## －Sparsity in Bundle Adjustment

We have $q=3 p+11 c$ parameters：$\theta=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{c}\right)$ points，cameras We will use a running index $r=1, \ldots, k, k=p \cdot c$ ．Then each $r$ corresponds to some $i, j$ $\theta^{*}=\arg \min _{\theta} \sum_{r=1}^{k} \nu_{r}^{2}(\theta), \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s},-\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathbf{d}_{s}$
The block form of $\mathbf{L}_{r}$ in Levenberg－Marquardt（Slide 101）is zero except in columns $i$ and $j$ ： $r$－th error term is $\nu_{r}^{2}=\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)$

blocks：
$\square: \mathbf{X}_{i}, 1 \times 3$
$\partial \nu^{2}$
$\square: \mathbf{P}_{j}, 1 \times 12$
blocks：
（i，j）
$\square: \mathbf{X}_{i}-\mathbf{X}_{i}, 3 \times 3$
$\square: \mathbf{X}_{i}-\mathbf{P}_{j}, 3 \times 11$
$\square: \mathbf{P}_{j}-\mathbf{P}_{j}, 11 \times 11$ $\partial\left(X_{i}\right)_{k} k=1,2,3$

－＂points first，then cameras＂scheme
－standard bundle adjustment eliminates points and solves cameras，then back－substitutes

## Choleski Decomposition for B．A．

The most expensive computation in B．A．is solving the normal eqs：

$$
\text { find } \mathbf{d}_{s} \text { such that }-\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathbf{d}_{s}
$$

This is a linear set of equations
－A is very large approx． $3 \cdot 10^{4} \times 3 \cdot 10^{4}$ forasmall problem of 10000 points and 5 cameras
－ $\mathbf{A}$ is sparse and symmetric， $\mathbf{A}^{-1}$ is dense directmatrix inversion is prohibitive
Choleski：Every symmetric positive definite matrix $\mathbf{A}$ can be decomposed to $\mathbf{A}=\mathbf{L L}^{\top}$ ，where $\mathbf{L}$ is lower triangular．If $\mathbf{A}$ is sparse then $\mathbf{L}$ is sparse，tqo．

1．decompose $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$
2．solve for $\mathbf{x}$ in two passes：

$$
\begin{aligned}
\mathbf{L} \mathbf{c}=\mathbf{b} & \mathbf{c}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{b}_{i}-\sum_{j<i} \mathbf{L}_{i j} \mathbf{c}_{j}\right) \\
\mathbf{L}^{\top} \mathbf{x}=\mathbf{c} & \mathbf{x}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{c}_{i}-\sum_{j>i} \mathbf{L}_{j i} \mathbf{x}_{j}\right)
\end{aligned}
$$

transforms the problem to solving $\mid L_{L C}^{L^{L^{\top} \mathbf{x}}=b}$
forward substitution，$i=1, \ldots, q$
back－substitution
－Choleski decomposition is fast（does not touch zero blocks）
non－zero elements are $9 p+121 c+66 p c \approx 3.4 \cdot 10^{6}$ ；ca． $250 \times$ fewer than all elements
－it can be computed on single elements or on entire blocks
－use profile Choleski for sparse $\mathbf{A}$ and diagonal pivoting for semi－definite $\mathbf{A}$
－$\lambda$ controls the definiteness

## Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.
    [p,q] = size(A);
    if p ~= q, error 'Matrix must be square'; end
    L = sparse(q,q);
    F = ones(q,1);
    for i=1:q
        F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
        for j = F(i):i-1
        k = max(F(i),F(j));
        a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
        L(i,j) = a/L(j,j);
    end
    a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
    if a < O, error 'Matrix must be positive definite'; end
    L(i,i) = sqrt(a);
end
end
```


## －Gauge Freedom

1．The external frame is not fixed：
See Projective Reconstruction Theorem，Slide 124

$$
\underline{\mathbf{m}}_{i} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j} \mathbf{H}^{-1} \mathbf{H} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

2．Some representations are not minimal，e．g．
－ $\mathbf{P}$ is 12 numbers for 11 parameters

```
53 3 = 11
```

－we may represent $\mathbf{P}$ in decomposed form $\mathbf{K}, \mathbf{R}, \mathbf{t}$
－but $\mathbf{R}$ is 9 numbers representing the 3 parameters of rotation

## As a result

$$
\underline{x}
$$

－there is no unique solution
－matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

## Solutions

－fixing the external frame（e．g．a selected camera frame）explicitly or by constraints
－imposing constraints on projective entities
－cameras，e．g． $\mathbf{P}_{3,4}=1$
this excludes affine cameras
－points，e．g．$\left\|\underline{\mathbf{X}}_{i}\right\|^{2}=1 \quad\left(x_{i}\right)_{3}=1 \quad$ this way we can represent points at infinity
－using minimal representations
－points in their Euclidean representation $\mathbf{X}_{i} \quad$ but finite points may be an unrealistic model
－rotation matrix can be represented by Cayley transform see next

## －Minimal Representations for Rotation

－ $\mathbf{o}$－rotation axis，$\|\mathbf{o}\|=1, \varphi$－rotation angle
－wanted：simple mapping to／from rotation matrices
1．Rodrigues＇representation

$$
\begin{aligned}
\mathbf{R} & =\mathbf{I}+\sin \varphi[\mathbf{o}]_{\times}+(1-\cos \varphi)[\mathbf{o}]_{\times}^{2} \\
\sin \varphi[\mathbf{o}]_{\times} & =\frac{1}{2}\left(\mathbf{R}-\mathbf{R}^{\top}\right), \quad \cos \varphi=\frac{1}{2}(\operatorname{tr} \mathbf{R}-1)
\end{aligned}
$$

－hiding $\varphi$ in the vector $\mathbf{o}$ as in $[\sin \varphi \mathbf{o}]_{\times}$is not so easy
－Cayley tried：
2．Cayley＇s representation；let $\mathbf{a}=\mathbf{o} \tan \frac{\varphi}{2}$ ，then

$$
\begin{aligned}
\mathbf{R} & =\left(\mathbf{I}+[\mathbf{a}]_{\times}\right)\left(\mathbf{I}-[\mathbf{a}]_{\times}\right)^{-1} \\
{[\mathbf{a}]_{\times} } & =(\mathbf{R}+\mathbf{I})^{-1}(\mathbf{R}-\mathbf{I}) \\
\mathbf{a}_{1} \circ \mathbf{a}_{2} & =\frac{\mathbf{a}_{1}+\mathbf{a}_{2}-\mathbf{a}_{1} \times \mathbf{a}_{2}}{1-\mathbf{a}_{1}^{\top} \mathbf{a}_{2}}
\end{aligned}
$$

－no trigonometric functions
－cannot represent rotation by $180^{\circ}$
－explicit composition formula
matlab: expm (.)

3．exponential map $\mathbf{R}=\exp [\varphi \mathbf{o}]_{\times}$，inverse by Rodrigues＇formula

## Minimal Representations for Other Entities

1. with the help of rotation we can minimally represent

- fundamental matrix

$$
\mathbf{F}=\mathbf{U D} \mathbf{V}^{\top}, \quad \mathbf{D}=\operatorname{diag}(d, 1,0), \quad \mathbf{U}, \mathbf{V} \text { are rotations, } \quad 3+1+3=7 \mathrm{DOF}
$$

- essential matrix

$$
\mathbf{E}=[-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \text { is rotation }, \quad\|\mathbf{b}\|=1, \quad 3+2=5 \mathrm{DOF}
$$

- camera

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right], \quad 5+3+3=11 \mathrm{DOF}
$$

2. homography can be represented via exponential map

$$
\exp \mathbf{A}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \quad \text { note: } \mathbf{A}^{0}=\mathbf{I}
$$

some properties

$$
\exp \mathbf{0}=\mathbf{I}, \quad \exp (-\mathbf{A})=(\exp \mathbf{A})^{-1}, \quad \exp (\mathbf{A}+\mathbf{B}) \neq \exp (\mathbf{A}) \exp (\mathbf{B})
$$

$$
\exp \left(\mathbf{A}^{\top}\right)=(\exp \mathbf{A})^{\top} \text { hence if } \mathbf{A} \text { antisymmetric then } \exp \mathbf{A} \text { orthogonal }
$$

$$
(\exp (\mathbf{A}))^{\top}=\exp \left(\mathbf{A}^{\top}\right)=\exp (-\mathbf{A})=(\exp (\mathbf{A}))^{-1}
$$

det $\exp \mathbf{A}=\exp (\operatorname{tr} \mathbf{A})$ a key to homography representation:
$\operatorname{dit} H=1$ vepresentative for homogrophy

$$
\mathbf{H}=\exp \mathbf{Z} \text { such that } \operatorname{tr} \mathbf{Z}=0 \text {, eg. } \mathbf{Z}=\left[\begin{array}{ccc}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & -\left(z_{11}+z_{22}\right)
\end{array}\right], \quad 8 \text { DOF }
$$

## －Implementing Simple Constraints

## What for？

1．fixing external frame $\rightarrow \theta_{i}=\theta_{i}^{0}$
＇trivial gauge＇
2．representing additional knowledge $\rightarrow \theta_{i}=\theta_{j} \quad$ e．g．cameras share calibration matrix $\mathbf{K}$
We introduce reduced parameters $\hat{\theta}$ ：

$$
\theta=\mathbf{T} \hat{\theta}+\mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p, \hat{p}}, \quad \hat{p} \leq p
$$

Then $\mathbf{L}_{r}$ in LM changes to $\mathbf{L}_{r} \mathbf{T}$ and everything else stays the same

－ $\mathbf{T}$ deletes columns of $\mathbf{L}_{r}$ that correspond to fixed parameters it reduces the problem size
－consistent initialisation：$\theta^{0}=\mathbf{T} \hat{\theta}^{0}+\mathbf{t}$
or filter the initialization by pseudoinverse $\theta^{0} \mapsto \mathbf{T}^{\dagger} \theta^{0}$
－we need not compute derivatives for $\theta_{j}$ that correspond to all－zero rows $\mathbf{T}_{j}$
fixed params
－constraining projective entities $\rightarrow$ minimal representations
－more complex constraints tend to make normal equations dense
－implementing constraints is safer than explicit renaming of the parameters，gives a flexibility to experiment
－other methods are much more involved，see［Triggs et al．1999］
－BA resource：http：／／www．ics．forth．gr／～lourakis／sba／

## Part VII

## Stereovision

（4）Introduction
（5）Epipolar Rectification
（6）Binocular Disparity and Matching Table
7 Image Likelihood
（8）Maximum Likelihood Matching
（9）Uniqueness and Ordering as Occlusion Models
30 Three－Label Dynamic Programming Algorithm
mostly covered by
Šára，R．How To Teach Stereoscopic Vision．Proc．ELMAR 2010 referenced as［SP］ additional references

C．Geyer and K．Daniilidis．Conformal rectification of omnidirectional stereo pairs．In Proc Computer Vision and Pattern Recognition Workshop，p．73， 2003.

J．Gluckman and S．K．Nayar．Rectifying transformations that minimize resampling effects．In Proc IEEE CS Conf on Computer Vision and Pattern Recognition，vol．1：111－117． 2001.M．Pollefeys，R．Koch，and L．V．Gool．A simple and efficient rectification method for general motion．In Proc Int Conf on Computer Vision，vol．1：496－501， 1999.

## What Are The Relative Distances?



- monocular vision already gives a rough 3D sketch because we understand the scene


## What Are The Relative Distances?



Centrum för teknikstudier at Malmö Högskola, Sweden

- we have no help from image interpretation here
- this is how difficult is low-level stereo we will attempt to solve


## What Are The Relative Distances? (Why?)



- a combination of lack of texture and occlusion $\longrightarrow$ ambiguous interpretation


## Repetition: How Many Scenes Correspond to a Stereopair?

Consider the fence and the fortress worlds ...


- lack of texture is a limiting case of repetition


## How Difficult Is Stereo?



- when we do not recognize the scene and cannot use high-level constraints the problem seems difficult (right, less so in the center)
- most stereo matching algorithms do not require scene understanding prior to matching
- the success of a model-free stereo matching algorithm is unlikely:

left image

disparity map

disparity map from WTA


## WTA Matching:

- for every left-image pixel find the most similar right-image pixel along the corresponding epipolar line [Marroquin 83]


## Why Model-Free Stereo Fails?

- lack of an occlusion model
- lack of a continuity model

$$
\Rightarrow \text { structural ambiguity }
$$



## But What Kind of Continuity Model Applies Here？


－continuity alone is not a sufficient model
－occlusion model is more primal
－but occlusion model alone is insufficient，since it does not solve structural ambiguity

## A Summary of Our Observations and an Outlook

- simple matching algorithms do not work
- decisions on matches are not independent due to occlusions
occlusion constraint works along epipolars only
- occlusion model alone is insufficient does not resolve the structural ambiguity
- a continuity model can resolve structural ambiguity
but continuity is piecewise due to object boundaries
- in sufficiently complex scenes the only possibility is that stereopsis uses scene interpretation (or another-modality measurement)


## Outlook:

1. represent the occlusion constraint:

- epipolar rectification
- disparity
- uniqueness as an occlusion constraint

2. represent piecewise continuity

- ordering as a weak continuity model

3. use a consistent framework

- looking for the most probable solution (MAP)


## Epipolar Rectification

Problem: Given fundamental matrix $\mathbf{F}$ or camera matrices $\mathbf{P}_{1}, \mathbf{P}_{2}$, transform images so that epipolar lines become horizontal with the same row coordinate. The result is a standard stereo pair.
for easier correspondence search
Procedure:

1. find a pair of rectification homographies $\mathbf{H}_{1}$ and $\mathbf{H}_{2}$.
2. warp images using $\mathbf{H}_{1}$ and $\mathbf{H}_{2}$ and modify fundamental matrix $\mathbf{F} \mapsto \mathbf{H}_{2}^{-\top} \mathbf{F H}_{1}^{-1}$ or cameras $\mathbf{P}_{1} \mapsto \mathbf{H}_{1} \mathbf{P}_{1}, \quad \mathbf{P}_{2} \mapsto \mathbf{H}_{2} \mathbf{P}_{2}$.


- there is a 9-parameter family of rectification homographies for binocular rectification, see next


## Rectification Example

Four cameras in general position

cam 1

cam 3

cam 2


Rectified pairs

pair 2-4

pair 1-4

## - Rectification Homographies

Cameras（ $\mathbf{P}_{1}, \mathbf{P}_{2}$ ）are rectified by a homography pair $\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ ：

$$
\mathbf{P}_{i}^{*}=\mathbf{H}_{i} \mathbf{P}_{i}=\mathbf{H}_{i} \mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right], \quad i=1,2
$$

rectified entities： $\mathbf{F}^{*}, l_{2}^{*}, l_{1}^{*}$ ，etc：

corresponding epipolar lines must be：
1．parallel to image rows $\Rightarrow$ epipoles become $e_{1}^{*}=e_{2}^{*}=(1,0,0)$
2．equivalent $l_{2}^{*}=l_{1}^{*} \Rightarrow \underline{l}_{2}^{*} \simeq \underline{l}_{1}^{*} \simeq \underline{\mathbf{e}}_{1}^{*} \times \underline{\mathbf{m}}_{1}=\left[\underline{\mathbf{e}}_{1}^{*}\right]_{\times} \underline{\mathbf{m}}_{1}=\mathbf{F}^{*} \underline{\mathbf{m}}_{1}$ both conditions together give the rectified fundamental matrix

$$
\mathbf{F}^{*} \simeq\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

A two－step rectification procedure
1．Find some pair of primitive rectification homographies $\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$
2．Upgrade them to a pair of optimal rectification homographies from the class preserving $\mathbf{F}^{*}$ ．

Thank You







