- The Representation Theorem for Essential Matrices

$$
\text { Let sub of } E \text { be } U D V^{\top}
$$

Theorem

A 3×3 matrix \mathbf{E} is an essential matrix iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.

$$
E=\left[-t_{2,}\right] R
$$

1. Part I: General properties of antisymmetric 3×3 matrices
2. Part II (direct):

If \mathbf{E} is essential then the it has two equal singular values and the third is zero.
3. Part III (converse):

Let $\mathbf{A}=\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{\top}$ s.t. $\mathbf{D}=\operatorname{diag}(1,1,0)$ then $\mathbf{A}=\left[\hat{\mathbf{u}}_{3}\right]_{\times} \mathbf{R}$, where \mathbf{R} is orthogonal, $\hat{\mathbf{u}}_{3}$ is the
3rd column of $\hat{\mathbf{U}}$, and $\mathbf{R}=\hat{\mathbf{U}} \mathbf{W} \hat{\mathbf{V}}^{\top}$, where $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right] . \quad|\alpha|=1$

Proof, Part I: More Properties of Antisymmetric 3×3 Matrices

Given vector b, let there be matrices $\mathbf{D}, \mathbf{W}, \mathbf{V}$

$$
\mathbf{D}=\|\mathbf{b}\|\left[\begin{array}{lll}
1 & 0 & 0 \tag{11}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{W}=\left[\begin{array}{ccc}
0 & \alpha & 0 \\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{V}=\left[\mathbf{a}, \mathbf{c}, \frac{\mathbf{b}}{\|\mathbf{b}\|}\right]
$$

such that

1. $|\alpha|=1$
2. $\|\mathbf{a}\|=\|\mathbf{c}\|=1$
3. a, c, b mutually orthogonal: $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$
4. $\operatorname{det} \mathbf{V}=1$

$$
b \text { is given, } a, c \text { not }
$$

note that

- $\mathbf{W}^{\top} \mathbf{W}=\mathbf{I} ; \quad \mathbf{W}$ is a rotation by 90°
- if $\alpha \mapsto-\alpha$ then $\mathbf{W} \mapsto \mathbf{W}^{\top}$
- \mathbf{a}, \mathbf{c} are determined up to a rotation φ about $\mathbf{b}, \hat{\mathbf{V}}=\mathbf{T}_{\varphi} \mathbf{V}, \mathbf{T}_{\varphi} \mathbf{b}=\mathbf{b}$

Theorem (A)

Let $\mathbf{V}, \mathbf{D}, \mathbf{W}, \mathbf{T}_{\varphi}$ be defined as above. Then $\hat{\mathbf{U}} \hat{\mathbf{V}}^{\top}$ is an SVD of $[\mathbf{b}] \times$ iff $\hat{\mathbf{U}}=\mathbf{T}_{\varphi} \mathbf{V} \mathbf{W}^{\top}, \underline{\hat{\mathbf{V}}}=\mathbf{T}_{\varphi} \mathbf{V}$ for some $\varphi . \quad \top_{\varphi}^{\top} \hat{V}=V \rightarrow \hat{v}={ }^{\top} \mu_{\varphi} \top_{\varphi}^{\top} \hat{V}^{\times} W^{\top}$
It follows $\hat{\mathbf{U}}=\hat{\mathbf{V}} \mathbf{W}^{\top}$ for any φ and $\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{\top}=\hat{\mathbf{V}} \mathbf{W}^{\top} \mathbf{D} \hat{\mathbf{V}}^{\top}=\hat{\mathbf{U}} \mathbf{D} \mathbf{W}^{\top} \hat{\mathbf{U}}$

cont'd

Proof of Theorem A.

1. Converse ($\hat{\mathbf{U}}, \hat{\mathbf{V}}, \mathbf{D}, \mathbf{V}, \mathbf{W}, \mathbf{T}_{\varphi}$ as defined $\Rightarrow \hat{\mathbf{U}} \hat{\mathbf{V}}^{\top}$ is an SVD of $[\mathbf{b}]_{\times}$):
a. $\hat{\mathbf{U} D} \hat{\mathbf{V}}^{\top}=\underbrace{\mathbf{T}_{\varphi} \mathbf{V} \mathbf{W}^{\top}}_{\hat{\mathbf{U}}} \mathbf{D} \underbrace{\mathbf{V}^{\top} \mathbf{T}_{\varphi}^{\top}}_{\hat{\mathbf{V}}^{\top}}$ is indeed an SVD of some matrix for any φ.
b. what matrix?

$$
\begin{array}{r}
\mathbf{T}_{\varphi} \underbrace{}_{\left[^{1_{1}},\right] V^{\top} \rightarrow\left[\begin{array}{ll}
\mathbf{V W}^{\top} \underline{\mathbf{D V}}^{\top} & \mathbf{T}_{\varphi}^{\top}
\end{array}=\mathbf{T}_{\varphi}\|\mathbf{b}\|\left(\mathbf{c a}^{\top}-\mathbf{a c}^{\top}\right) \mathbf{T}_{\varphi}^{\top}=\|\mathbf{b}\| \mathbf{T}_{\varphi}[\mathbf{a} \times \mathbf{c}]_{\times} \mathbf{T}_{\varphi}^{\top}=\right.}=\mathbf{T}_{\varphi}[\mathbf{b}]_{\times} \mathbf{T}_{\varphi}^{\top}=\left[\mathbf{T}_{\varphi} \mathbf{b}\right]_{\times}=[\mathbf{b}]_{\times} \tag{12}
\end{array}
$$

hence it is an SVD of $[\mathbf{b}]_{\times}$but also of $\left[\mathbf{T}_{\varphi} \mathbf{b}\right]_{\times}$for any φ
2. Direct: For every φ we go backward in (12) and obtain an SVD.

$$
\begin{aligned}
& \left(c a^{\top}-a c^{\top}\right) b \stackrel{?}{=}=0 \quad V=\left[a, c, \frac{b}{\|b\|} \quad v v^{\top}=I\right. \\
& \underbrace{c a^{\top} c}_{0}-a c^{\top} c=-a \\
& \sim_{1}
\end{aligned}
$$

Proof, Parts II and III

We are proving (from Slide 78):

Part II

If \mathbf{E} is essential then the it has two equal singular values and the third is zero.

- The \mathbf{E} is essential, hence $\mathbf{E} \simeq[\mathbf{t}]_{\times} \mathbf{R} \quad t=-t_{2_{1}}$
- Let $\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{\top}$ be the SVD of $[\mathbf{t}]_{\times}$. Then, by Theorem $A, \underbrace{\hat{\mathbf{U}}}_{\text {orthogonal }} \mathbf{D} \underbrace{\hat{\mathbf{V}}^{\top} \mathbf{R}}_{\text {orthogonal }}$ is an SVD of \mathbf{E} with singular values $\mathbf{D}=\operatorname{diag}(1,1,0)$.

Part III

Let $\mathbf{A}=\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{\top}$ s.t. $\mathbf{D}=\operatorname{diag}(1,1,0)$ then $\mathbf{A}=\left[\hat{\mathbf{u}}_{3}\right]_{\times} \mathbf{R}$, where \mathbf{R} is orthogonal.

where $\left[\hat{\mathbf{u}}_{3}\right]_{\times}$is obtained by inspection and we have defined $\hat{\mathbf{V}}$ s.t. $\mathbf{R}=\hat{\mathbf{U}} \mathbf{W} \hat{\mathbf{V}}^{\top}$

Essential Matrix Decomposition

Essential matrix captures relative camera position
[Longuet-Higgins 1981]

$$
\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}
$$

1. $\operatorname{rank} \mathbf{E}=2$ since $\operatorname{rank}\left[\mathbf{t}_{21}\right]_{\times}=2$
2. Let $\mathbf{E}=\mathbf{U D V}^{\top}$ be the SVD of \mathbf{E} s.t. $\mathbf{D}=\operatorname{diag}(1,1,0)$. Then
a. in case $\operatorname{det} \mathbf{U}<0$ transform it to $-\mathbf{U}$, do the same for \mathbf{V}
b. compute

$$
\mathbf{R}_{21}=\mathbf{U}\left[\begin{array}{ccc}
0 & \alpha & 0 \tag{13}\\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{V}^{\top}, \quad \mathbf{t}_{21}=-\mathbf{U}\left[\begin{array}{l}
0 \\
0 \\
\beta
\end{array}\right], \quad \begin{gathered}
\text { if } \operatorname{det}(u)<0 \\
u=-v ; v=-v \\
|\alpha|=1, \quad \beta \neq 0 \\
\text { end }
\end{gathered}
$$

Notes

$$
R_{21}=u w v^{\top}
$$

$$
t_{21}=-\mu(i, 3)
$$

- the result for \mathbf{R}_{21} is unique upto $\alpha= \pm 1$ despite non-uniqueness of SVD
- change of sign in W rotates the solution by 180° about $\mathbf{t} \quad\left(R_{2}^{1}\right)=U w^{\top} V^{\top}$ $\mathbf{R}_{1}=\mathbf{U W} \mathbf{V}^{\top}, \mathbf{R}_{2}=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \Rightarrow \mathbf{T}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top}=\cdots=\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top}$ which is a rotation by 180° about $\mathbf{u}_{3}=\mathbf{t}_{21}$

$$
t_{21}^{\prime}=+\mu(: 3)
$$

- \mathbf{t}_{21} recoverable up to scale β and direction $\operatorname{sign} \beta$
- 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation

－Four Solutions to Essential Matrix Decomposition

－chirality constraint：all 3D points are in front of both cameras
－this singles－out the upper left case
［H\＆Z，Sec．9．6．3］

-7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k=7$ correspondences, estimate f. m. F.

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=0, \quad i=1, \ldots, k, \quad \text { known: } \underline{\mathbf{x}}_{i}=\left(x_{i 1}, x_{i 2}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(y_{i 1}, y_{i 2}, 1\right)
$$

terminology: correspondence $=$ truth, later: match $=$ algorithm's result; hypothesised corresp.

$$
\begin{aligned}
& \text { Solution: } \begin{array}{c}
\mathbf{D}=\left[\begin{array}{ccccccccc}
x_{11} y_{11} & x_{11} y_{12} & x_{11} & x_{12} y_{11} & x_{12} y_{12} & x_{12} & y_{11} & y_{12} & 1 \\
x_{21} y_{21} & x_{21} y_{22} & x_{21} & x_{22} y_{21} & x_{22} y_{22} & x_{22} & y_{21} & y_{22} & 1 \\
\vdots & & & & & & & & \vdots \\
x_{k 1} y_{k 1} & x_{k 1} y_{k 2} & x_{k 1} & x_{k 2} y_{k 1} & x_{k 2} y_{k 2} & x_{k 2} & y_{k 1} & y_{k 2} & 1
\end{array}\right], \quad \mathbf{D} \in \mathbb{R}^{k, 9} \\
\quad \begin{array}{l}
7 \times 9 \quad \mathbf{D f}=\mathbf{0},
\end{array} \mathbf{f}=\left[\begin{array}{llllll}
f_{11} & f_{21} & f_{31} & \ldots & f_{33}
\end{array}\right]^{\top}, \\
\mathbf{f} \in \mathbb{R}^{9},
\end{array}
\end{aligned}
$$

- for $k=7$ we have a rank-deficient system, the null-space of \mathbf{D} is 2-dimensional
- but we know that $\operatorname{det} \mathbf{F}=0$
- 7-point algorithm:

1. find a basis of the null space of $\mathbf{D}: \mathbf{F}_{1}, \mathbf{F}_{2}$
by SVD or QR factorization
2. get up to 3 real solutions for α from

$$
\operatorname{det}\left(\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}\right)=0 \quad \text { cubic equation in } \alpha
$$

3. get up to 3 fundamental matrices $\mathbf{F}=\alpha_{i} \mathbf{F}_{1}+\left(1-\alpha_{i}\right) \mathbf{F}_{2}$

- the result may depend on image transformations
- normalization improves conditioning

- this gives a good starting point for the full algorithm

Degenerate Configurations for Fundamental Matrix Estimation

When is \mathbf{F} not uniquely determined from any number of correspondences？［H\＆Z，Sec．11．9］

1．camera centers coincide $C_{1}=C_{2}$

－epipolar geometry is not defined

－images are related by homography \mathbf{H}
－we do get an \mathbf{F} from the 7 －point algorithm but it is of the form of $\mathbf{F}=\mathbf{S H}$ ，with \mathbf{S} antisymmetric

$$
\underline{1} \simeq \underline{\mathbf{s}} \times \mathbf{H} \underline{\mathbf{x}} \quad \text { arbitrary } \mathbf{s}
$$

2．all 3D points lie in a plane
－images related by homography
－again， \mathbf{F} is not unique， $\mathbf{F}=\mathbf{S H}$ ，where \mathbf{S} is as above
note essential matrix estimation can deal with planes，Slide 87
3．both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet，cones，cylinders，two planes
－there are 3 solutions for \mathbf{F}

notes

－a complete treatment with additional degenerate configurations in［H\＆Z，sec．22．2］
－stronger epipolar constraint can reject some configurations
－we assume correct correspondences，dealing with mismatches need not be a part of the 7－point algorithm
\rightarrow Slide 112

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

$$
\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2} \stackrel{\mathrm{~F}}{\sim} \underline{\mathbf{m}}_{1}
$$

notation: $\underline{\mathbf{m}} \underset{\sim}{ \pm} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}}=\lambda \underline{\mathbf{n}}, \lambda>0$

- note that the constraint is not invariant to the change of either sign of $\underline{\mathbf{m}}_{i}$
- all 7 correspondence in 7-point alg. must have the same sign
see later
- this may help reject some wrong matches, see Slide 112
[Chum et al. 2004]
expensive this is called chirality constraint

-Five-Point Algorithm for Relative Camera Orientation

Problem: Given $\left\{\underline{\mathbf{m}}_{i}, \underline{\mathbf{m}}_{i}^{\prime}\right\}_{i=1}^{5}$ corresponding image points and calibration matrix \mathbf{K}, recover the camera motion \mathbf{R}, \mathbf{t}.
Obs:

1. $\mathbf{R}-3 \mathrm{DOF}, \mathrm{t}$ - we can recover 2DOF only, in total $5 \mathrm{DOF} \rightarrow$ we need 3 constraints on E
2. real $\mathbf{F} \in \mathbb{R}^{3,3}$ is a fundamental matrix iff $\operatorname{det} \mathbf{F}=0$
3. fundamental matrix is essential iff its two non-zero eigenvalues are equal

This gives an equation system:

$$
\mathbf{E} \mathbf{E}^{\top} \mathbf{E}-\frac{1}{2} \operatorname{tr}\left(\mathbf{E} \mathbf{E}^{\top}\right) \mathbf{E}=\mathbf{0}
$$

$$
\left.\begin{array}{rrr}
\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime}=0 & 5 \text { linear constraints }\left(\underline{\mathbf{v}}=\mathbf{K}^{-1} \underline{\mathbf{m}}\right) \\
\operatorname{det} \mathbf{E}=0 & 1 \text { cubic constraint } \\
\left.\mathbf{E} \mathbf{E}^{\top}\right) \mathbf{E}=\mathbf{0} & 9 \text { cubic constraints, } 2 \text { independent }
\end{array}\right\} 8+1
$$

1. estimate \mathbf{E} by SVD from $\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime}=0$ by the null-space method, this gives $\mathbf{E}=x \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}+\mathbf{E}_{4}$
2. at most 10 (complex) solutions for x, y, z from the cubic constraints

- when all 3D points lie on a plane: at most 2 solutions (twisted-pair)
can be disambiguated in 3 views or by chirality constraint (Slide 83) unless all 3D points are closer to one camera
- 6-point problem for unknown f
[Kukelova et al. BMVC 2008\}
- resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

