\section*{O P P \\ | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

Part VI

3D Structure and Camera Motion

(1) Introduction
(2) Reconstructing Camera Systems
(3) Bundle Adjustment

covered by

[1] [H\&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
[2] Triggs, B. et al. Bundle Adjustment-A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.

-Constructing Cameras from the Fundamental Matrix

Given \mathbf{F}, construct some cameras $\mathbf{P}_{1}, \mathbf{P}_{2}$ such that \mathbf{F} is their fundamental matrix.

Solution

See [H\&Z, p. 256]
where

- $\underline{\mathbf{v}}$ is any 3-vector, e.g. $\underline{\mathbf{v}}=\underline{\mathbf{e}}_{1}$ to make the camera finite
- $\lambda \neq 0$ is a scalar,
- $\underline{\mathbf{e}}_{2}=\operatorname{null}\left(\mathbf{F}^{\top}\right)$, i.e. $\underline{\mathbf{e}}_{2}^{\top} \mathbf{F}=0$

Proof

1. \mathbf{S} is antisymmetric iff $\mathbf{x}^{\top} \mathbf{S} \mathbf{x}=0$ for all \mathbf{x}
look-up the proof!
2. we have $\underline{\mathbf{x}} \simeq \mathbf{P} \underline{X}$
3. a non-zero \mathbf{F} is a f.m. iff $\mathbf{P}_{2}^{\top} \mathbf{F} \mathbf{P}_{1}$ is antisymmetric
4. if $\mathbf{P}_{1}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]$ and $\mathbf{P}_{2}=\left[\begin{array}{ll}\mathbf{S F} & \underline{\mathbf{e}}_{2}\end{array}\right]$ then \mathbf{F} corresponds to $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ by Step 3
5. we can write $\mathbf{S}=[\mathbf{s}]_{\times}$
6. a suitable choice is $\mathbf{s}=\underline{\mathbf{e}}_{2}$
7. for the full the class including \mathbf{v}, see [H\&Z, Sec. 9.5]

- The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_{i} are constrained, then for any number of cameras $i=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i}=\mathbf{P}_{i} \underline{\mathbf{X}}=\underbrace{\mathbf{P}_{i} \mathbf{H}^{-1}}_{\mathbf{P}_{i}^{\prime}} \underbrace{\mathbf{H X}}_{\underline{\mathbf{X}}^{\prime}}=\mathbf{P}_{i}^{\prime} \underline{\mathbf{X}}^{\prime}
$$

- when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_{i}), they are given up to a common 3D homography \mathbf{H}
(translation, rotation, scale, shear, pure perspectivity)

- when cameras are internally calibrated (\mathbf{K}_{i} known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{i} [H\&Z, Secs. 10.2, 10.3], [Longuet \& Higgins 81] (translation, rotation, scale)

Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$
\rightarrow Slides 78 and 138 on representing \mathbf{E}
 We construct camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4} \rightarrow$ SI

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{l}\hat{\mathbf{P}}_{i} \\ \hat{\mathbf{P}}_{j}\end{array}\right]=\left[\begin{array}{cc}\mathbf{K}_{i}\left[\begin{array}{ll}\mathbf{I} & \mathbf{0} \\ \mathbf{K}_{j}\left[\hat{\mathbf{R}}_{i j}\right. & \left.\hat{\mathbf{t}}_{i j}\right]\end{array}\right] \in \mathbb{R}^{6,4}\end{array} .\right.
$$

- singletons i, j correspond to vertices $V \quad k$ vertices
- pairs $i j$ correspond to graph edges $E \quad p$ edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

$$
\underbrace{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{24}\\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right]}_{\mathbb{R}^{6,4}} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{i j} & \mathbf{t}_{i j} \\
\mathbf{0}^{\top} & s_{i j}
\end{array}\right]}_{\mathbf{H}_{i j} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i} \\
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right]}_{\mathbb{R}^{6,4}}
$$

- \mathbf{K}_{i} removed on both sides of eq. (24)
- (24) is a linear system of $24 p$ eqs. in $7 p+6 k$ unknowns $\quad 7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$
- each \mathbf{P}_{i} appears on the right side as many times as is the degree of vertex $\mathbf{P}_{i} \quad$ eg. P_{5} 3-times

-cont'd

Eq. (24) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{j}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, \quad \hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}=\mathbf{t}_{j}, \quad s_{i j}>0 \tag{25}
\end{equation*}
$$

- note transformations that do not change these equations
assuming no error in $\hat{\mathbf{R}}_{i j}$

$$
\text { 1. } \quad \mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}, \quad \text { 2. } \quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i} \text { and } s_{i j} \mapsto \sigma s_{i j}, \quad \text { 3. } \quad \mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}
$$

- the global frame is fixed by e.g. selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{26}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition Slide 78 but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j}$
\rightarrow therefore make sure all points are in front of cameras and constrain $s_{i j}>0$; see Slide 80
+ pairwise correspondences are sufficient
- suitable for well-located cameras only (dome-like configurations)
otherwise intractable or numerically unstable

Finding The Rotation Component in Eq．（25）

Task：Solve $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, i, j \in V,(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each． Per columns $c=1,2,3$ of \mathbf{R}_{j} ：

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j \tag{27}
\end{equation*}
$$

－fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top}{ }_{c}$－th columns of all rotation matrices stacked； $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
－then（27）becomes $\mathbf{D} \mathbf{r}^{c}=\mathbf{0}$
$\mathbf{D} \in \mathbb{R}^{3 p, 3 k}$
－ $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k \quad$ in a 1－connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$
Ex：$(k=p=3)$

$$
\rightarrow \begin{aligned}
& \hat{\mathbf{R}}_{12} \mathbf{r}_{1}^{c}-\mathbf{r}_{2}^{c}=\mathbf{0} \\
& \hat{\mathbf{R}}_{23} \mathbf{r}_{2}^{c}-\mathbf{r}_{3}^{c}=\mathbf{0} \\
& \hat{\mathbf{R}}_{13} \mathbf{r}_{1}^{c}-\mathbf{r}_{3}^{c}=\mathbf{0}
\end{aligned} \quad \rightarrow \quad \mathbf{D} \mathbf{r}^{c}=\left[\begin{array}{ccc}
\hat{\mathbf{R}}_{12} & -\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \hat{\mathbf{R}}_{23} & -\mathbf{I} \\
\hat{\mathbf{R}}_{13} & \mathbf{0} & -\mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{r}_{1}^{c} \\
\mathbf{r}_{2}^{c} \\
\mathbf{r}_{3}^{c}
\end{array}\right]=\mathbf{0}
$$

－must hold for any c

Idea：

［Martinec \＆Pajdla CVPR 2007］
1．find the space of all $r^{c} \in \mathbb{R}^{3 k}$ that solve（27） \mathbf{D} is sparse，use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right)$ ；（Matlab）
2．choose 3 unit orthogonal vectors in this space
3 smallest eigenvectors
3．find closest rotation matrices per cam．using SVD
－global world rotation is arbitrary
because $\left\|\mathbf{r}^{c}\right\|=1$ is necessary but insufficient $\mathbf{R}_{i}^{*}=\mathbf{U V}^{\top}$ ，where $\mathbf{R}_{i}=\mathbf{U D V}^{\top}$

Finding The Translation Component in Eq. (25)

From eqs. (25) and (26): d - rank of camera center set $p-$ No. of pairs, $k-$ No. of cameras

$$
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}-\mathbf{t}_{j}=\mathbf{0}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \sum_{i, j} s_{i j}=p, \quad s_{i j}>0, \quad \mathbf{t}_{i} \in \mathbb{R}^{d}
$$

- in rank $d: d \cdot p+d+1$ equations for $d \cdot k+p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1}$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

$$
p=k-1
$$

$$
k=p=3
$$

$$
k=p=4
$$

$k \leq 2$ for any $d \quad d \geq 2$: non-collinear ok $\quad d \geq 3$: non-planar ok $d \geq k-1$: not possible

- rank is not sufficient for chains, trees, or when $d=1$ (collinear cameras)
- 3-connectivity gives a sufficient rank for $d=3$ (cams. in general pos. in 3D)
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq \frac{3 k}{2}-2$
- 4-connectivity gives a sufficient rank for any k for $d=2$ (coplanar cams)
- since $p \geq\lceil 2 k\rceil \geq 2 k-3$
- $\frac{\text { maximal }}{k \geq 3}$ planar tringulated graphs have $p=3 k-6$ and give the rank for

cont'd

Linear equations in (25) and (26) can be rewritten to

$$
\mathbf{D t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

for $d=3: \quad \mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad$ is sparse

$$
\mathbf{t}^{*}=\underset{\mathbf{t}, s_{i j}>0}{\arg \min } \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} \mathbf{t}
$$

- this is a quadratic programming problem (constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

- but check the rank first!

Solving Eq. (25) by Stepwise Gluing

Given: Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples. Initialization

1. initialize camera cluster \mathcal{C} with P_{1}, P_{2},
2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm Slide 84
3. construct camera pair

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

4. compute 3D reconstruction $\left\{X_{i}\right\}$ per match from $M_{12} \quad$ Slide 90
5. initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$
 and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$

1. select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2. estimate \mathbf{P}_{j} using \mathcal{X}_{j}, RANSAC with the 3-pt alg. (P3P), projection errors $\mathbf{e}_{i j}$ in \mathcal{X}_{j} Slide 69
3. reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4. filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5. add P_{j} to \mathcal{C}
6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

Bundle Adjustment

Given:

1. set of 3D points $\left\{\mathbf{X}_{i}\right\}_{i=1}^{p}$
2. set of cameras $\left\{\mathbf{P}_{j}\right\}_{j=1}^{c}$
3. fixed tentative projections $\mathbf{m}_{i j}$

Required:

1. corrected 3D points $\left\{\mathbf{X}_{i}^{\prime}\right\}_{i=1}^{p}$
2. corrected cameras $\left\{\mathbf{P}_{j}^{\prime}\right\}_{j=1}^{c}$

Latent:

1. visibility decision $v_{i j} \in\{0,1\}$ per $\mathbf{m}_{i j}$

- for simplicity, \mathbf{X}, \mathbf{m} are considered direct (not homogeneous)
- we have projection error $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)=\mathbf{x}_{i}-\mathbf{m}_{i}$ per image feature, where $\underline{\mathbf{x}}_{i}=\mathbf{P}_{j} \underline{\mathbf{X}}_{i}$
- for simplicity, we will work with scalar error $e_{i j}=\left\|\mathbf{e}_{i j}\right\|$

Robust Objective Function for Bundle Adjustment

Data likelihood is

 constructed by marginalization, as in Robust Matching Model, Slide 107$$
p(\{\mathbf{m}\} \mid\{\mathbf{P}\})=\prod_{\text {pts }: i=1}^{p} \prod_{\text {cams }: j=1}^{c}\left(\left(1-\alpha_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)+\alpha_{0} p_{0}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)
$$

the simplified log-likelihood is (as on Slide 108)

$$
V(\{\mathbf{m}\} \mid\{\mathbf{P}\})=-\log p(\{\mathbf{m}\} \mid\{\mathbf{P}\})=\sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)}{2 \sigma_{1}^{2}}}+t\right)}_{\rho\left(e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)\right)=\nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)} \stackrel{\text { def }}{=} \sum_{i} \sum_{j} \nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)
$$

- $\nu_{i j}$ is a 'robust' error fcn.; it is non-robust $\left(\nu_{i j}=e_{i j}\right)$ when $t=0$
- $\rho(\cdot)$ is a 'robustification function' we often find in M-estimation
- the $\mathbf{L}_{i j}$ in Levenberg-Marquardt changes to vector

$$
\begin{equation*}
\left(\mathbf{L}_{i j}\right)_{l}=\frac{\partial \nu_{i j}}{\partial \theta_{l}}=\underbrace{\frac{1}{1+t e^{e_{i j}^{2}(\theta) /\left(2 \sigma_{1}^{2}\right)}}}_{\text {small for big } e_{i j}} \cdot \frac{1}{\nu_{i j}(\theta)} \cdot \frac{1}{4 \sigma_{1}^{2}} \cdot \frac{\partial e_{i j}^{2}(\theta)}{\partial \theta_{l}} \tag{28}
\end{equation*}
$$

but the LM method stays the same as on Slides 101-102

- outliers have virtually no impact on \mathbf{d}_{s} in normal equations because of the red term in (28) that scales contributions to the sums down

$$
-\sum_{i, j} \mathbf{L}_{i j}^{\top} \nu_{i j}\left(\theta^{s}\right)=\left(\sum_{i, j}^{k} \mathbf{L}_{i j}^{\top} \mathbf{L}_{i j}\right) \mathbf{d}_{s}
$$

-Sparsity in Bundle Adjustment

We have $q=3 p+11 c$ parameters: $\theta=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{c}\right)$ points, cameras We will use a running index $r=1, \ldots, k, k=p \cdot c$. Then each r corresponds to some i, j $\theta^{*}=\arg \min _{\theta} \sum_{r=1}^{k} \nu_{r}^{2}(\theta), \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s},-\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathbf{d}_{s}$
The block form of \mathbf{L}_{r} in Levenberg-Marquardt (Slide 101) is zero except in columns i and j : r-th error term is $\nu_{r}^{2}=\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)$

- "points first, then cameras" scheme
- standard bundle adjustment eliminates points and solves cameras, then back-substitutes

\section*{O P P
 | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

