

OPPA European Social Fund Prague & EU: We invest in your future.

► Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3 reference Points.</u>

Problem: Given K and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find R, C by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{KR} (\mathbf{X}_i - \mathbf{C}), \qquad i = 1, 2, 3$$

1. Transform $\mathbf{v}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1} \mathbf{m}_i$. Then

Transform
$$\underline{\mathbf{v}}_i = \mathbf{R} \quad \underline{\mathbf{m}}_i$$
. Then
$$\lambda_i \underline{\mathbf{v}}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \quad (\mathbf{y}_i - \mathbf{c}) \mathbf{\mathcal{P}} \mathbf{\mathcal{P}} \left(\mathbf{y}_i - \mathbf{c} \right) (9)$$

2. Eliminate R by taking ~ rotation preserves length: $\|R\mathbf{x}\| = \|\mathbf{x}\|$

$$|\lambda_i| \cdot ||\underline{\mathbf{v}}_i|| = ||\mathbf{X}_i - \mathbf{C}|| \stackrel{\text{def}}{=} z_i$$
 (10)

3. Consider only angles among $\underline{\mathbf{v}}_i$ and apply Cosine Law per triangle $(\mathbf{C}, \mathbf{X}_i, \mathbf{X}_j)$ $i, j = 1, 2, 3, i \neq j$

$$d_{ij}^2 = z_i^2 + z_j^2 - 2 z_i z_j c_{ij},$$

$$\mathbf{z}_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \underline{\mathbf{v}}_i \ \underline{\mathbf{v}}_j)$$

4. Solve system of 3 quadratic eqs in 3 unknowns z_i

there may be no real root; there are up to 4 solutions that cannot be ignored

configuration w/o rotation
$$\mathbf{Y}_3$$
 \mathbf{Y}_1 \mathbf{Y}_2 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_4 \mathbf{X}_4 \mathbf{X}_5

- [Fischler & Bolles, 1981]
- (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X_i and z_i ; then λ_i from (10) and R from (9)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

ullet center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

degenerate

• camera C is coplanar with points (X_1, X_2, X_3) but is not on the circumscribed circle of (X_1, X_2, X_3)

no solution

1. C cocyclic with (X_1, X_2, X_3)

additional critical configurations depend on the method to solve the quadratic equations

[Haralick et al. IJCV 1994]

▶ Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
resectioning	6 world–img correspondences $\left\{(X_i,m_i) ight\}_{i=1}^6$	P	65
exterior orientation	${f K}$, 3 world–img correspondences $ig\{(X_i,m_i)ig\}_{i=1}^3$	R, C	69

- resectioning and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- more problems to come

Part IV

Computing with a Camera Pair

- Camera Motions Inducing Epipolar Geometry
- Estimating Fundamental Matrix from 7 Correspondences
- Estimating Essential Matrix from 5 Correspondences
- **(b)** Triangulation: 3D Point Position from a Pair of Corresponding Points
- **©** Camera Motions Inducing Homographies
- **(f)** Estimating Relative Homography from Correspondences

covered by

- [1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
- [2] H. Li and R. Hartley. Five-point motion estimation made easy. In *Proc ICPR* 2006, pp. 630–633

additional references

▶Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Epipolar constraint: d_2 , b, d_1 are coplanar

· epipolar plane

Description

• <u>baseline</u> b joins projection centers C_1 , C_2

$$\mathbf{b} = \mathbf{C}_2 - \mathbf{C}_1$$

• <u>epipole</u> $e_i \in \pi_i$ is the image of C_j :

$$\underline{\mathbf{e}}_1 \simeq \mathbf{P}_1\underline{\mathbf{C}}_2, \quad \underline{\mathbf{e}}_2 \simeq \mathbf{P}_2\underline{\mathbf{C}}_1$$

ullet $l_i \in \pi_i$ is the image of <code>epipolar plane</code>

$$\varepsilon = (C_2, X, C_1)$$

• l_j is the <u>epipolar line</u> in image π_j induced by m_i in image π_i

a necessary condition, see also Slide 87

▶ Cross Products and Maps by Antisymmetric 3×3 Matrices

There is an equivalence $\mathbf{b} \times \mathbf{m} = [\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$ is a 3×3 antisymmetric matrix

$$\begin{bmatrix} \mathbf{b} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}, \qquad \text{assuming} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Some properties

ome properties
$$0 = 6 \times 5 = [b]_{\chi} 6$$

$$1. [b]_{\perp}^{\top} = -[b]_{\chi}$$

2.
$$\|[\mathbf{b}]_{\times}\|_{E} = \sqrt{2} \|\mathbf{b}\|$$

3.
$$[b] b = 0$$

4. rank
$$[\mathbf{b}]_{\vee} = 2$$
 iff $||\mathbf{b}|| > 0$

5. if
$$\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$$
 then $[\mathbf{R}\mathbf{b}]_{\vee} = \mathbf{R}[\mathbf{b}]_{\vee}\mathbf{R}^{\top}$

6.
$$[\mathbf{B}\mathbf{z}]_{\downarrow} \simeq \mathbf{B}^{-\top}[\mathbf{z}]_{\downarrow} \mathbf{B}^{-1}$$

Frobenius norm (
$$\|\mathbf{A}\|_F^2 = \sum_{i,j} |a_{ij}|^2$$
)

check minors of
$$[b]_{\times}$$

in general,
$$[\mathbf{A}^{-1}\mathbf{t}]_{\times}\cdot\det\mathbf{A}=\mathbf{A}^{\top}[\mathbf{t}]_{\times}\mathbf{A}$$

7. if \mathbf{R}_b is rotation about \mathbf{b} then $[\mathbf{R}_b \mathbf{b}]_{\times} = [\mathbf{b}]_{\times}$

► Expressing Epipolar Constraint Algebraically

$$\mathbf{P}_{i} = \begin{bmatrix} \mathbf{Q}_{i} & \mathbf{q}_{i} \end{bmatrix} = \mathbf{K}_{i} \begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \end{bmatrix}, \ i = 1, 2$$

 \mathbf{R}_{21} – relative camera rotation, $\mathbf{R}_{21}=\mathbf{R}_2\mathbf{R}_1^{ op}$ \mathbf{t}_{21} – relative camera translation, $\mathbf{t}_{21}=\mathbf{R}_{21}\mathbf{t}_1-\mathbf{t}_2=\mathbf{R}_2\mathbf{b}$

essential matrix E

remember:
$$\mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q} = -\mathbf{R}^{\top}\mathbf{t}$$
 (Slides 30 and 32)
$$0 = \mathbf{d}_{2}^{\top}\mathbf{p}_{\varepsilon} \simeq \underbrace{(\mathbf{Q}_{2}^{-1}\mathbf{m}_{2})^{\top}}_{\text{optical ray}} \underbrace{\mathbf{Q}_{1}^{\top}\mathbf{l}_{1}}_{\text{optical plane}} = \mathbf{m}_{2}^{\top}\underbrace{\mathbf{Q}_{2}^{-\top}\mathbf{Q}_{1}^{\top}(\mathbf{e}_{1} \times \mathbf{m}_{1})}_{\text{image of } \varepsilon \text{ in } \pi_{2}} = \mathbf{m}_{2}^{\top}\underbrace{(\mathbf{Q}_{2}^{-\top}\mathbf{Q}_{1}^{\top}[\mathbf{e}_{1}]_{\times})}_{\text{fundamental matrix } \mathbf{F}} \mathbf{m}_{1}$$

Epipolar constraint
$$\underline{\mathbf{m}}_{2}^{\top}\mathbf{F}\underline{\mathbf{m}}_{1} = 0$$
 is a point-line incidence constraint $3 \times 3 - 1 - 1 = 7$ bor $(\mathbf{F}^{\top}\mathbf{w}_{2})^{\top}\mathbf{w}_{1} = 0$

• point \underline{m}_2 is incident on epipolar line $\underline{l}_2 \simeq F\underline{m}_1$ • $F\underline{e}_1 = F^{\top}\underline{e}_2 = 0$ (non-trivially) • point \underline{m}_1 is incident on epipolar line $\underline{l}_1 \simeq F^{\top}\underline{m}_2$ • all epipolars meet at the epipole

$$\begin{array}{c} \text{point } \underline{\mathbf{m}}_1 \text{ is incident on epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epi} \\ \underline{\mathbf{e}}_1 \simeq \mathbf{Q}_1 \mathbf{C}_2 + \mathbf{q}_1 = \mathbf{Q}_1 \mathbf{C}_2 - \mathbf{Q}_1 \mathbf{C}_1 = \mathbf{K}_1 \mathbf{R}_1 \mathbf{b} \end{array} \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{F} \cdot \underline{\mathbf{m}}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m}_2 \\ & \quad \text{all epipolar line } \underline{\mathbf{i}}_1 \simeq \mathbf{m$$

$$\mathbf{F} = \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} \begin{bmatrix} \mathbf{e}_1 \end{bmatrix}_{\times} = \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} \begin{bmatrix} \mathbf{K}_1 \mathbf{R}_1 \mathbf{b} \end{bmatrix}_{\times} = \overset{\circledast}{\cdots} \overset{1}{=} \mathbf{K}_2^{-\top} \begin{bmatrix} \mathbf{t}_{21} \end{bmatrix}_{\times} \mathbf{R}_{21} \underbrace{\mathbf{K}_1^{-1}} \qquad \text{Slide 74}$$

$$\mathbf{E} = \begin{bmatrix} \mathbf{t}_{21} \end{bmatrix}_{\times} \mathbf{R}_{21} = \underbrace{\begin{bmatrix} \mathbf{R}_{2} \mathbf{b} \end{bmatrix}_{\times}}_{\text{baseline in Cam}} \mathbf{R}_{21} = \mathbf{R}_{21} \underbrace{\begin{bmatrix} \mathbf{R}_{1} \mathbf{b} \end{bmatrix}_{\times}}_{\text{baseline in Cam}}$$
3D Computer Vision: IV. Computing with a Camera Pair (p. 75/213)

R. Šára. CMP: rev. 16-Oct-2012

Epipole is the Image of the Other Camera

image 1

image 2

Camera moved horizontally: How high is it above floor?

▶ A Summary of the Epipolar Constraint

 $0 = \mathbf{m}_2^{\mathsf{T}} \mathbf{F} \, \mathbf{m}_1$

$$\mathbf{F} \simeq \mathbf{K}_2^{-\top} \mathbf{E} \, \mathbf{K}_1^{-1}$$

$$\begin{aligned} \mathbf{E} &\simeq \left[\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} = \left[\mathbf{R}_{2} \mathbf{b}\right]_{\times} \mathbf{R}_{21} = \mathbf{R}_{21} \left[\mathbf{R}_{1} \mathbf{b}\right]_{\times} \\ \mathbf{e}_{1} &\simeq \text{null}(\mathbf{F}), \quad \mathbf{e}_{2} \simeq \text{null}(\mathbf{F}^{\top}) \end{aligned}$$

- f E captures the relative pose
- the translation length \mathbf{t}_{21} is <u>lost</u> **E** is homogeneous

OPPA European Social Fund Prague & EU: We invest in your future.