
Method 1: Geometric Error Optimization

• we need to encode the constraints ŷ
i
F x̂i = 0, rankF = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
• equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
[
I 0

]
, P2 =

[
[e2]×F+ e2e

>
1 e2

]
~ H3; 2pt: Verify that F is a f.m. of P1, P2, for instance that F ' Q−>2 Q>1 [e1]×

1. compute F(0) by the 7-point algorithm → Slide 81; construct camera P
(0)
2 from F(0)

2. triangulate 3D points X̂
(0)
i from correspondences (xi, yi) for all i = 1, . . . , k → Slide 85

3. express the energy function as reprojection error

Wi(xi, yi | X̂i,P2) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 where x̂i ' P1X̂i, ŷi ' P2 X̂i

4. starting from P
(0)
2 , X̂(0) minimize

(X̂∗,P∗2) = arg min
P2, X̂

k∑
i=1

Wi(xi, yi | X̂i,P2)

5. compute F from P1, P∗2

• 3k + 12 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: P2

• minimal representation: 3k + 7 parameters, P2 = P2(F) → Slide 138

• there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 131
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IMethod 2: First-Order Error Approximation

An elegant method for solving problems like (14):

• we will get rid of the latent parameters [H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y>Fx from Slide 81

Observations:
• correspondences x̂i ↔ ŷi satisfy ŷ>i F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) consistent with F
• let Ẑi be the closest point on VF to measurement Zi, then (see (13))

‖Zi − Ẑi‖2 = (u1
i − û1

i )
2 + (v1

i − v̂1
i )

2 + (u2
i − û2

i )
2 + (v2

i − v̂2
i )

2 =

= Vi(xi, yi | x̂i, ŷi,F)
def
= ‖e(Ẑi,Zi)‖2

which is what we needed in (14)Zi Ẑie(Ẑi;Zi) VF Zi =
(
u1, v1, u2, v2

)
– measurement

algebraic error: ε(Ẑi)
def
= ŷi

>F x̂i (= 0)

Sampson’s idea: Linearize ε(Ẑi) (with hat!) at Zi (no hat!) and estimate e(Ẑi,Zi) with it
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ISampson’s Idea

Linearize ε(Ẑi) at Zi per correspondence and estimate e(Ẑi,Zi) with it
have: ε(Zi), want: e(Ẑi,Zi)

ε(Ẑi) ≈ ε(Zi) +
∂ε(Zi)

∂Zi︸ ︷︷ ︸
J(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
e(Ẑi,Zi)

def
= ε(Zi) + J(Zi) e(Ẑi,Zi)

!
= 0

Illustration on circle fitting

We are estimating distance from point x to circle VC of radius r in canonical position.
The circle is ε(x) = ‖x‖2 − r2 = 0. Then

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x>

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2x>x̂− (r2 + ‖x‖2)
def
= εL(x̂)

x

x̂

VC

e

and εL(x̂) = 0 is a line with normal x
‖x‖ and intercept r2+‖x‖2

2‖x‖ not tangent to VC , outside!

ε1(x̂) = 0

ε2(x̂) = 0

VC

x2

x1

line in R2: εL(x̂) = 0

linear function over R2: εL(x̂)
ε(xi)

x̂i

VC

xi

R2

quadratic algebraic error ε(x̂)

e∗(x̂i,xi)
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ISampson Error Approximation

In general, the Taylor expansion is

ε(Zi) +
∂ε(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
e(Ẑi,Zi)

= ε(Zi)︸ ︷︷ ︸
εi∈Rn

+ J(Zi)︸ ︷︷ ︸
Ji∈Rn,d

e(Ẑi,Zi)︸ ︷︷ ︸
ei∈Rd

!
= 0

to find Ẑi closest to Zi, we estimate ei from εi by minimizing per correspondence Xi

e∗i = argmin
ei
‖ei‖2 subject to εi + Ji ei = 0

which gives a closed-form solution ~ P1; 1pt: derive e∗i

e∗i = −J>i (JiJ>i )−1εi

‖e∗i ‖2 = ε>i (JiJ
>
i )
−1εi

• note that Ji is not invertible!

• we often do not need Ẑi, just the squared distance ‖ei‖2 exception: triangulation → Slide 100

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)
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ISampson Error: Result for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes

F∗ = arg min
F,rankF=2

k∑
i=1

e2
i (F)

Let F =
[
F1 F2 F3

]
(per columns) =

(F1)>

(F2)>

(F3)>

 (per rows), S =

1 0 0
0 1 0
0 0 0

, then

Sampson

εi = y>i Fxi εi ∈ R scalar algebraic error from Slide 81

Ji =

[
∂εi
∂u1

i

,
∂εi
∂v1

i

,
∂εi
∂u2

i

,
∂εi
∂v2

i

]
Ji ∈ R1,4

derivatives over point coords.

e2
i (F) =

ε2
i

‖Ji‖2
ei ∈ R Sampson error

Ji =
[
(F1)

>yi, (F2)
>yi, (F

1)>xi, (F
2)>xi

]
e2
i (F) =

(y>i Fxi)
2

‖SFxi‖2 + ‖SF>yi‖2

• Sampson correction ‘normalizes’ the algebraic error

• automatically copes with multiplicative factors F 7→ λF

• actual optimization not yet covered → Slide 103
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IBack to Triangulation: The Golden Standard Method

We are given P1, P2 and a single correspondence x↔ y and we look for 3D point X
projecting to x and y. → Slide 85

Idea:

1. compute F from P1, P2, e.g. F = (Q1Q
−1
2 )>[q1 − (Q1Q

−1
2 )q2]×

2. correct measurement by the linear estimate of the correction vector → Slide 98
û1

v̂1

û2

v̂2

 ≈

u1

v1

u2

v2

− ε

‖J‖2
J> =


u1

v1

u2

v2

− y>Fx

‖SFx‖2 + ‖SF>y‖2


(F1)>y
(F2)>y
(F1)>x
(F2)>x


3. use the SVD algorithm with numerical conditioning → Slide 86

Ex (cont’d from Slide 89):
C1 C2

XT
Xa

Xs

XT – noiseless ground truth position
• – reprojection error minimizer

Xs – Sampson-corrected algebraic error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

C1

mT = m

ma ms

e1

C2

mT

ma
ms

e2

m
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Levenberg-Marquardt (LM) Iterative Estimation

Consider error function ei(θ) = f(xi,yi,θ) ∈ Rm, with xi,yi given, θ ∈ Rq unknown
θ = F, q = 9, m = 1 for f.m. estimation

Our goal: θ∗ = argmin
θ

k∑
i=1

‖ei(θ)‖2

Idea 1 (Gauss-Newton approximation): proceed iteratively for s = 0, 1, 2, . . .

θs+1 := θs + ds , where ds = argmin
d

k∑
i=1

‖ei(θs + d)‖2 (15)

ei(θ
s + d) ≈ ei(θ

s) + Li d,

(Li)jl =
∂
(
ei(θ)

)
j

∂(θ)l
, Li ∈ Rm,q typically a long matrix

Then the solution to Problem (15) is a set of normal eqs

−
k∑
i=1

L>i ei(θ
s)︸ ︷︷ ︸

e∈Rq,1

=

(
k∑
i=1

L>i Li

)
︸ ︷︷ ︸

L∈Rq,q

ds, (16)

• ds can be solved for by Gaussian elimination using Choleski decomposition of L
L symmetric ⇒ use Choleski, almost 2× faster than Gauss-Seidel, see bundle adjustment

slide 134

• such updates do not lead to stable convergence −→ ideas of Levenberg and Marquardt
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LM (cont’d)

Idea 2 (Levenberg): replace
∑
i L
>
i Li with

∑
i L
>
i Li + λ I for some damping factor λ ≥ 0

Idea 3 (Marquardt): replace λ I with λ
∑
i diag(L

>
i Li) to adapt to local curvature:

−
k∑
i=1

L>i ei(θ
s) =

(
k∑
i=1

(
L>i Li + λ diagL>i Li

))
ds

Idea 4 (Marquardt): adaptive λ small λ → Gauss-Newton, large λ → gradient descend

1. choose λ ≈ 10−3 and compute ds

2. if
∑
i ‖ei(θ

s + ds)‖2 <
∑
i ‖ei(θ

s)‖2 then accept ds and set λ := λ/10, s := s+ 1

3. otherwise set λ := 10λ and recompute ds

• sometimes different constants are needed for the 10 and 10−3

• note that Li ∈ Rm,q (long matrix) but each contribution L>i Li is a square singular q × q
matrix (always singular for k < q)

• error can be made robust to outliers, see the trick on Slide 106

• we have approximated the least squares Hessian by ignoring second derivatives of the error
function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]

• λ helps avoid the consequences of gauge freedom → Slide 136
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LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u1, v1, u2, v2)

e2
i (F) =

ε2
i

‖Ji‖2
=

(y>i Fxi)
2

‖SFxi‖2 + ‖SF>yi‖2
S =

1 0 0
0 1 0
0 0 0



LM (by linearization over parameters F)

Li =
∂ei(F)

∂F
=

1

2‖Ji‖

[(
yi −

2ei
‖Ji‖

SFxi

)
x>i + yi

(
xi −

2ei
‖Ji‖

SF>yi

)>]

• Li is a 3× 3 matrix, must be reshaped to dimension-9 vector

• xi and yi in Sampson error are normalized to unit homogeneous coordinate

• reinforce rankF = 2 after each LM update to stay in the fundamental matrix manifold and
‖F‖ = 1 to avoid gauge freedom (by SVD, see Slide 104)

• LM linearization could be done by numerical differentiation (small dimension)
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ILocal Optimization for Fundamental Matrix Estimation

Given a set {(xi, yi)}ki=1 of k > 7 inlier correspondences, compute an efficient estimate for
fundamental matrix F.

1. Find the conditioned (→ Slide 88) 7-point F0 (→ Slide 81) from a suitable 7-tuple

2. Improve the F∗0 using the LM optimization (→ Slides 101–102) and the Sampson error
(→ Slide 103) on all inliers, reinforce rank-2, unit-norm F∗k after each LM iteration
using SVD

• if there are no wrong matches (outliers), this gives a local optimum

• contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm

• the full problem involves finding the inliers!

• in addition, we need a mechanism for jumping out of local minima (and exploring the space of
all fundamental matrices)
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IThe Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points X = {xi}mi=1 and Y = {yj}nj=1 and their
descriptors D, find the most probable

1. inliers SX ⊆ X, SY ⊆ Y
2. one-to-one perfect matching M : SX → SY perfect matching: 1-factor of the bipartite graph

3. fundamental matrix F such that rankF = 2
4. such that for each xi ∈ SX and yj = M(xi) it is probable that

a. the image descriptor D(xi) is similar to D(yj), and

b. the total geometric error
∑
ij e

2
ij(F) is small note a slight change in notation: eij

5. inlier-outlier and outlier-outlier matches are improbableMSX YSYX
6

7

2

5
3

2

5

8

4 4

6

3

1

1 8 = 16 7X YM : = 01

2

3

4

5

6

1 2 3 4 5

(M∗,F∗) = argmax
M,F

p(M,F | X,Y,D) (17)

• probabilistic model: an efficient language for task formulation

• the (17) is a p.d.f. for all the involved variables (there is a constant number of variables!)

• binary matching table Mij ∈ {0, 1} of fixed size m× n
• each row/column contains at most one unity
• zero rows/columns correspond to unmatched point xi/yj
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Thank You



line in R2: εL(x̂) = 0

linear function over R2: εL(x̂)
ε(xi)

x̂i

VC

xi

R2

quadratic algebraic error ε(x̂)

e∗(x̂i,xi)
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C1 C2

XT
Xa

Xs
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C1

mT = m

ma ms

e1
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C2

mT

ma
ms

e2

m
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