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IThree-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{
(mi, Xi)

}3
i=1

, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (9)

2. Eliminate R by taking rotation preserves length: ‖Rx‖ = ‖x‖

|λi| · ‖vi‖ = ‖Xi −C‖ def
= zi (10)

3. Consider only angles among vi and apply Cosine Law per
triangle (C,Xi,Xj) i, j = 1, 2, 3, i 6= j

d2ij = z2i + z2j − 2 zi zj cij ,

zi = ‖Xi −C‖, dij = ‖Xj −Xi‖, cij = cos(∠vi vj)

configuration w/o rotation

X3X1 v2
X2z1 v1 v3z2

C
d12

4. Solve system of 3 quadratic eqs in 3 unknowns zi [Fischler & Bolles, 1981]

there may be no real root; there are up to 4 solutions that cannot be ignored

(verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi from (10) and R
from (9)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)
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Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular
cylinder with base circumscribing the three points Xi

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3)

unstable: a small change of Xi results in a large change of C
can be detected by error propagationX1X3 X2C no solution

1. C cocyclic with (X1, X2, X3)

• additional critical configurations depend on the method to solve the quadratic
equations

[Haralick et al. IJCV 1994]
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IPopulating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

resectioning 6 world–img correspondences
{
(Xi, mi)

}6
i=1

P 65

exterior orientation K, 3 world–img correspondences
{
(Xi, mi)

}3
i=1

R, C 69

• resectioning and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• more problems to come

3D Computer Vision: III. Computing with a Single Camera (p. 71/213) R. Šára, CMP; rev. 16–Oct–2012



Part IV

Computing with a Camera Pair

12 Camera Motions Inducing Epipolar Geometry

13 Estimating Fundamental Matrix from 7 Correspondences

14 Estimating Essential Matrix from 5 Correspondences

15 Triangulation: 3D Point Position from a Pair of Corresponding Points

16 Camera Motions Inducing Homographies

17 Estimating Relative Homography from Correspondences

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293

(5828):133–135, 1981.

3D Computer Vision: IV. Computing with a Camera Pair (p. 72/213) R. Šára, CMP; rev. 16–Oct–2012



IGeometric Model of a Camera Pair

Epipolar geometry:

• brings constraints necessary for inter-image matching
• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2b
two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ' P1C2, e2 ' P2C1

• li ∈ πi is the image of epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line in image πj induced
by mi in image πi

Epipolar constraint: d2, b, d1 are coplanar a necessary condition, see also Slide 87
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ICross Products and Maps by Antisymmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 antisymmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]>× = −[b]× the general antisymmetry property

2. ‖[b]×‖F =
√
2 ‖b‖ Frobenius norm (‖A‖2F =

∑
i,j |aij |

2)

3. [b]×b = 0

4. rank [b]× = 2 iff ‖b‖ > 0 check minors of [b]×

5. if RR> = I then [Rb]× = R [b]×R
>

6. [Bz]× ' B−>[z]×B
−1 in general, [A−1t]× · detA = A>[t]×A

7. if Rb is rotation about b then [Rbb]× = [b]×

3D Computer Vision: IV. Computing with a Camera Pair (p. 74/213) R. Šára, CMP; rev. 16–Oct–2012



IExpressing Epipolar Constraint Algebraically"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2 Pi =

[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

R21 – relative camera rotation, R21 = R2R>1
t21 – relative camera translation, t21 = R21t1 − t2 = R2b

remember: C = −Q−1q = −R>t (Slides 30 and 32)

0 = d>2 pε︸︷︷︸
normal of ε

' (Q−1
2 m2)

>︸ ︷︷ ︸
optical ray

Q>1 l1︸ ︷︷ ︸
optical plane

= m>2 Q−>2 Q>1 (e1 ×m1)︸ ︷︷ ︸
image of ε in π2

= m>2
(
Q−>2 Q>1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m>2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ' Fm1

• point m1 is incident on epipolar line l1 ' F>m2

• Fe1 = F>e2 = 0 (non-trivially)

• all epipolars meet at the epipole

e1 ' Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b

F = Q−>2 Q>1 [e1]× = Q−>2 Q>1 [K1R1b]× =
~ 1· · · = K−>2 [t21]×R21︸ ︷︷ ︸

essential matrix E

K−1
1 Slide 74

E = [t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 1

R21 = R21 [R1b]×︸ ︷︷ ︸
baseline in Cam 2
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Epipole is the Image of the Other Camera
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image 1 image 2

Camera moved horizontally: How high is it above floor?

movement2 1 h=?
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IA Summary of the Epipolar Constraint

�2�1 e2e1m1 l1 m2l2
Fm1 0 = m>2 Fm1

F ' K−>2 EK−1
1

E ' [t21]×R21 = [R2b]×R21 = R21[R1b]×

e1 ' null(F), e2 ' null(F>)

• E captures the relative pose

• the translation length t21 is lost
E is homogeneousm>2 Fm1 = 0

Q�>1 Q>2 ' F>[e2℄�
m1 m2

l1l2 F>F Q�>2 Q>1 ' F [e1℄� proof of l2 ' F [e1]× l1: line/point transmutation

l2 ' Fx' F(k× l1) = F [k]× l1 = F [e1]× l1l1 e1xk def= e1
x 6= e1, e1 /∈ k: k>e1 = ‖e1‖2 6= 0
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Thank You
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