»Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal egs:

k k
find dy such that  — > LT1,(6°) = (Z L L, + A diag LILT)dS
r=1 r=1
This is a linear set of equations Ax = b, where
e A is very large approx. 3 - 10 x 3 - 10 for a small problem of 10000 points and 5 cameras

e A is sparse and symmetric, A~ is dense direct matrix inversion is prohibitive
Choleski: Every symmetric positive definite matrix A can be decomposed to
A = LLT, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LLT transforms the problem to solving LL x = b

Cc
2. solve for x in two passes:

Lc=b ci:=Lj;' (bi — Z Lijcj) forward substitution, i =1,...,q
=

L'x=c X; 1= L;il (ci — Z Ljixj') back-substitution
3>i

® Choleski decomposition is fast (does not touch zero blocks)

non-zero elements are 9p + 121c + 66pc ~ 3.4 - 106; ca. 250 fewer than all elements
® it can be computed on single elements or on entire blocks
® use profile Choleski for sparse A and diagonal pivoting for semi-definite A [Triggs et al. 1999]
® )\ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)

)

% PCHOL profile Choleski factorizatiom,

% L = PCHOL(A) returns lower-triangular sparse L such that A = LxL’
% for sparse square symmetric positive definite matrix A,

yA especially useful for arrowhead sparse matrices.

[p,q]l = size(A);
if p "= q, error ’Matrix must be square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q

F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a=A(i,j) - L(,k: (J-1))*L(j,k: (j-1));
L(i,j) = a/L(j,]);
end
a = A(i,i) - sum(full(L(i,F(i):(i-1)))."2);
if a < 0, error ’Matrix must be positive definite’; end
L(i,i) = sqrt(a);
end
end
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»Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem, Slide 124
m; ~ P;X; = P;H 'HX, = P/X]

2. Some representations are not minimal, e.g.

e P is 12 numbers for 11 parameters
e we may represent P in decomposed form K, R, t
e but R is 9 numbers representing the 3 parameters of rotation

As a result

e there is no unique solution
e matrix 3, L, L, is singular

Solutions

e fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

e imposing constraints on projective entities
e cameras, e.g. P3,4 =1 this excludes affine cameras
e points, e.g. ||)7(2||2 =1 this way we can represent points at infinity
e using minimal representations

e points in their Euclidean representation X; but finite points may be an unrealistic model
e rotation matrix can be represented by Cayley transform  see next
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»Minimal Representations for Rotation

e o — rotation axis, ||o|| =1, ¢ — rotation angle
e wanted: simple mapping to/from rotation matrices
1. Rodrigues’ representation
R =1+sing[o], + (1 — coscp)[o]zX
1 1
sinp[o], = i(R —R"), cosp= é(trR -1)

e hiding ¢ in the vector o as in [sin p o], is not so easy

o Cayley tried:
2. Cayley's representation; let a = otan %, then

R = (I+[a],)(I-[a],)""
[a, =R+D R~

a; +az2 —a; X az .. .
T L composition of rotations R = R1Ra
1—-a;a

al o az

® no trigonometric functions
e cannot represent rotation by 180°
e explicit composition formula

3. exponential map R =exp[po],, inverse by Rodrigues' formula

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 137/205) 9a¢ R. Sara, CMP; rev. 4-Dec-2012 *ill



Minimal Representations for Other Entities

1. with the help of rotation we can minimally represent
e fundamental matrix

F=UDV', D =diag(d,1,0), U,V are rotations, 3+ 1+ 3 =7 DOF
e essential matrix

E =[-t],R, Risrotation, |b| =1, 3+2=5DOF
e camera
P=K[R t], 5+3+3=11DOF

2. homography can be represented via exponential map

oo
1
eprZZEAk note: A? =1
k=0 "
some properties

exp0 =1, exp(—A)= (exp A)_l, exp(A + B) # exp(A) exp(B)
exp(AT) = (expA) T hence if A antisymmetric then exp A orthogonal

(exp(A)) T = exp(AT) = exp(—A) = (exp(A))
det exp A = exp(tr A) a key to homography representation:

211 12 Z13
H =expZ suchthat trZ =0, eg. Z= |221 222 293 , 8 DOF
231 232 —(2z11 + 222)
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» Implementing Simple Constraints

What for?
1. fixing external frame — 6; = 6? ‘trivial gauge’
2. representing additional knowledge — 6; = 6; e.g. cameras share calibration matrix K
We introduce reduced parameters 6: 01 02 95 04 these T, t represent
. . b 0, =0 h
0=T0+t, TCRP? p<p 0, 1=o ne change
e 0‘ . 0o = 0o no change
Then L, in LM changes to L, T and - 03 = t3 constancy
everything else stays the same Z“ 04 = 05 = 04 equality

T deletes columns of L, that correspond to fixed parameters it reduces the problem size
e consistent initialisation: 8 = T ° + ¢

or filter the initialization by pseudoinverse §° — T140
e we need not compute derivatives for 6; that correspond to all-zero rows T';

fixed params

e constraining projective entities — minimal representations
® more complex constraints tend to make normal equations dense

® implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

e other methods are much more involved, see [Triggs et al. 1999]
® BA resource: http://www.ics.forth.gr/ lourakis/sba/
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Part VII

Stereovision

@ Introduction

@ Epipolar Rectification

@ Binocular Disparity and Matching Table

@ Image Likelihood

@® Maximum Likelihood Matching

© Uniqueness and Ordering as Occlusion Models
& Three-Label Dynamic Programming Algorithm

mostly covered by
Ssra, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010

additional references

referenced as [SP]

@ C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

@ J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111-117. 2001.

@ M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496-501, 1999.
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What Are The Relative Distances?

e monocular vision already gives a rough 3D sketch because we understand the scene
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What Are The Relative Distances?

Centrum for teknikstudier at Malmo Hogskola, Sweden

e we have no help from image interpretation here
e this is how difficult is low-level stereo we will attempt to solve
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What Are The Relative Distances? (Why?)

e a combination of lack of texture and occlusion — ambiguous interpretation
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Repetition: How Many Scenes Correspond to a Stereopair?

Consider the fence and the fortress worlds . ..

o lack of texture is a limiting case of repetition
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How Difficult Is Stereo?

e when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

e most stereo matching algorithms do not require scene understanding prior to matching
o the success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

e for every left-image
pixel find the most
similar right-image
pixel along the
corresponding epipolar
line [Marroquin 83]

ot o e ]

left image disparity map disparity map from WT,
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Why Model-Free Stereo Fails?

e lack of an occlusion model

. = structural ambiguity
e lack of a continuity model

left image right image

N 1A2

interpretation 1 interpretation 2
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But What Kind of Continuity Model Applies Here?

e continuity alone is not a sufficient model
e occlusion model is more primal

e but occlusion model alone is insufficient, since it does not solve structural ambiguity
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A Summary of Our Observations and an Outlook

e simple matching algorithms do not work

e decisions on matches are not independent due to occlusions
occlusion constraint works along epipolars only

e occlusion model alone is insufficient does not resolve the structural ambiguity

e a continuity model can resolve structural ambiguity
but continuity is piecewise due to object boundaries

e in sufficiently complex scenes the only possibility is that stereopsis uses scene
interpretation (or another-modality measurement)

Outlook:

1. represent the occlusion constraint:
e epipolar rectification
e disparity
® uniqueness as an occlusion constraint
2. represent piecewise continuity
e ordering as a weak continuity model
3. use a consistent framework
e looking for the most probable solution (MAP)
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»Epipolar Rectification

Problem: Given fundamental matrix F' or camera matrices P1, P2, transform images so
that epipolar lines become horizontal with the same row coordinate. The result is a
standard stereo pair. for easier correspondence search
Procedure:

1. find a pair of rectification homographies H; and Hs.

2. warp images using H; and Hy and modify fundamental matrix F +—» HQ_TFHI_1 or

cameras P — H P, Py — HyPs.
Original pair

Rectification 1 / \ Rectification 2

e there is a 9-parameter family of rectification homographies for binocular rectification, see next
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Rectification Example

Four cameras in general position

cam 1

cam 2

cam 3

cam 4

Rectified pairs

pair 1 — 2
pair 2 — 4
pair1 — 4
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» Rectification Homographies

Cameras (P, P2) are rectified by a homography pair (H;, Hs):

P;=HP;=HKR;[I -Ci, i=1,2

u
v l mi m; €

R I3

rectified entities: F*, I3, 17, etc:

corresponding epipolar lines must be:
1. parallel to image rows = epipoles become e} = e5 = (1,0,0)
2. equivalent I3 =17 = L~ ~el xm = [ef], m = F'my

both conditions together give the rectified fundamental matrix

0 0 O
F'~|0 0 -1
0 1 0

A two-step rectification procedure
1. Find some pair of primitive rectification homographies H, H,

2. Upgrade them to a pair of optimal rectification homographies from the class
preserving F*.

3D Computer Vision: VII. Stereovision (p. 151/205) D¢ R. Séra, CMP; rev. 4-Dec-2012 *i&ll



»Geometric Interpretation of Linear Rectification

What pair of cameras is compatible with F*?

we know that F = (Q:1Q; ") " [e1] Slide 77

=-1IX

we choose Q7 = Ki, Q5 = K;R"; then
(QIQs ") "[ei], = (KR K ™) 'F*
we look for R*, K7, K3 compatible with

(KiR"TK; 1 TF* = AF”, R'R*T =1, K7, K5 upper triangular

we also want b* from e ~ P1C; = Kib” b* in cam. 1 frame
result:
b ki1 k2 kis kor  koz ka3
R"=I, b"=|0|, Ki=|0 f v |, Ki=1]0 f Vo (29)
0 0 0 1 0 0 1
rectified cameras are in canonical position with respect to each other

not rotated, canonical baseline
rectified calibration matrices can differ in the first row only

when K7 = KJ then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies
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Thank You
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