1D Projective Coordinates

The 1-D projective coordinate of a point P :

$$
\begin{aligned}
& {[P]=\left[\begin{array}{ll}
\left.P_{\infty} P_{0} P_{I} P\right]=\left[\begin{array}{ll}
p_{\infty} & \left.p_{0} p_{I} p\right] \left.=\frac{\left|p_{\infty} p_{I}\right|}{\left|p_{0} p_{I}\right|} \right\rvert\, \\
\\
P_{0} \text { - the origin } & {\left[P_{0}\right]=0} \\
P_{I}-\text { the unit point } & {\left[P_{I}\right]=1} \\
P_{\infty}-\text { the supporting point } & {\left[P_{\infty}\right]= \pm \infty}
\end{array}\right. & \frac{\left|P_{0} P\right|}{\left|P_{0} P_{I}\right|}=\left|P_{0} P_{0}\right| \\
p_{I}
\end{array}\right.} \\
& \begin{array}{ll}
{[P] \text { is equal to Euclidean coordinate along } N} \\
{[p] \text { is its measurement in the image plane }}
\end{array}
\end{aligned}
$$

Application: Counting Steps

- Namesti Miru underground station in Prague

detail around the vanishing point

Result: $[P]=214$ steps (correct answer is 216 steps)
4Mpx camera

Application: Finding the Horizon from Repetitions

in 3D: $\left|P_{0} P\right|=2\left|P_{0} P_{I}\right|$ then $[\mathrm{H} \& Z, \mathrm{p} .218] \circledast \mathrm{P} 1 ; 1$ pt: How high is the camera above the floor?

$$
\left[P_{\infty} P_{0} P_{I} P\right]=\frac{\left|P_{0} P\right|}{\left|P_{0} P_{I}\right|}=2 \quad \Rightarrow \quad\left|p_{\infty} p_{0}\right|=\frac{\left|p_{0} p_{I}\right| \cdot\left|p_{0} p\right|}{\left|p_{0} p\right|-2\left|p_{0} p_{I}\right|}
$$

- could be applied to counting steps (Slide 45)

Homework Problem

$\circledast \mathrm{H} 2 ; 3$ pt: What is the ratio of heights of Building A to Building B ?

- expected: conceptual solution
- deadline: +2 weeks

Hints

1. what are the properties of line h connecting the top of Buiding B with the point m at which the horizon is intersected with the line p joining the foots of both buildings? [1 point]
2. how do we actually get the horizon n_{∞} ? [1 point] (we do not see it directly, there are hills there)
3. what tool measures the length? [formula $=1$ point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we see the calibrating object (vanishing points)

Real Camera with Radial Distortion

image with no radial distortion

an extreme case of radial distortion

image undistorted by division model
distortion types

none $(\lambda=0)$

barrel $(\lambda=0.3)$

pincushion $(\lambda=-0.3)$

- The Radial Distortion Mapping

y_{0} - center of radial distortion (usually principal point)
y_{L} - linearly projected point
y_{R} - radially distorted point

- radial distortion r maps y_{L} to y_{R} along the radial direction
- magnitude of the transfer depends on the radius $\left\|y_{L}-y_{0}\right\|$ only

- circles centered at y_{0} map to centered circles, lines incident on y_{0} map on themselves
- the mapping $r()$ can be scaled to $\operatorname{ar}()$ so that a particular circle C_{n} does not scale

distortion	inside C_{n}	outside C_{n}
barrel	expanding contracting	contracting expanding

in barrel

- choose boundary point that preserves all image content within the same image size

-Radial Distortion Models

- let $\mathbf{z}=\mathbf{y}-\mathbf{y}_{0}$
non-homogeneous
- we have $\mathbf{z}_{R}=r\left(\mathbf{z}_{L}\right) \quad \mathbf{z}_{L}$ - linear, \mathbf{z}_{R} - distorted
- but are often interested in $\mathbf{z}_{L}=r^{-1}\left(\mathbf{z}_{R}\right)$
- \mathbf{y}_{n} - a no-distortion point on $C_{n}: r\left(\mathbf{y}_{n}\right)=\mathbf{y}_{n}$
- $\mathbf{z}_{n}=\mathbf{y}_{n}-\mathbf{y}_{0}$

Division Model single parameter $-1 \leq \lambda<1$, has an analytic inverse, models even some fish-eye lenses

$$
\mathbf{z}_{R}=\frac{\hat{\mathbf{z}}}{1+\sqrt{1+\lambda \frac{\|\hat{\mathbf{z}}\|^{2}}{\left\|\mathbf{z}_{n}\right\|^{2}}}}, \quad \text { where } \hat{\mathbf{z}}=\frac{2 \mathbf{z}_{L}}{1-\lambda} \quad \text { and } \quad \mathbf{z}_{L}=\frac{1-\lambda}{1-\lambda \frac{\left\|\mathbf{z}_{R}\right\|^{2}}{\left\|\mathbf{z}_{n}\right\|^{2}}} \mathbf{z}_{R}
$$

$\lambda>0$ - barrel distortion, $\lambda<0$ - pincushion distortion

$$
y_{l}=-1\left(y_{R}\right)
$$

Polynomial Model better fit for $n \geq 3$, no analytic inverse, may loose monotonicity, hard to calibrate

$$
\mathbf{z}_{L}=\frac{D\left(\mathbf{z}_{R} ; \mathbf{z}_{n}, \mathbf{k}\right)}{1+\sum_{i=1}^{n} k_{i}} \mathbf{z}_{R}, \quad D\left(\mathbf{z}_{R} ; \mathbf{z}_{n}, \mathbf{k}\right)=1+k_{1} \rho^{2}+k_{2} \rho^{4}+\cdots+k_{n} \rho^{2 n}, \rho=\frac{\left\|\mathbf{z}_{R}\right\|}{\left\|\mathbf{z}_{n}\right\|}, \mathbf{k}=\left(k_{i}\right)
$$

e.g. $k_{i} \geq 0$ - barrel distortion, $k_{i} \leq 0-$ pincusion distortion, $i=1, \ldots, n$

Zernike polynomials R_{i}^{0} are a better choice: $R_{2}^{0}(\rho)=2 \rho^{2}-1, R_{4}^{0}(\rho)=6 \rho^{4}-6 \rho^{2}+1, R_{6}^{0}(\rho)=\cdots$

- Real and Linear Camera Models

$$
\mathbf{K}_{0}=\left[\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { 'ideal' calibration matrix } \quad \mathbf{A} \mathbf{K}_{0}=\left[\begin{array}{ccc}
f & s f & u_{0} \\
0 & a f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{llc}
1 & s & u_{0} \\
0 & a & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

Notes

- assumption: the principal point and the center of radial distortion coincide
- f included in \mathbf{K}_{0} to make radial distortion independent of focal length
- A makes radial lens distortion an elliptic image distortion
- it suffices in practice that r^{-1} is an analytic function (r need not be)

Calibrating Radial Distortion

- radial distortion calibration includes at least 5 parameters: $\lambda, u_{0}, v_{0}, s, a$

1. detect a set of straight line segment images $\left\{s_{i}\right\}_{i=1}^{n}$ from a calibration target
2. select a suitable set of k measurement points per segment
how to select k ?
3. define invariant radial transfer error per measurement point $e_{i, j}$
and per segment $e_{i}^{2}=\sum_{j=1}^{k-2} e_{i, j}^{2} \quad 100000^{\text {? }}$ invariant to rotation, translation

4. minimize total radial transfer error: $\quad \arg \min _{\lambda, u_{0}, v_{0}, s, a} \sum_{i=1}^{n} e_{i}^{2}$

- line segments from real-world images requires segmentation to inliers/outliers
inliers $=$ lines that are straight in reality
- marginalisation over the hidden label gives a 'robust' error, e.g.

$$
\varepsilon_{i}^{2}=-\log \left(e^{-\frac{e_{i}^{2}}{2 \sigma^{2}}}+t\right), \quad t>0
$$

- direct optimization usually suffices but in general such optimization is unstable

Thank You

Camera 0, im. 6: Reprojection errors (16x)

Calibration errors

Radial distortion coefficient values

