

OPPA European Social Fund Prague & EU: We invest in your future.

▶Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given **K** and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find $\overline{\mathbf{R}}$, $\overline{\mathbf{C}}$ by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{KR} (\mathbf{X}_i - \mathbf{C}), \qquad i = 1, 2, 3$$

1. Transform $\mathbf{v}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1} \mathbf{m}_i$. Then

$$\lambda_i \mathbf{v}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \tag{9}$$

Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$

$$|\lambda_i| \cdot ||\underline{\mathbf{v}}_i|| = ||\mathbf{X}_i - \mathbf{C}|| \tag{10}$$

3. Consider only angles among v_i and apply Cosine Law per triangle $(\mathbf{C}, \mathbf{X}_i, \mathbf{X}_i)$ $i, j = 1, 2, 3, i \neq j$

$$d_{ij}^2 = \mathbf{z}_i^2 + \mathbf{z}_j^2 - 2\mathbf{z}_i\mathbf{z}_j\mathbf{c}_{ij},$$

$$\mathbf{z}_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \mathbf{v}_i \mathbf{v}_j)$$

4. Solve system of 3 quadratic eqs in 3 unknowns
$$z_i$$
 there may be no real root; there are up to 4 solutions that cannot be ignored

 \mathbf{X}_{2} [Fischler & Bolles, 1981]

configuration w/o rotation

(verify on additional points)

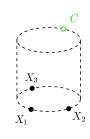
 \mathbf{X}_3

Compute C by trilateration (3-sphere intersection) from X_i and z_i , λ_i from (10) and R from (9)

 d_{12}

X.

Degenerate (Critical) Configurations for Exterior Orientation



unstable solution

 \bullet center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

degenerate

 camera C is coplanar with points (X₁, X₂, X₃) but is not on the circumscribed circle of (X₁, X₂, X₃)

no solution

- 1. C cocyclic with (X_1, X_2, X_3)
- additional critical configurations depend on the method to solve the quadratic equations

[Haralick et al. IJCV 1994]

▶ Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
resectioning	6 world–img correspondences $\left\{(X_i,m_i) ight\}_{i=1}^6$	P	65
exterior orientation	${f K}$, 3 world–img correspondences $ig\{(X_i,m_i)ig\}_{i=1}^3$	R, C	69

- resectioning and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- more problems to come

Part IV

Computing with a Camera Pair

- 4 Camera Motions Inducing Epipolar Geometry
- 5 Estimating Fundamental Matrix from 7 Correspondences
- 6 Estimating Essential Matrix from 5 Correspondences
- **7** Triangulation: 3D Point Position from a Pair of Corresponding Points
- **8** Camera Motions Inducing Homographies
- **9** Estimating Relative Homography from Correspondences

covered by

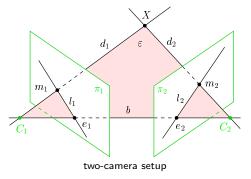
- [1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
- [2] H. Li and R. Hartley. Five-point motion estimation made easy. In *Proc ICPR* 2006, pp. 630–633

additional references

▶Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- \bullet its parametric form encapsulates information about the relative pose of two cameras



Description

• <u>baseline</u> b joins projection centers C_1 , C_2

$$\mathbf{b} = \mathbf{C}_2 - \mathbf{C}_1$$

• <u>epipole</u> $e_i \in \pi_i$ is the image of C_j :

$$\underline{\mathbf{e}}_1 \simeq \mathbf{P}_1\underline{\mathbf{C}}_2, \quad \underline{\mathbf{e}}_2 \simeq \mathbf{P}_2\underline{\mathbf{C}}_1$$

ullet $l_i \in \pi_i$ is the image of <code>epipolar_plane</code>

$$\varepsilon = (C_2, X, C_1)$$

• l_j is the epipolar line in image π_j induced by m_i in image π_i

Epipolar constraint: d_2 , b, d_1 are coplanar

a necessary condition, see also Slide 87

▶ Cross Products and Maps by Antisymmetric 3×3 Matrices

• There is an equivalence $\mathbf{b} \times \mathbf{m} = [\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$ is a 3×3 antisymmetric matrix

$$\begin{bmatrix} \mathbf{b} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}, \qquad \text{assuming} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Some properties

- $\mathbf{1}. \ [\mathbf{b}]_{\times}^{\top} = -[\mathbf{b}]_{\times}$
- **2**. $\|[\mathbf{b}]_{\times}\|_{E} = \sqrt{2} \|\mathbf{b}\|$
- 3. [b] b = 0
- **4.** rank $[\mathbf{b}]_{\vee} = 2$ iff $||\mathbf{b}|| > 0$
- 5. if $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$ then $[\mathbf{R}\mathbf{b}]_{\vee} = \mathbf{R}[\mathbf{b}]_{\vee}\mathbf{R}^{\top}$
- 6. $[\mathbf{B}\mathbf{z}]_{\vee} \simeq \mathbf{B}^{-\top}[\mathbf{z}]_{\vee} \mathbf{B}^{-1}$
- 7. if \mathbf{R}_b is rotation about \mathbf{b} then $\left[\mathbf{R}_b\mathbf{b}\right]_{ imes}=\left[\mathbf{b}\right]_{ imes}$

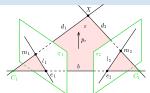
the general antisymmetry property

Frobenius norm ($\|\mathbf{A}\|_F^2 = \sum_{i,j} \left|a_{ij}\right|^2$)

check minors of $[\mathbf{b}]_{\times}$

in general, $[\mathbf{A}^{-1}\mathbf{t}]_{\vee}\cdot\det\mathbf{A}=\mathbf{A}^{\top}[\mathbf{t}]_{\vee}\mathbf{A}$

▶Expressing Epipolar Constraint Algebraically



$$\mathbf{P}_i = \begin{bmatrix} \mathbf{Q}_i & \mathbf{q}_i \end{bmatrix} = \mathbf{K}_i \begin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \end{bmatrix}, i = 1, 2$$

 \mathbf{R}_{21} - relative camera rotation, $\mathbf{R}_{21} = \mathbf{R}_2 \mathbf{R}_1^{\top}$ \mathbf{t}_{21} - relative camera translation, $\mathbf{t}_{21} = \mathbf{R}_{21} \mathbf{t}_1 - \mathbf{t}_2 = \mathbf{R}_2 \mathbf{b}$ remember: $\mathbf{C} = -\mathbf{Q}^{-1} \mathbf{q} = -\mathbf{R}^{\top} \mathbf{t}$ (Slides 30 and 32)

remember:
$$\mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q} = -\mathbf{R}^{\top}\mathbf{t}$$
 (Slides 30 and 32)
$$0 = \mathbf{d}_{2}^{\top}\mathbf{p}_{\varepsilon} \simeq \underbrace{(\mathbf{Q}_{2}^{-1}\mathbf{m}_{2})^{\top}}_{\text{optical ray}} \underbrace{\mathbf{Q}_{1}^{\top}\mathbf{l}_{1}}_{\text{optical plane}} = \mathbf{m}_{2}^{\top}\underbrace{\mathbf{Q}_{2}^{-\top}\mathbf{Q}_{1}^{\top}(\mathbf{e}_{1} \times \mathbf{m}_{1})}_{\text{fundamental matrix }\mathbf{F}} = \mathbf{m}_{2}^{\top}\underbrace{(\mathbf{Q}_{2}^{-\top}\mathbf{Q}_{1}^{\top}[\mathbf{e}_{1}]_{\times})}_{\text{fundamental matrix }\mathbf{F}} \mathbf{m}_{1}$$

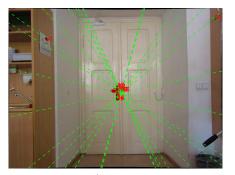
Epipolar constraint $\underline{\mathbf{m}}_2^{\mathsf{T}} \mathbf{F} \, \underline{\mathbf{m}}_1 = 0$ is a point-line incidence constraint

- point $\underline{\mathbf{m}}_2$ is incident on epipolar line $\underline{\mathbf{l}}_2 \simeq \mathbf{F}\underline{\mathbf{m}}_1$ • point $\underline{\mathbf{m}}_1$ is incident on epipolar line $\underline{\mathbf{l}}_1 \simeq \mathbf{F}^{\top}\underline{\mathbf{m}}_2$
- Fe₁ = F^Te₂ = 0 (non-trivially)
 all epipolars meet at the epipole
- $\mathbf{e}_1 \simeq \mathbf{Q}_1 \mathbf{C}_2 + \mathbf{q}_1 = \mathbf{Q}_1 \mathbf{C}_2 \mathbf{Q}_1 \mathbf{C}_1 = \mathbf{K}_1 \mathbf{R}_1 \mathbf{b}$

$$\mathbf{F} = \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} \begin{bmatrix} \underline{\mathbf{e}}_1 \end{bmatrix}_{\times} = \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} \begin{bmatrix} \mathbf{K}_1 \mathbf{R}_1 \mathbf{b} \end{bmatrix}_{\times} = \overset{\circledast}{\cdots} \overset{1}{=} \mathbf{K}_2^{-\top} \underbrace{\begin{bmatrix} \mathbf{t}_{21} \end{bmatrix}_{\times} \mathbf{R}_{21}}_{\times} \mathbf{K}_1^{-1} \qquad \text{Slide 74}$$

$$\mathbf{E} = \left[\mathbf{t}_{21}
ight]_{ imes} \mathbf{R}_{21} = \left[\mathbf{R}_2 \mathbf{b}
ight]_{ imes} \mathbf{R}_{21} = \mathbf{R}_{21} \left[\mathbf{R}_1 \mathbf{b}
ight]_{ imes}$$
 essential matrix \mathbf{E}

Epipole is the Image of the Other Camera



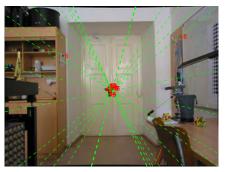
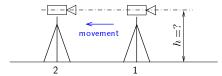


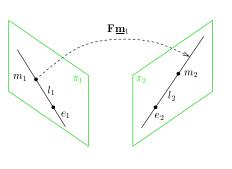
image 1

image 2

Camera moved horizontally: How high is it above floor?



▶ A Summary of the Epipolar Constraint



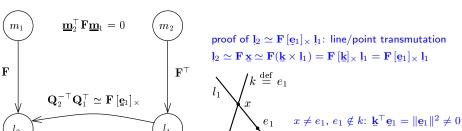
 $0 = \underline{\mathbf{m}}_2^{\mathsf{T}} \mathbf{F} \, \underline{\mathbf{m}}_1$

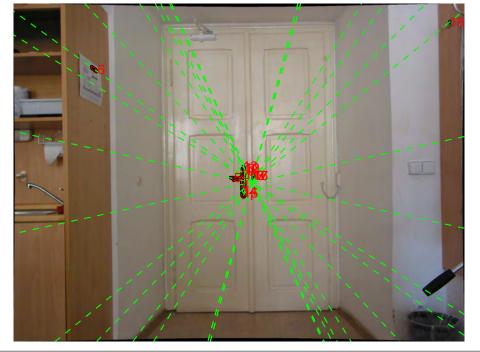
 $\mathbf{F} \simeq \mathbf{K}_2^{-\top} \mathbf{E} \, \mathbf{K}_1^{-1}$

 $\mathbf{E} \simeq [\mathbf{t}_{21}]_{\times} \mathbf{R}_{21} = [\mathbf{R}_2 \mathbf{b}]_{\times} \mathbf{R}_{21} = \mathbf{R}_{21} [\mathbf{R}_1 \mathbf{b}]_{\times}$ $\mathbf{e}_1 \simeq \text{null}(\mathbf{F}), \quad \mathbf{e}_2 \simeq \text{null}(\mathbf{F}^{\top})$

- E captures the relative pose
- \bullet the translation length \mathbf{t}_{21} is $\underline{\mathsf{lost}}$

E is homogeneous





OPPA European Social Fund Prague & EU: We invest in your future.