How To Generate Random Samples from a Complex Distribution?

- red: probability density function $p(x)$ of a toy distribution on the unit interval target distribution

$$
\begin{gathered}
p(x)=\sum_{i=1}^{4} \alpha_{i} \operatorname{Be}\left(x ; \alpha_{i}, \beta_{i}\right), \sum_{i=1}^{4} \alpha_{i}=1, \alpha_{i} \geq 0 \\
\operatorname{Be}(x ; \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}
\end{gathered}
$$

- note we can generate samples from this $p(x)$ how?
- suppose we cannot sample from $p(x)$ but we can sample from some 'simple' distribution, given the last sample x_{0} (blue) proposal distribution

$$
q\left(x \mid x_{0}\right)= \begin{cases}\mathrm{U}_{0,1}(x) & \text { (independent) uniform sampling } \\ \operatorname{Be}\left(x ; \frac{x_{0}}{T}+1, \frac{1-x_{0}}{T}+1\right) & \text { 'beta' diffusion (crawler) } T \text { - temperature } \\ p(x) & \text { (independent) Gibbs sampler }\end{cases}
$$

- note we have unified all the random sampling methods on the previous slide
- how to transform proposal samples $q\left(x \mid x_{0}\right)$ to target distribution $p(x)$ samples?

- Metropolis-Hastings (MH) Sampling

C - configuration (of all variable values)
Here $C=\mathbf{F}$ and $p(C)=p(\mathbf{F} \mid X, Y, D)$ Goal: Generate a sequence of random samples $\left\{C_{i}\right\}$ from $p(C)$

- setup a Markov chain with a suitable transition probability function so that it generates the sequence Sampling procedure

1. given C_{i}, generate random sample from $q\left(S \mid C_{i}\right)$

LO $C_{i} 0^{\circ} \quad q$ may use some information from C_{i} (Hastings)
2. compute acceptance ratio

$$
a=\frac{p(S)}{p\left(C_{i}\right)} \frac{q\left(\overline{C_{i} \mid B}\right.}{q\left(S \mid \ell_{i}\right)} \quad \text { covrechisn } \quad \text { the evidence term drops out } \quad \text { gibss } a=1
$$

3. generate random number u from unit-interval uniform distribution $\mathrm{U}_{0,1}$
4. if $u \leqslant a$ then $C_{i+1}:=S$ elpe $C_{i+1}:=C_{i}$
'Programing' an MH sampler gibs
5. design a proposal distribution (mixture) q and a sampler from q

$$
\sin e \mu T
$$

2. write functions $q\left(C_{i} \mid S\right)$ and $q\left(S \mid C_{i}\right)$ that are proper distributions not always simple Finding the mode

- remember the best sample $p(s) \mapsto p(s)^{\frac{1}{T}}$ lavp T use simulated annealing fast implementation but must wait long to hit the mode - start local optimization from the best sample good trade-off between speed and accuracy

MH Sampling Demo

sampling process (video, $7: 33,100 \mathrm{k}$ samples)

- blue point: current sample
- green circle: best sample so far quality $=\pi(x)$
- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states

initial sample

final distribution of visited states

Demo Source Code (Matlab)

```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
    T = 0.01; % temperature
    x = betarnd((x0)/T+1, (1-x0)/T+1);
end
function p = proposal_q(x, x0)
% proposal distribution q(x | x0)
    T = 0.01;
    p = betapdf (x, x0/T+1, (1-x0)/T+1);
end
function p = target_p(x)
% target distribution p(x)
    % shape parameters:
    a = [2 40 100 6];
    b}=[\begin{array}{lllll}{10}&{40}&{20}&{1}\end{array}]
    % mixing coefficients:
    w = [11 0.4 0.253 0.50]; w = w/sum(w);
    p = 0;
    for i = 1:length(a)
    p = p + w(i) *betapdf(x,a(i),b(i));
    end
end
```

\%\% DEMO script
$\mathrm{k}=10000 ; \quad \%$ number of samples
$X=\operatorname{NaN}(1, k)$; \% list of samples
$\mathrm{x} 0=$ proposal_gen(0.5);
for $i=1: k$
x 1 = proposal_gen(x0);
$\mathrm{a}=\operatorname{target}_{\mathrm{p}} \mathrm{p}(\mathrm{x} 1) /$ target_p $\left.^{\mathrm{p}} \mathrm{x} 0\right) \quad * \ldots$
proposal_q(x0, x1)/proposal_q(x1,x0);
if rand < a
$X(i)=x 1 ; \quad x 0=x 1$;
else
$X(i)=x 0$;
end
end
figure(1)
$\mathrm{x}=0: 0.001: 1$;
plot(x, target_p(x), 'r', 'linewidth', 2);
hold on
binw $=0.025$; \% histogram bin width
$\mathrm{n}=$ histc $(\mathrm{X}, 0:$ binw:1);
$\mathrm{h}=\mathrm{bar}(0:$ binw:1, $\mathrm{n} / \mathrm{sum}(\mathrm{n}) / \mathrm{binw}$, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel ' x '
ylabel 'p(x)'
title 'MH demo'
hold off

－From MH Sampling to RANSAC

－configuration $=k$－tuple of inlier correspondences
the minimization will be over a discrete set of epipolar geometries proposable from 7－tuples
－data－driven proposals q ：
1．select k－tuple from data independently and uniformly $q(S)=\binom{m n}{k}^{-1}=$ cunst
2．solve the minimal geometric problem \mapsto geometry proposal（e．g． \mathbf{F} from $k=7$ ）
－independent sampling $a=\frac{p\left(S^{\prime}\right)}{p\left(S_{i}\right)} \cdot \frac{q(S / 1)}{q\left(S^{\prime}\right)}$
1．q uniform，then $a=\frac{p\left(S^{\prime}\right)}{p\left(S_{i}\right)}$
MAPSAC（ $p(S)$ includes the prior）
2．q dependent on descriptor similarity PROSAC（similar pairs are proposed more often）

LO－MAPSAC

1．generate random sample S_{b} from $q(S)$
2．set initial $N:=\binom{m n}{k}$
3．repeat N－times：
a．generate random sample S^{\prime} from $q(S)$
b．if $p\left(S^{\prime}\right)>p\left(S_{b}\right)$ then
i．$S_{b}:=S^{\prime}$
ii．threshold－out inliers
iii．start local optimization from S_{b} and update S_{b} with the result
iv．re－estimate N from inlier counts using the standard formula for RANSAC termination，see Slide 117
4．output S_{b}
$\omega \mapsto N$
－see the MPV course for RANSAC details
see also［Fischler \＆Bolles 1981］，［25 years of RANSAC］

-Stopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?

$$
N \geq \frac{\log (1-P)}{\log \left(1-(1-w)^{s}\right)}
$$

- $(1-w)^{s}$ - proposal does not contain an outlier
- $1-(1-w)^{s}$ - proposal contains at least one outlier
- $1-P=$ all proposals contained an outlier $=\left(1-(1-w)^{s}\right)^{N}$
P - probability that at least one sample is all-inlier
w - the fraction of outliers among tentative correspondences
s - sample size (7 in 7-point algorithm)

- N can be re-estimated using the current estimate for w (if there is LO, then after LO)
the quasi-posterior estimate for w is the average over all samples generated so far
- for $w \rightarrow 1$ we gain nothing over the standard MH-sampler stoppig criterion

-The Difference between RANSAC and a General MH Sampler

RANSAC $=$ five ideas: [Fischler \& Bolles 1981]

1. proposal distribution is given by the empirical distribution of data sample:

- pairs of points define line distribution from $p(\mathbf{n} \mid X)$ (left)
- random correspondence tuples drawn uniformly propose samples of \mathbf{F} from a data-driven distribution $q(\mathbf{F} \mid X, Y)$

2. stopping based on the probability of mode-hitting
\rightarrow Slide 117
3. standard RANSAC replaces probability maximization with consensus maximization

the e_{T} is the inlier/outlier threshold from (23)
4. when counting inliers, do not work with all $m_{i j}$ but with a set of tentative one-houre correspondences that form a matching, e.g. selected by stable matching:
a. find a pair $m_{i j}$ of greatest $p_{1}\left(d_{i j}\right)$ and remember it

b. remove row i and column j from the matching talale $j m^{\text {(needs some bookkeeping and reindexing) }}$ c. repeat Steps a-c until the table is empty
d. return the remembered set

$$
\text { min }(n, m) \text { matches }
$$

5. each time a new best sample occurs, start local optimization from inliers
or LO weighted by posterior $p\left(m_{i j}\right)$ [Chum et al. 2003] LM optimization with Sampson error (and re-weighting)

Example Matching Results for the 7-point Algorithm with RANSAC

input images

interest points (ca. 3600) tentative corresp. (416)

matching (340) notice wrong matches

- the minimization os over a discrete set of epipolar geometries proposable from 7-tuples

Example：MH Sampling for a More Complex Problem

Task：Find two vanishing points from line segments detected in input image．

simplifications

－vanishing points restricted to the set of all pairwise segment intersections
－mother lines fixed by segment centroid

Model
－principal point known，square pixel
－explicit variables
1．two unknown vanishing points v_{1}, v_{2}
－latent variables
1．each line has a vanishing point label $\lambda_{i} \in\{\emptyset, 1,2\}, \emptyset$ represents an outlier
2．＇mother lines＇passing through vanishing points

$$
\arg \min _{v_{1}, v_{2}, \Lambda, L} V\left(v_{1}, v_{2}, \Lambda, \mathbb{L} \mid S\right)
$$

Beyond RANSAC

Note that by simplification in (18) on Slide 106 we have lost constraints on M (eg. uniqueness). One can choose a better model when not marginalizing:

$$
p(M, \mathbf{F}, X, Y, D)=\underbrace{p(X, Y \mid M, \mathbf{F})}_{\text {geometric error }} \cdot \underbrace{p(D \mid M)}_{\text {similarity }} \cdot \underbrace{p(M)}_{\text {constraints }} \cdot \underbrace{p(\mathbf{F})}_{\text {prior }}
$$

this is a global model: decisions on $m_{i j}$ are no longer independent!
In the MH scheme

- one can work with full $p(M, \mathbf{F} \mid X, Y, D)$, then $S=(M, \mathbf{F})$
- explicit labeling $m_{i j}$ can be done by, e.g. sampling from

$$
q\left(m_{i j} \mid \mathbf{F}\right) \sim\left(\left(1-\alpha_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{F}\right), \alpha_{0} p_{0}\left(e_{i j} \mid \mathbf{F}\right)\right)
$$

when $p(M)$ uniform then always accepted, $a=1$

* derive
- additional proposals from $q(\mathbf{F} \mid M)$ are possible, with explicit inliers Hybrid Monte Carlo
- we can compute the posterior probability of each match $p\left(m_{i j}\right)$ by histogramming $m_{i j}$ over $\left\{S_{i}\right\}$
- local optimization can then use explicit inliers and $p\left(m_{i j}\right)$
- error can be estimated for elements of \mathbf{F} from $\left\{S_{i}\right\}$
does not work in RANSAC!
- large error indicates problem degeneracy this is not directly available in RANSAC
- good conditioning is not a requirement we work with the entire distribution $p(\mathbf{F})$
- one can find the most probable number of epipolar geometries
by reversible jump MCMC (homographies or other models)
if there are multiple models explaning data, RANSAC will return one of them randomly,

Thank You

