
How To Generate Random Samples from a Complex Distribution?
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target (red) and scaled proposal (blue) distributions • red: probability density function p(x) of a toy
distribution on the unit interval target distribution

p(x) =

4∑
i=1

αi Be(x;αi, βi),

4∑
i=1

αi = 1, αi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1

• note we can generate samples from this p(x) how?

• suppose we cannot sample from p(x) but we can sample from some ‘simple’
distribution, given the last sample x0 (blue) proposal distribution

q(x | x0) =


U0,1(x) (independent) uniform sampling

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

p(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods on the previous slide

• how to transform proposal samples q(x | x0) to target distribution p(x) samples?
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IMetropolis-Hastings (MH) Sampling

C – configuration (of all variable values) Here C = F and p(C) = p(F | X,Y,D)

Goal: Generate a sequence of random samples {Ci} from p(C)

• setup a Markov chain with a suitable transition probability function so that it
generates the sequence

Sampling procedure
1. given Ci, generate random sample S from q(S | Ci)

q may use some information from Ci (Hastings)

2. compute acceptance ratio the evidence term drops out

a =
p(S)

p(Ci)
· q(Ci | S)
q(S | Ci)

3. generate random number u from unit-interval uniform distribution U0,1

4. if u < a then Ci+1 := S else Ci+1 := Ci

‘Programing’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q

2. write functions q(Ci | S) and q(S | Ci) that are proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• start local optimization from the best sample good trade-off between speed and accuracy
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MH Sampling Demo

sampling process (video, 7:33, 100k samples)

• blue point: current sample

• green circle: best sample so far quality = π(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution of visited
states
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Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd((x0)/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off
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IFrom MH Sampling to RANSAC

• configuration = k-tuple of inlier correspondences
the minimization will be over a discrete set of epipolar geometries proposable from 7-tuples

• data-driven proposals q:
1. select k-tuple from data independently and uniformly q(S) =

(mn
k

)−1

2. solve the minimal geometric problem 7→ geometry proposal (e.g. F from k = 7)

• independent sampling a =
p(S′)

p(Si)
· q(Si)
q(S′)

1. q uniform, then a =
p(S′)
p(Si)

MAPSAC (p(S) includes the prior)

2. q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

LO-MAPSAC
1. generate random sample Sb from q(S)

2. set initial N :=
(
mn
k

)
3. repeat N -times:

a. generate random sample S′ from q(S)
b. if p(S′) > p(Sb) then

i. Sb := S′

ii. threshold-out inliers using eT from (23)

iii. start local optimization from Sb and update Sb with the result
iv. re-estimate N from inlier counts using the standard formula for RANSAC termination, see Slide 117

4. output Sb

• see the MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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IStopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?

N ≥ log(1− P )

log(1− (1− w)s)

• (1− w)s – proposal does not contain an outlier

• 1− (1− w)s – proposal contains at least one outlier

• 1− P = all proposals contained an outlier = (1− (1−w)s)N

P – probability that at least one sample is all-inlier
w – the fraction of outliers among tentative correspondences
s – sample size (7 in 7-point algorithm)

N for s = 7
P

w 0.8 0.99

0.5 205 590
0.8 1.3·105 3.5·105

0.9 1.6·107 4.6·107

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

10
8

10
10

w (outlier fraction)

N
 (

pr
op

os
al

s)

 

 
P=0.5
P=0.8
P=0.99
P=0.9999

• N can be re-estimated using the current estimate for w (if there is LO, then after LO)
the quasi-posterior estimate for w is the average over all samples generated so far

• for w → 1 we gain nothing over the standard MH-sampler stoppig criterion
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IThe Difference between RANSAC and a General MH Sampler

RANSAC = five ideas: [Fischler & Bolles 1981]
1. proposal distribution is given by the empirical distribution of data sample:

• pairs of points define line distribution from p(n | X) (left)

• random correspondence tuples drawn uniformly propose
samples of F from a data-driven distribution q(F | X,Y )

2. stopping based on the probability of mode-hitting → Slide 117

3. standard RANSAC replaces probability maximization with consensus maximization

x1
x22eT

the eT is the inlier/outlier threshold from (23)

4. when counting inliers, do not work with all mij but with a set of tentative
correspondences that form a matching, e.g. selected by stable matching:

a. find a pair mij of greatest p1(dij) and remember it

b. remove row i and column j from the matching table (needs some bookkeeping and reindexing)

c. repeat Steps a–c until the table is empty
d. return the remembered set

5. each time a new best sample occurs, start local optimization from inliers
or LO weighted by posterior p(mij) [Chum et al. 2003]

LM optimization with Sampson error (and re-weighting)
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Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)
notice wrong matches

• the minimization os over a discrete set of epipolar geometries proposable from 7-tuples
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid

Model

• principal point known, square pixel

• explicit variables

1. two unknown vanishing points v1, v2

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

2. ‘mother lines’ passing through vanishing
points

arg min
v1,v2,Λ,L

V (v1, v2,Λ, L | S)

� = 1
� = 2 � = ;v2

v1
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Beyond RANSAC

Note that by simplification in (18) on Slide 106 we have lost constraints on M
(eg. uniqueness). One can choose a better model when not marginalizing:

p(M,F, X, Y,D) = p(X,Y |M,F)︸ ︷︷ ︸
geometric error

· p(D |M)︸ ︷︷ ︸
similarity

· p(M)︸ ︷︷ ︸
constraints

· p(F)︸ ︷︷ ︸
prior

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | X,Y,D), then S = (M,F)

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− α0) p1(eij | F), α0 p0(eij | F)

)
when p(M) uniform then always accepted, a = 1 ~ derive

• additional proposals from q(F |M) are possible, with explicit inliers Hybrid Monte Carlo
• we can compute the posterior probability of each match p(mij) by histogramming mij

over {Si}
• local optimization can then use explicit inliers and p(mij)

• error can be estimated for elements of F from {Si} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models)
if there are multiple models explaning data, RANSAC will return one of them randomly
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Thank You
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