see next
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IMinimal Representations for Rotation

• o – rotation axis, ‖o‖ = 1, ϕ – rotation angle
• wanted: simple mapping to/from rotation matrices

1. Rodrigues’ representation

R = I + sinϕ[o]× + (1− cosϕ)[o]2×

sinϕ [o]× =
1

2
(R−R>), cosϕ =

1

2
(trR− 1)

• hiding ϕ in the vector o as in [sinϕo]× is not so easy
• Cayley tried:

2. Cayley’s representation; let a = o tan ϕ
2

, then

R = (I + [a]×)(I− [a]×)−1

[a]× = (R + I)−1(R− I)

a1 ◦ a2 =
a1 + a2 − a1 × a2

1− a>1 a2
composition of rotations R = R1R2

• no trigonometric functions
• cannot represent rotation by 180◦

• explicit composition formula

3. exponential map R = exp [ϕo]×, inverse by Rodrigues’ formula
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Minimal Representations for Other Entities

1. with the help of rotation we can minimally represent
• fundamental matrix

F = UDV>, D = diag(d, 1, 0), U,V are rotations, 3 + 1 + 3 = 7 DOF

• essential matrix

E = [−t]×R, R is rotation, ‖b‖ = 1, 3 + 2 = 5 DOF

• camera
P = K

[
R t

]
, 5 + 3 + 3 = 11 DOF

2. homography can be represented via exponential map

expA =

∞∑
k=0

1

k!
Ak

note: A0 = I

some properties

exp0 = I, exp(−A) =
(
expA

)−1
, exp(A+B) 6= exp(A) exp(B)

exp(A>) = (expA)> hence if A antisymmetric then expA orthogonal(
exp(A)

)>
= exp(A

>
) = exp(−A) =

(
exp(A)

)−1

det expA = exp(trA) a key to homography representation:

H = expZ such that trZ = 0, eg. Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)

, 8 DOF
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IImplementing Simple Constraints

What for?
1. fixing external frame → θi = θ0

i ‘trivial gauge’

2. representing additional knowledge → θi = θj e.g. cameras share calibration matrix K

We introduce reduced parameters θ̂:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

Then Lr in LM changes to Lr T and
everything else stays the same

�2�3�4�5T = t =�̂1 �̂2 �̂3 �̂4�1 these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t
or filter the initialization by pseudoinverse θ0 7→ T†θ0

• we need not compute derivatives for θj that correspond to all-zero rows Tj

fixed params

• constraining projective entities → minimal representations

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]
• BA resource: http://www.ics.forth.gr/~lourakis/sba/
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Part VII

Stereovision

4 Introduction
5 Epipolar Rectification
6 Binocular Disparity and Matching Table
7 Image Likelihood
8 Maximum Likelihood Matching
9 Uniqueness and Ordering as Occlusion Models

30 Three-Label Dynamic Programming Algorithm

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.
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What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene
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What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden

• we have no help from image interpretation here
• this is how difficult is low-level stereo we will attempt to solve
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What Are The Relative Distances? (Why?)

• a combination of lack of texture and occlusion −→ ambiguous interpretation

3D Computer Vision: VII. Stereovision (p. 143/205) R. Šára, CMP; rev. 4–Dec–2012



Repetition: How Many Scenes Correspond to a Stereopair?

Consider the fence and the fortress worlds . . .

?

• lack of texture is a limiting case of repetition
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How Difficult Is Stereo?

• when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

• most stereo matching algorithms do not require scene understanding prior to matching

• the success of a model-free stereo matching algorithm is unlikely:

left image disparity map disparity map from WTA

WTA Matching:

• for every left-image
pixel find the most
similar right-image
pixel along the
corresponding epipolar
line [Marroquin 83]
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Why Model-Free Stereo Fails?

• lack of an occlusion model
• lack of a continuity model

⇒ structural ambiguity

left image right image

C 1

2

3

B−2

A−1

C−3

A

B

A

B

C 1

3

C−3

B−1

A−2

2

interpretation 1 interpretation 2
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But What Kind of Continuity Model Applies Here?

• continuity alone is not a sufficient model

• occlusion model is more primal

• but occlusion model alone is insufficient, since it does not solve structural ambiguity
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A Summary of Our Observations and an Outlook

• simple matching algorithms do not work

• decisions on matches are not independent due to occlusions
occlusion constraint works along epipolars only

• occlusion model alone is insufficient does not resolve the structural ambiguity

• a continuity model can resolve structural ambiguity
but continuity is piecewise due to object boundaries

• in sufficiently complex scenes the only possibility is that stereopsis uses scene
interpretation (or another-modality measurement)

Outlook:

1. represent the occlusion constraint:
• epipolar rectification
• disparity
• uniqueness as an occlusion constraint

2. represent piecewise continuity
• ordering as a weak continuity model

3. use a consistent framework
• looking for the most probable solution (MAP)
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IEpipolar Rectification

Problem: Given fundamental matrix F or camera matrices P1, P2, transform images so
that epipolar lines become horizontal with the same row coordinate. The result is a
standard stereo pair. for easier correspondence search

Procedure:
1. find a pair of rectification homographies H1 and H2.
2. warp images using H1 and H2 and modify fundamental matrix F 7→ H−>2 FH−1

1 or
cameras P1 7→ H1P1, P2 7→ H2P2.

Rectification 1 Rectification 2

Original pair

• there is a 9-parameter family of rectification homographies for binocular rectification, see next

• trinocular rectification has 9 or 6 free parameters (depends on additional constrains)

• in general, rectification is not possible for more than three cameras
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Rectification Example

Four cameras in general position

cam 1 cam 2

cam 3 cam 4

Rectified pairs

pair 1 – 2

pair 2 – 4

pair 1 – 4
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IRectification Homographies

Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗i = HiPi = HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗2, l∗1, etc:
e�2uv m�1 m�2 l�2l�1

corresponding epipolar lines must be:

1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 ⇒ l∗2 ' l∗1 ' e∗1 ×m1 = [e∗1]×m1 = F∗m1

both conditions together give the rectified fundamental matrix

F∗ '

0 0 0
0 0 −1
0 1 0


A two-step rectification procedure

1. Find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. Upgrade them to a pair of optimal rectification homographies from the class
preserving F∗.
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IGeometric Interpretation of Linear Rectification

What pair of cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2 )>[e1]× Slide 77

• we choose Q∗1 = K∗1, Q∗2 = K∗2R
∗; then

(Q∗1Q
∗
2
−1

)>[e∗1]× = (K∗1R
∗>K∗2

−1)>F∗

• we look for R∗, K∗1, K∗2 compatible with

(K∗1R
∗>K∗2

−1)>F∗ = λF∗, R∗R∗> = I, K∗1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ' P∗1C
∗
2 = K∗1b

∗ b∗ in cam. 1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗1 =

k11 k12 k13

0 f v0

0 0 1

, K∗2 =

k21 k22 k23

0 f v0

0 0 1

 (29)

• rectified cameras are in canonical position with respect to each other
not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only

• when K∗1 = K∗2 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies
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Thank You
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