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3D Structure and Camera Motion
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IConstructing Cameras from the Fundamental Matrix

Given F, construct some cameras P1, P2 such that F is their fundamental matrix.

Solution See [H&Z, p. 256]
P1 =

[
I 0

]
P2 =

[
[e2]×F+ e2 v

> λ e2
]

where

• v is any 3-vector, e.g. v = e1 to make the camera finite

• λ 6= 0 is a scalar,

• e2 = null(F>), i.e. e>2 F = 0

Proof

1. S is antisymmetric iff x>Sx = 0 for all x look-up the proof!

2. we have x' PX

3. a non-zero F is a f.m. iff P>2 FP1 is antisymmetric

4. if P1 =
[
I 0

]
and P2 =

[
SF e2

]
then F corresponds to (P1,P2) by Step 3

5. we can write S = [s]×
6. a suitable choice is s = e2 [Luong96]

7. for the full the class including v, see [H&Z, Sec. 9.5]
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IThe Projective Reconstruction Theorem

Observation: Unless Pi are constrained, then for any number of cameras i = 1, . . . , k

mi = PiX= PiH
−1︸ ︷︷ ︸

P′i

HX︸︷︷︸
X′

= P′iX
′

• when Pi and X are both determined from correspondences (including calibrations
Ki), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Ki known) then H is restricted to a similarity
since it must preserve the calibrations Ki [H&Z, Secs. 10.2, 10.3], [Longuet & Higgins 81]

(translation, rotation, scale)
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IReconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Êij = [t̂ij ]×R̂ij and
calibration matrices Ki reconstruct the camera system Pi, i = 1, . . . , k

→ Slides 78 and 138 on representing E

P1 P8 P5P6Ê78P7
P4P3P2Ê12 Ê82Ê18 We construct camera pairs P̂ij ∈ R6,4 → Slide 123

P̂ij =

[
P̂i

P̂j

]
=

[
Ki

[
I 0 ]

Kj

[
R̂ij t̂ij ]

]
∈ R6,4

• singletons i, j correspond to vertices V k vertices

• pairs ij correspond to graph edges E p edges

P̂ij are in different coordinate systems but these are related by similarities P̂ijHij = Pij[
I 0

R̂ij t̂ij

]
︸ ︷︷ ︸

R6,4

[
Rij tij
0> sij

]
︸ ︷︷ ︸

Hij∈R4,4

!
=

[
Ri ti
Rj tj

]
︸ ︷︷ ︸

R6,4

(24)

• Ki removed on both sides of eq. (24)

• (24) is a linear system of 24p eqs. in 7p+ 6k unknowns 7p ∼ (tij ,Rij , sij), 6k ∼ (Ri, ti)

• each Pi appears on the right side as many times as is the degree of vertex Pi eg. P5 3-times
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Icont’d

Eq. (24) implies

[
Rij

R̂ijRij

]
=

[
Ri

Rj

] [
tij

R̂ijtij + sij t̂ij

]
=

[
ti
tj

]
• Rij and tij can be eliminated:

R̂ijRi = Rj , R̂ijti + sij t̂ij = tj , sij > 0 (25)

• note transformations that do not change these equations assuming no error in R̂ij

1. Ri 7→ RiR, 2. ti 7→ σ ti and sij 7→ σsij , 3. ti 7→ ti +Rit

• the global frame is fixed by e.g. selecting

R1 = I,
k∑
i=1

ti = 0,
1

p

∑
i,j

sij = 1 (26)

• rotation equations are decoupled from translation equations

• in principle, sij could correct the sign of t̂ij from essential matrix decomposition Slide 78

but Ri cannot correct the α sign in R̂ij

→ therefore make sure all points are in front of cameras and constrain sij > 0; see Slide 80

+ pairwise correspondences are sufficient
– suitable for well-located cameras only (dome-like configurations)

otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (25)

Task: Solve R̂ijRi = Rj , i, j ∈ V , (i, j) ∈ E where R are a 3× 3 rotation matrix each.
Per columns c = 1, 2, 3 of Rj :

R̂ijr
c
i − rcj = 0, for all i, j (27)

• fix c and denote rc =
[
rc1, r

c
2, . . . , r

c
k

]>
c-th columns of all rotation matrices stacked; rc∈R3k

• then (27) becomes Drc = 0 D ∈ R3p,3k

• 3p equations for 3k unknowns → p ≥ k in a 1-connected graph we have to fix rc1 = [1, 0, 0]

Ex: (k = p = 3)Ê23P1Ê13 Ê12P3P2 →
R̂12r

c
1 − rc2 = 0

R̂23r
c
2 − rc3 = 0

R̂13r
c
1 − rc3 = 0

→ Drc =

R̂12 −I 0

0 R̂23 −I
R̂13 0 −I

rc1rc2
rc3

 = 0

• must hold for any c

Idea: [Martinec & Pajdla CVPR 2007]

1. find the space of all rc ∈ R3k that solve (27) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)

2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD because ‖rc‖ = 1 is necessary but insufficient

R∗i = UV>, where Ri = UDV>• global world rotation is arbitrary
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Finding The Translation Component in Eq. (25)

From eqs. (25) and (26): d – rank of camera center set p – No. of pairs, k – No. of cameras

R̂ijti + sij t̂ij − tj = 0,
k∑
i=1

ti = 0,
∑
i,j

sij = p, sij > 0, ti ∈ Rd

• in rank d: d · p+ d+ 1 equations for d · k + p unknowns → p ≥ d(k−1)−1
d−1

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

p = k − 1 k = p = 3 k = p = 4 k = p > 4

k ≤ 2 for any d d ≥ 2: non-collinear ok d ≥ 3: non-planar ok d ≥ k − 1: not possible
‘

• rank is not sufficient for chains, trees, or when d = 1 (collinear cameras)

• 3-connectivity gives a sufficient rank for d = 3 (cams. in general pos. in 3D)

– s-connected graph has p ≥ d sk
2
e edges for s ≥ 2, hence p ≥ d 3k

2
e ≥ 3k

2
− 2

• 4-connectivity gives a sufficient rank for any k for d = 2 (coplanar cams)

– since p ≥ d2ke ≥ 2k − 3
– maximal planar tringulated graphs have p = 3k − 6 and give the rank for
k ≥ 3
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cont’d

Linear equations in (25) and (26) can be rewritten to

Dt = 0, t =
[
t>1 , t

>
2 , . . . , t

>
k , s12, . . . , sij , . . .

]>
for d = 3: t ∈ R3k+p, D ∈ R3p,3k+p is sparse

t∗ = argmin
t, sij>0

t>D>Dt

• this is a quadratic programming problem (constraints!)

z = zeros(3*k+p,1);
t = quadprog(D’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

• but check the rank first!
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ISolving Eq. (25) by Stepwise Gluing

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with P1, P2,

2. find essential matrix E12 and matches
M12 by the 5-point algorithm Slide 84

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. compute 3D reconstruction {Xi} per

match from M12 Slide 90

5. initialize point cloud X with {Xi}
satisfying chirality constraint zi > 0
and apical angle constraint |αi| > αT

�i
ei1(Xi;P1) eij(Xi;Pj)mijPjP2P1

Xi
mi1 mi2

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj
2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj Slide 69

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l 6= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next
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IBundle Adjustment

Given:
1. set of 3D points {Xi}pi=1

2. set of cameras {Pj}cj=1

3. fixed tentative projections mij

Required:

1. corrected 3D points {X′i}pi=1

2. corrected cameras {P′j}cj=1

Latent:

1. visibility decision vij ∈ {0, 1} per mijP1 Xi
ei1(Xi;P1) eij(Xi;Pj)mijPjP2mi1 mi2

• for simplicity, X, m are considered direct (not homogeneous)

• we have projection error eij(Xi,Pj) = xi −mi per image feature, where xi = PjXi
• for simplicity, we will work with scalar error eij = ‖eij‖
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Robust Objective Function for Bundle Adjustment

Data likelihood is constructed by marginalization, as in Robust Matching Model, Slide 107

p({m} | {P}) =
p∏

pts:i=1

c∏
cams:j=1

(
(1− α0)p1(eij | Xi,Pj) + α0 p0(eij | Xi,Pj)

)
the simplified log-likelihood is (as on Slide 108)

V ({m} | {P}) = − log p({m} | {P}) =
∑
i

∑
j

− log
(
e
−
e2ij(Xi,Pj)

2σ2
1 + t

)
︸ ︷︷ ︸
ρ(e2ij(Xi,Pj)) = ν

2
ij(Xi,Pj)

def
=
∑
i

∑
j

ν2ij(Xi,Pj)

• νij is a ‘robust’ error fcn.; it is non-robust (νij = eij) when t = 0

• ρ(·) is a ‘robustification function’ we often find in M-estimation

• the Lij in Levenberg-Marquardt changes to vector

(Lij)l =
∂νij

∂θl
=

1

1 + t e
e2ij(θ)/(2σ

2
1)︸ ︷︷ ︸

small for big eij

·
1

νij(θ)
·

1

4σ2
1

·
∂e2ij(θ)

∂θl
(28)

but the LM method stays the same as on Slides 101–102
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• outliers have virtually no impact on ds in normal equations because of the red term in (28)
that scales contributions to the sums down

−
∑
i,j

L>ij νij(θ
s) =

( k∑
i,j

L>ijLij
)
ds
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ISparsity in Bundle Adjustment

We have q = 3p+ 11c parameters: θ = (X1,X2, . . . ,Xp; P1,P2, . . . ,Pc) points, cameras

We will use a running index r = 1, . . . , k, k = p · c . Then each r corresponds to some i, j

θ∗ = argmin
θ

k∑
r=1

ν2r (θ), θ
s+1:=θs+ds, −

k∑
r=1

L>r νr(θ
s) =

(
k∑
r=1

L>r Lr + λ diagL>r Lr

)
ds

The block form of Lr in Levenberg-Marquardt (Slide 101) is zero except in columns i and j:
r-th error term is ν2r = ρ(e2ij(Xi,Pj))

Lr =
i j blocks:

: Xi, 1× 3
: Pj , 1× 11

L>r Lr =

jij
i

blocks:
: Xi −Xi, 3× 3
: Xi −Pj , 3× 11
: Pj −Pj , 11× 11

k∑
r=1

L>r Lr =

3p3p 11
• “points first, then cameras” scheme

• standard bundle adjustment eliminates points and solves cameras, then back-substitutes
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