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Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

https://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

phone ext. 7203

rev. December 18, 2012

Open Informatics Master’s Course

https://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/
h
http://cmp.felk.cvut.cz
h
mailto:sara@cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz


Part II

Perspective Camera

1 Basic Entities: Points, Lines

2 Homography: Mapping Acting on Points and Lines

3 Canonical Perspective Camera

4 Changing the Outer and Inner Reference Frames

5 Projection Matrix Decomposition

6 Anatomy of Linear Perspective Camera

7 Vanishing Points and Lines

8 Real Camera with Radial Distortion

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, 7.4, Example: 2.19
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IBasic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, ϕ

• associated vector representations

m =

[
u
v

]
= [u, v]>, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn,1

• associated homogeneous representations

m = [m1,m2,m3]>, X = [x1, x2, x3, x4]>, n

‘in-line’ forms: m = (m1,m2,m3), X = (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm,n
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IImage Line

line in the plane a u+ b v + c = 0

corresponds to (homogeneous) vector n ' (a, b, c)

and the equivalence class for λ ∈ R, λ 6= 0 (λa, λb, λc) ' (a, b, c)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2

a set of rays

• standard representation for finite n = (n1, n2, n3) is λn, where λ = 111√
n2

1+n2
2

assuming n2
1 + n2

2 6= 0; 111 is the unit, usually 111 = 1

• naming convention: a special entity is the Ideal Line (line at infinity)

n∞ ' (0, 0, 1)

• I may sometimes worngly use = instead of ', help me chase the mistakes down
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IImage Point

Point m = (u, v) is incident on the line n = (a, b, c) iff this works both ways!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m>n = 0

point is also represented by a homogeneous vector m' (u, v,111)

and the equivalence class for λ ∈ R, λ 6= 0 is (m1, m2, m3) = λm'm

• standard representation for finite point m is λm, where λ = 111
m3

assuming m3 6= 0

• when 111 = 1 then units are pixels and λm = (u, v, 1)

• when 111 = f then all components have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

• naming convention: Ideal Point (point at infinity) m∞ ' (m1,m2, 0)
a proper member of P2

• all such points lie on the ideal line n∞ ' (0, 0, 1), ie. m>∞ n∞ = 0
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ILine Intersection and Point Join

The point of intersection m of image lines n and n′, n 6' n′ is

m' n× n′

n′

n

m

proof: If m = n× n′ is the intersection point, it
must be incident on both lines. Indeed,

n> (n× n′)︸ ︷︷ ︸
m

≡ n′> (n× n′)︸ ︷︷ ︸
m

= 0

The join n of two image points m and m′, m 6' m′ is

n'm×m′

Paralel lines intersect at the line at infinity n∞ ' (0, 0, 1)

a u+ b v + c = 0,

a u+ b v + d = 0, d 6= c

(a, b, c)× (a, b, d) ' (b,−a, 0)

• all such intersections lie on the ideal line n∞

• line at infinity represents a set of directions in plane

3D Computer Vision: II. Perspective Camera (p. 19/208) R. Šára, CMP; rev. 18–Dec–2012



IHomography

Projective space P2: Vector space of dimension 3 excluding the zero vector, R3 \ (0, 0, 0)
but including ‘points at infinity’ and the ‘line at infinity’

Collineation: Let x1, x2, x3 be collinear points in P2. Bijection (1:1, onto) h : P2 7→ P2 is
a collineation iff h(x1), h(x2), h(x3) are collinear.

i.e.

• collinear image points are mapped to collinear image points lines are mapped to lines

• concurrent image lines are mapped to concurrent image lines bijection!

concurrent = intersecting at the same point
• point-line incidence is preserved

• a mapping h : P2 → P2 is a collineation iff there exists a non-singular 3× 3 matrix H
such that

h(x) ' Hx for all x ∈ P2

• homogeneous matrix representant: detH = 1

• collineations form a group isomorphic to SO(3)

group of 3× 3 matrices with unit determinant and with matrix multiplication

• in this course we will use the term homography but mean collineation
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IMapping Points and Lines by Homography

H−⊤

H

m′ ' Hm image point

n′ ' H−>n image line H−> = (H−1)> = (H>)−1

• incidence is preserved: (m′)>n′ 'm>H>H−>n = m>n = 0

1. collineation has 8 DOF; it is given by 4 correspondences (points, lines) in a general position

2. extending pixel coordinates to homogeneous coordinates m = (u, v,111)

3. mapping by homography, eg. m′ = H m

4. conversion of the result m′ = (m′1,m
′
2,m

′
3) to canonical coordinates (pixels):

u′ =
m′1
m′3

111, v′ =
m′2
m′3

111

5. can use the unity for the homogeneous coordinate on one side of the equation only!
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Elementary Decomposition of a Homography

Unique decompositions: A = AS AAAP (= A′P A′AA′S)

AS =

[
sR t

0> 1

]
similarity

AA =

[
K 0

0> 1

]
special affine

AP =

[
I 0

v> w

]
special projective

K – upper triangular matrix with positive diagonal entries
R – orthogonal, R>R = I, detR = 1
s, w ∈ R, s > 0, w 6= 0

A =

[
sRK + t v> w t

v> w

]
• must use ‘skinny’ QR decomposition, which is unique [Golub & van Loan 1996, Sec. 5.2.6]

• AS , AA, AP are collineation subgroups

(eg. K = K1K2, K−1, I are all upper triangular with unit determinant, associativity holds)
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Homography Subgroups

group DOF matrix invariant properties

projective 8

h11 h12 h13

h21 h22 h23

h31 h32 h33

 incidence, concurrency, colinearity,
cross-ratio, convex hull, order of
contact (intersection, tangency,
inflection), tangent discontinuities and
cusps.

affine 6

a11 a12 tx
a21 a22 ty
0 0 1

 all above plus: parallelism, ratio of
areas, ratio of lengths on parallel lines,
linear combinations of vectors (e.g.
midpoints), line at infinity n∞ (not
pointwise)

similarity 4

 s cosφ s sinφ tx
−s sinφ s cosφ ty

0 0 1

 all above plus: ratio of lengths, angle,
the circular points I = (1, i, 0),
J = (1,−i, 0).

Euclidean 3

 cosφ sinφ tx
− sinφ cosφ ty

0 0 1

 all above plus: length, area
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Some Homographic Tasters

Rectification of camera rotation: Slides 63 (geometry), 120 (homography estimation)

Homographic Mouse for Visual Odometry: Slide TBD

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry
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ICanonical Perspective Camera (Pinhole Camera, Camera Obscura)

C z

(x′, y′, 1)

Ox

π

X = (x, y, z)

xp

y

1. right-handed canonical coordinate system
(x, y, z)

2. origin = center of projection C

3. image plane π at unit distance from C

4. optical axis O is perpendicular to π

5. principal point xp: intersection of O and π

6. in this picture we are looking ‘down the street’

7. perspective camera is given by C and π

Oyy y0�C z � 11 X
projected point in the natural image
coordinate system:

y′

1
= y′ =

y

1 + z − 1
=
y

z
, x′ =

x

z
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INatural and Canonical Image Coordinate Systems

projected point in canonical camera[
x′ y′ 1

]>
=
[
x
z
, y

z
, 1

]>
=

1

z

[
x, y, z

]> '
1 0 0 0

0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P0

·


x
y
z
1

 = P0 X

projected point in scanned image notice the chimney!

xp = (u0; v0) (u; v)
(0; 0) uv

C z

(x′, y′, 1)

Ox

π

X = (x, y, z)

xp

y

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0

z

 '
f 0 u0

0 f v0

0 0 1

·
1 0 0 0

0 1 0 0
0 0 1 0

·

x
y
z
1

 = KP0 X = PX

• ‘calibration’ matrix K transforms canonical camera P0 to standard projective camera P
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IComputing with Perspective Camera Projection Matrix

m =

m1

m2

m3

 =

f 0 u0 0
0 f v0 0
0 0 1 0


︸ ︷︷ ︸

P


x
y
z
1

 '

x+ z
f
u0

y + z
f
v0

z
f



m1

m3
=
f x

z
+ u0 = u,

m2

m3
=
f y

z
+ v0 = v when m3 6= 0

f – ‘focal length’ – converts length ratios to pixels, [f ] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f since m' (x, y, z/f)

for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π (z = 0)
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IChanging The Outer (World) Reference Frame

A transformation of a point from the world to camera
coordinate system:

Xc = RXw + t

R; tFw F
world

cam

R – camera rotation matrix world orientation in the camera coordinate frame

t – camera translation vector world origin in the camera coordinate frame

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= KP0

[
R t

0> 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 selects the first 3 rows of T and discards the last row

• R is rotation, R>R = I, det R = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame t = −RC
r>3 – camera axis in the world reference frame third row of R: r3 = R−1[0, 0, 1]>

• we can save some conversion and computation by noting that KR
[
I −C

]
X = KR(X−C)
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IChanging the Inner (Image) Reference Frame

The general form of calibration matrix K includes
• digitization raster skew angle θ
• pixel aspect ratio a

1av u (u0; v0)� K =

f −f cot θ u0

0 f/(a sin θ) v0

0 0 1


units: [f ] = px, [u0] = px, [v0] = px, [a] = 1

~ H1; 2pt: Verify this K; hints: u′eu′ + v′ev′ = ueu + vev ,
boldface are basis vectors, K maps from an orthogonal system to
a skewed system [w′u′, w′v′, w′]> = K[u, v, 1]>; first skew then
sampling then shift by u0, v0 deadline LD+2 wk

general finite perspective camera has 11 parameters:
• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: det K 6= 0

• 6 extrinsic parameters: t, R(α, β, γ)

m' PX, P =
[
Q q

]
= K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

Representation Theorem: The set of projection matrices P of finite projective cameras is isomorphic
to the set of homogeneous 3× 4 matrices with the left hand 3× 3 submatrix Q non-singular.

random finite camera: Q=rand(3,3); while det(Q)==0, Q=rand(3,3); end, P=[Q, rand(3,1)];3D Computer Vision: II. Perspective Camera (p. 29/208) R. Šára, CMP; rev. 18–Dec–2012



IProjection Matrix Decomposition

P =
[
Q q

]
−→ KR

[
I −C

]
= K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective cam.)
K ∈ R3,3 upper triangular with positive diagonal entries
R ∈ R3,3 rotation: R

>
R = I and detR = +1

1. C = −Q−1 q see next

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−13. t = −RC

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g.

R32 =

1 0 0
0 c s
0 −s c

, c2 + s2 = 1, gives c =
q33√

q2
32 + q2

33

s =
q32√

q2
32 + q2

33

~ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive

‘skinny’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 1996, sec. 5.2]
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RQ Decomposition Step

Q = Array@q, 83, 3<D;
R32 = 881, 0, 0<, 80, c, s<, 80, −s, c<<;
R32 êê MatrixForm

i

k

jjjjjjj
1 0 0
0 c s
0 −s c

y

{

zzzzzzz

Q1 = Q.R32;
Q1 êê MatrixForm
s1 = Solve@8Q1@@3DD@@2DD 0, c^2 + s^2 1<, 8c, s<D;
s1 = s1@@2DD
Q1 ê. s1 êê Simplify êê MatrixForm

i

k

jjjjjjj
q@1, 1D c q@1, 2D − s q@1, 3D s q@1, 2D + c q@1, 3D
q@2, 1D c q@2, 2D − s q@2, 3D s q@2, 2D + c q@2, 3D
q@3, 1D c q@3, 2D − s q@3, 3D s q@3, 2D + c q@3, 3D

y

{

zzzzzzz

9c →
q@3, 3D

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3, 2D2 + q@3, 3D2

, s →
q@3, 2D

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3, 2D2 + q@3, 3D2

=

i

k

jjjjjjjjjjjjj

q@1, 1D −q@1,3D q@3,2D+q@1,2D q@3,3Dè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@1,2D q@3,2D+q@1,3D q@3,3Dè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@2, 1D −q@2,3D q@3,2D+q@2,2D q@3,3Dè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@2,2D q@3,2D+q@2,3D q@3,3Dè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@3, 1D 0
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

q@3, 2D2 + q@3, 3D2

y

{

zzzzzzzzzzzzz

3D Computer Vision: II. Perspective Camera (p. 31/208) R. Šára, CMP; rev. 18–Dec–2012



ICenter of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let there be B 6= 0 s.t. PB = 0. Then B is equal to the projection center C (in world
coordinate frame).

Proof.

1. Consider spatial line AB (B is given). We can write

X(λ) ' A + λB, λ ∈ R B

A

C

X(λ)

2. it images to
PX(λ) ' P A + λP B = P A

• the whole line images to a single point ⇒ it must pass through the optical center of P

• this holds for all choices of A ⇒ the only common point of the lines is the C, i.e. B' C ut
Hence

0 = PC =
[
Q q

] [C
1

]
= QC + q ⇒ C = −Q−1q

C = (cj), where cj = (−1)j det P(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;
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IOptical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line (d line direction vector, λ ∈ R)

X = C + λd

2. the image of point X is

m'
[
Q q

] [X
1

]
= Q(C + λd) + q = λQd =

= λ
[
Q q

] [d
0

]
• optical ray line corresponding to image point m is

X = C + (λQ)−1m, λ ∈ R

Cd
X � m

• optical ray may be represented by a point at infinity (d, 0)
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IOptical Axis

Optical axis: The line through C that is perpendicular to image plane π

1. a line parallel to π images to line at infinity in π:uv
0

 '
q>1 q14

q>2 q24

q>3 q34

[X
1

]

2. point X in parallel to π iff q>3 X + q34 = 0

3. this is a plane with ±q3 as the normal vector

o XC�
4. optical axis direction: substitution P 7→ λP must not change the direction

5. we select (assuming det(R) > 0)

o = det(Q)q3

if P 7→ λP then det(Q) 7→ λ3 det(Q) and q3 7→ λq3 [H&Z, p. 161]
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IPrincipal Point

Principal point: The intersection of image plane and the optical axis

1. we take point at infinity on the optical axis that must
project to principal point m0

2. then

m0 '
[
Q q

] [q3

0

]
= Qq3

m0�q3 C
principal point: m0 ' Qq3

• principal point is also the center of radial distortion (see Slide 50)
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IOptical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d = Q−1m

optical ray given by m′ d′ = Q−1m′

p = d× d′ = (Q−1m)× (Q−1m′) = Q>(m×m′) = Q>n

• note the factoring-out of Q!

hence, 0 = p>(X−C) = n>Q(X−C) = n>PX = (P>n)>X for every X in plane ρ
see Slide 28

optical plane is given by n: ρ ' P>n ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0

3D Computer Vision: II. Perspective Camera (p. 36/208) R. Šára, CMP; rev. 18–Dec–2012



Cross-Check: Optical Ray as Optical Plane Intersection

m
�n0n d p0

Cp
optical plane normal given by n p = Q>n

optical plane normal given by n′ p′ = Q>n′

d = p× p′ = (Q>n)× (Q>n′) = Q−1(n× n′) = Q−1m
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ISummary: Optical Center, Ray, Axis, Plane

General finite camera

P =
[
Q q

]
=

q
>
1 q14

q>2 q24

q>3 q34

 = K
[
R t

]
= KR

[
I −C

]

C' rnull(P) optical center (world coords.)

d = Q−1 m optical ray direction (world coords.)

det(Q)q3 outward optical axis (world coords.)

Qq3 principal point (in image plane)

ρ = P> n optical plane (world coords.)

K =

f −f cot θ u0

0 f/(a sin θ) v0

0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels)

R camera rotation matrix (cam coords.)

t camera translation vector (cam coords.)
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What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine?

distance between sleepers 0.806m but we cannot count them, resolution is too low

We will review some life-saving theory. . .
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IVanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line
infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ = lim
λ→±∞

P

[
X0 + λd

1

]
= · · · = Qd ~ P1; 1pt: Derive or prove

• V.P. is independent on line position, it depends on its orientation only
all parallel lines have the same V.P.

• the image of the V.P. of a spatial line with direction vector d is m = Qd

• V.P. m corresponds to spatial direction d = Q−1m optical ray through m

• V.P. is the image of a point at infinity on any line, not just the optical ray as on Slide 33
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Some Vanishing Point Applications

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!
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IVanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane

and in all parallel planesv1 n | plane normal

m | line orientation vetor
v2

• V.L. n corresponds to space plane of normal vector p = Q>n

• a space plane of normal vector p has a V.L. represented by n = Q−>p.
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ICross Ratio

Four collinear space points R,S, T, U define cross-ratio

[RSTU ] =
|RT |
|RU |

|SU |
|ST |

S T UR

a mnemonic

|RT | – signed distance from R to T

(w.r.t. a fixed line orientation)

[SRUT ] = [RSTU ], [RSUT ] =
1

[RSTU ]
, [RTSU ] = 1− [RSTU ] �

v s tn
u

r p

S

R

N

C

U

T

v /∈ n

Obs: [RSTU ] =
| r, t, v |
| r, u, v | ·

| s, u, v |
| s, t, v | , | r, t, v | = det[ r, t, v ] = (r× t)>v (1)

Corollaries:
• cross ratio is invariant under collineations (homographies) x′ ' Hx plug Hx in (1)

• cross ratio is invariant under perspective projection: [RSTU ] = [ r s t u ]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images

• we measure the same cross-ratio in image as on the world line

• one of the points R, S, T , U may be at infinity
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I1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P ] = [P∞ P0 PI P ] = [p∞ p0 pI p] =
|p∞ pI |
|p0 pI |

|p0 p|
|p∞ p|

P0 – the origin [P0] = 0

PI – the unit point [PI ] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

n
n′ : N ′‖N

p0

pI

p

p∞

Applications

• Given the image of a line N , the origin, the unit point, and the vanishing point, then
the Euclidean coordinate of any point P ∈ N can be determined → see Slide 45

• Finding v.p. of a line through a regular object → see Slide 46

3D Computer Vision: II. Perspective Camera (p. 44/208) R. Šára, CMP; rev. 18–Dec–2012



Application: Counting Steps

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitionsp0 pI p
p1 P

P0 PI
in 3D: |P0P | = 2|P0PI | then [H&Z, p. 218]~ P1; 1pt: How high is the camera above the floor?

[P∞P0PIP ] =
|P0P |
|P0PI |

= 2 ⇒ |p∞p0| =
|p0pI | · |p0p|
|p0p| − 2|p0pI |

• could be applied to counting steps (Slide 45)
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Homework Problem

~ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution
• deadline: +2 weeks

B

A

xA

u

z

p

h

n∞

oB

xB
m

oA

Hints

1. what are the properties of line h connecting the top of Buiding B with the point m at which the horizon is
intersected with the line p joining the foots of both buildings? [1 point]

2. how do we actually get the horizon n∞? [1 point] (we do not see it directly, there are hills there)

3. what tool measures the length? [formula = 1 point]
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2D Projective Coordinates

pyI

p0 pxI px px∞

pI

p

py∞

py

[Px] = [Px∞ P0 PxI Px]

[Py] = [Py∞ P0 PyI Py]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units

• what are the dimensions of the seal? Is it circular (assuming square tiles)?

• needs no explicit camera calibration
because we see the calibrating object (vanishing points)
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IReal Camera with Radial Distortion

image with no radial distortion an extreme case of radial distortion image undistorted by division model

distortion types

none (λ = 0) barrel (λ = 0.3) pincushion (λ = −0.3)
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IThe Radial Distortion Mapping

y0
ryR yL

y0 – center of radial distortion (usually principal point)

yL – linearly projected point

yR – radially distorted point

• radial distortion r maps yL to yR along the radial direction

• magnitude of the transfer depends on the radius ‖yL − y0‖ only

• circles centered at y0 map to centered circles, lines incident on y0 map on themselves

• the mapping r() can be scaled to a r() so that a particular circle Cn does not scale

distortion inside Cn outside Cn
barrel expanding contracting

pincushion contracting expanding

Cn

in barrel in pincushion

• choose boundary point that preserves all image content within the same image size
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IRadial Distortion Models

y0

Cn

yR

yL

yn

• let z = y − y0 non-homogeneous

• we have zR = r(zL) zL – linear, zR – distorted

• but are often interested in zL = r−1(zR)

• yn – a no-distortion point on Cn: r(yn) = yn

• zn = yn − y0

Division Model single parameter −1 ≤ λ < 1, has an analytic inverse, models even some fish-eye lenses

zR =
ẑ

1 +
√

1 + λ ‖ẑ‖
2

‖zn‖2

, where ẑ =
2 zL
1− λ and zL =

1− λ
1− λ ‖zR‖2‖zn‖2

zR

λ > 0 – barrel distortion, λ < 0 – pincushion distortion

Polynomial Model better fit for n ≥ 3, no analytic inverse, may loose monotonicity, hard to calibrate

zL =
D(zR; zn,k)

1 +
∑n
i=1 ki

zR , D(zR; zn,k) = 1+k1ρ
2+k2ρ

4+· · ·+knρ2n, ρ =
‖zR‖
‖zn‖

, k = (ki)

e.g. ki ≥ 0 – barrel distortion, ki ≤ 0 – pincusion distortion, i = 1, . . . , n

Zernike polynomials R0
i are a better choice: R0

2(ρ) = 2ρ2 − 1, R0
4(ρ) = 6ρ4 − 6ρ2 + 1, R0

6(ρ) = · · ·
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IReal and Linear Camera Models

Ar xR ≃ A r
(
K0

[
R t

]
X
)

(real camera)
X

yL yR

xL ≃ AK0

[
R t

]
X (linear camera)A

undistortion: xL = A r−1(A−1xR)

K0

[
R t

]

perspective projection distortion scanning

K0 =

f 0 0
0 f 0
0 0 1

 ‘ideal’ calibration matrix AK0 =

f s f u0

0 a f v0

0 0 1


A =

1 s u0

0 a v0

0 0 1

 everything affecting radial distortion center, skew, aspect ratio

r radial distortion function (here, it includes conversion from/to
homogeneous representation!)

Notes
• assumption: the principal point and the center of radial distortion coincide

• f included in K0 to make radial distortion independent of focal length

• A makes radial lens distortion an elliptic image distortion

• it suffices in practice that r−1 is an analytic function (r need not be)
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Calibrating Radial Distortion

• radial distortion calibration includes at least 5 parameters: λ, u0, v0, s, a

1. detect a set of straight line segment images {si}ni=1 from a calibration target
2. select a suitable set of k measurement points per segment how to select k?

3. define invariant radial transfer error per measurement point ei,j
and per segment e2

i =
∑k−2
j=1 e

2
i,j invariant to rotation, translation

ei,1

y0

k = 2

ei,2
si

4. minimize total radial transfer error: arg min
λ, u0, v0, s, a

n∑
i=1

e2
i

• line segments from real-world images requires segmentation to inliers/outliers
inliers = lines that are straight in reality

• marginalisation over the hidden label gives a ‘robust’ error, e.g.

ε2i = − log

(
e
−
e2i

2σ2 + t

)
, t > 0

• direct optimization usually suffices but in general such optimization is unstable
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Example Calibrations

Low-resolution (VGA) wide field-of-view (130◦) camera

Camera 0, im. 6: Reprojection errors (16x)
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Error in pixels

Camera 0: Error histogram.

Cam 0
RMS [px] 0.33
max [px] 1.97
f [px] 94.59
a [-] 1.0951

u0 [px] 243.26
v0 [px] 353.37

(poly) k1 0.8256
k2 −0.2261
k3 1.2524

4 Mpix consumer camera
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1
polynomial model (h=2), k

2 • radial distortion
is slightly
dependend on
focal length
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Part III

Computing with a Single Camera

9 Calibration: Internal Camera Parameters from Vanishing Points and Lines

10 Resectioning: Projection Matrix from 6 Known Points

11 Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

[3] [Golub & van Loan 1996, Sec. 2.5]
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Obtaining Vanishing Points and Lines

• orthogonal pairs can be collected from more images by camera rotation

• vanishing line can be obtained without vanishing points (see Slide 46)
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ICamera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d3n31 n12d1d2
v3 n23 v2

v1
di = Q−1vi, i = 1, 2, 3 Slide 33

pij = Q>nij , i, j = 1, 2, 3, i 6= j Slide 36

Constraints

1. orthogonal rays d1 ⊥ d2 in space then

0 = d>1 d2 = v>1 Q−>Q−1v2 = v>1 (KK>)−1︸ ︷︷ ︸
ω (IAC)

v2

2. orthogonal planes pij ⊥ pik in space

0 = p>ijpik = n>ij QQ>nik = n>ij ω
−1nik

3. orthogonal ray and plane dk ‖ pij , k 6= i, j normal parallel to optical ray

pij ' dk ⇒ Q>nij = λQ−1vk ⇒ nij = λQ−>Q−1vk = λω vk, λ 6= 0

• nij may be constructed from non-orthogonal vi and vj , e.g. using the cross-ratio

• ω is a symmetric, positive definite 3× 3 matrix IAC = Image of Absolute Conic
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Icont’d

condition constraint # constraints

(2) orthogonal v.p. v>i ωvj = 0 1

(3) orthogonal v.l. n>ij ω
−1nik = 0 1

(4) v.p. orthogonal to v.l. nij = λωvk 2

(5) orthogonal raster θ = π/2 ω12 = ω21 = 0 1

(6) unit aspect a = 1 when θ = π/2 ω11 = ω22 1

(7) known principal point u0 = v0 = 0 ω13 = ω31 = ω23 = ω32 = 0 2

• these are homogeneous linear equations for the 5 parameters in ω in the form Dw = 0
λ can be eliminated from (4)

we will come to solving overdetermined homogeneous equations later → Slide ??

• we need at least 5 constraints for full K

• we get K from ω−1 = KK> by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix

one avoids solving a set of quadratic equations for the parameters in K
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In[1]:= K � ��f, s, u�0��, �0, a � f, v�0��, �0, 0, 1��;

K �� MatrixForm

Out[2]//MatrixForm=

f s u�0�
0 a f v�0�
0 0 1

In[4]:= Ω � Inverse�K.Transpose�K�� � Det�K�^2;

Ω �� Simplify �� MatrixForm

Out[5]//MatrixForm=

a2 f2 �a f s a f ��a f u�0� � s v�0��
�a f s f2 � s2 a f s u�0� � �f2 � s2� v�0�

a f ��a f u�0� � s v�0�� a f s u�0� � �f2 � s2� v�0� a2 f2 �f2 � u�0�2� � 2 a f s u�0� v�0� � �f2 � s2� v�0�2

In[8]:= Ω � f^2 �. s � 0 �� Simplify �� MatrixForm

Out[8]//MatrixForm=

a2 0 �a2 u�0�
0 1 �v�0�

�a2 u�0� �v�0� a2 �f2 � u�0�2� � v�0�2

In[10]:= Ω �. �u�0� � 0, v�0� � 0� �� MatrixForm

Out[10]//MatrixForm=

a2 f2 �a f s 0

�a f s f2 � s2 0

0 0 a2 f4

In[17]:= Ω � f^2 �. �a � 1, s � 0� �� Simplify �� MatrixForm

Out[17]//MatrixForm=

1 0 �u�0�
0 1 �v�0�

�u�0� �v�0� f2 � u�0�2 � v�0�2
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Examples

Ex 1:
Assuming known m0 = (u0, v0), two finite orthogonal vanishing points suffice to get f

in this formula, vi, m0 are not homogeneous!

f2 =
∣∣(v1 −m0)>(v2 −m0)

∣∣
Ex 2:

Non-orthogonal vanishing points vi, vj , known angle φ: cosφ =
v>i ωvj√

v>i ωvi
√

v>j ωvj

• leads to polynomial equations

• e.g. assuming orthogonal raster, unit aspect (ORUA): a = 1, θ = π/2

ω =
1

f2

 1 0 −u0

0 1 −v0

−u0 −v0 f2 + u2
0 + v2

0


• ORUA and u0 = v0 = 0 gives

(f2 + v>i vj)
2 = (f2 + ‖vi‖2) · (f2 + ‖vj‖2) · cos2 φ
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ICamera Orientation from Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal
directions d1, d2, compute camera orientation R with respect to the plane.

• coordinate system choice, e.g.:

d1 = (1, 0, 0), d2 = (0, 1, 0)

• we know that

di ' Q−1vi = (KR)−1vi = R−1 K−1vi︸ ︷︷ ︸
wi

Rdi ' wi

• then wi/‖wi‖ is the i−th column ri of R

• the third column is orthogonal:
r3 = r1 × r2

R =
[

w1
‖w1‖

w2
‖w2‖

w1×w2
‖w1×w2‖

]

.

v2
d2 d1 v1

some suitable scenes
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Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

m' KR
[
I −C

]
X m′ ' K

[
I −C

]
X

m′ ' K(KR)−1 m = KR>K−1 m = Hm

• H is the rectifying homography

• both K and R can be calibrated from two finite vanishing points

• not possible when one (or both) of them are infinite
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ICamera Resectioning

Camera calibration and orientation from a known set of k ≥ 6 reference points and their
images {(Xi,mi)}6i=1.

m̂imiei P
Xi

Xi is considered exact

mi is a measurement

e2i = ‖mi − m̂i‖2

where m̂i ' PXi

z

projection error calibration target with translation stage
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IThe Minimal Problem for Resectioning

Problem: Given k = 6 corresponding pairs
{

(Xi, mi)
}k
i=1

, find P

λimi = PXi, P =

 q>1 q14

q>2 q24

q>3 q34

 Xi = (xi, yi, zi, 1), i = 1, 2, . . . , k, k = 6

mi = (ui, vi, 1), λi ∈ R, λi 6= 0

easy to modify for infinite points Xi

expanded: λiui = q>1 Xi + q14, λivi = q>2 Xi + q24, λi = q>3 Xi + q34

eliminating λ gives: (q>3 Xi + q34)ui = q>1 Xi + q14, (q>3 Xi + q34)vi = q>2 Xi + q24

Then

Aq =


X>1 1 0> 0 −u1X

>
1 −u1

0> 0 X>1 1 −v1X
>
1 −v1

...
...

X>k 1 0> 0 −ukX>k −uk
0> 0 X>k 1 −vkX>k −vk

·


q1

q14

q2

q24

q3

q34

 = 0 (8)

• we need 11 indepedent parameters for P

• A ∈ R2k,12, q ∈ R12

• 6 points in a general position give rank A = 12 and there is no non-trivial null space

• drop one row to get rank 11 matrix, then the basis of the null space of A gives q
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IThe Jack-Knife Solution for k = 6

• given the 6 correspondences, we have 12 equations for the 11 parameters
• can we use all the information present in data?

Jack-knife estimation

1. n := 0

2. for i = 1, 2, . . . , 2k do
a. delete i-th row from A, this gives Ai

b. if dim null Ai > 1 continue with the next i
c. n := n+ 1
d. compute the right null-space qi of Ai e.g. by ‘economy-size’ SVD

e. normalize qi to q̂i = qi/q12 this assumes finite camera with P3,3 = 1

3. from all n vectors q̂i collected in Step 1d compute

q =
1

n

n∑
i=1

q̂i, var[q] =
n− 1

n
diag

n∑
i−1

(q̂i − q)(q̂i − q)>

• have a solution + an error estimate, per individual elements of P

• at least 5 points must be in a general position see Slide 67

• large error indicates near degeneracy

• computation not efficient with k > 6 points, needs
(2k
11

)
draws, e.g. k = 7→ 364 draws

• one needs k ≥ 7 for the full covariance matrix

• better error estimation method: decompose Pi to Ki, Ri, ti (Slide 30), represent Ri with 3 parameters
(e.g. Euler angles, or in Cayley representation, see Slide 136) and compute the errors for the parameters
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IDegenerate (Critical) Configurations for Resectioning

Let X = {Xi; i = 1, . . .} be a set of points and P1 6' P2 be two regular (rank-3) cameras.
Then two configurations (P1,X ) and (P2,X ) are image-equivalent if

P1Xi ' P2Xi for all Xi ∈ X{C1C2C1C
Case 4

• if all calibration points Xi ∈ X lie on a plane κ the
camera resectioning is non-unique and all image-equivalent
camera centers lie on a spatial line C with the C∞ = κ ∩ C
excluded

this also means we cannot resect if all Xi are infinite

• by adding points Xi ∈ X to C we gain nothing

• there are additional image-equivalent configurations, see
next

see proof sketch in the notes or in [H&Z, Sec. 22.1.2]

Note that if Q, T are suitable non-singular homographies then P1 ' QP0T, where P0 is
canonical and

P0 TXi︸ ︷︷ ︸
Yi

' P2 TXi︸ ︷︷ ︸
Yi

for all Yi ∈ Y
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cont’d (all cases)C C
Case 5 Case 6

• cameras C1, C2 co-located at point C
• points on three optical rays or one optical ray

and one optical plane

• Case 5: we see 3 isolated point images

• Case 6: we see a line of points and an isolated pointC C1
C 01C1C2 {C1C2C1C

Case 3 Case 4

• cameras lie on a line C \ {C∞, C′∞}
• points lie on C and

1. on two lines meeting C at C∞, C′∞
2. or on a plane meeting C at C∞

• Case 3: we see 2 lines of points

Case 2

CC2
C1C1 • cameras lie on a planar conic C \ {C∞}

not necessarily an ellipse

• points lie on C and an additional line meeting the
conic at C∞

• Case 2: we see 2 lines of points

Case 1 CC1 C2 • cameras and points all lie on a twisted cubic C

• Case 1: we see a conic
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IThree-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{

(mi, Xi)
}3

i=1
, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (9)

2. Eliminate R by taking rotation preserves length: ‖Rx‖ = ‖x‖

|λi| · ‖vi‖ = ‖Xi −C‖ def
= zi (10)

3. Consider only angles among vi and apply Cosine Law per
triangle (C,Xi,Xj) i, j = 1, 2, 3, i 6= j

d2
ij = z2

i + z2
j − 2 zi zj cij ,

zi = ‖Xi −C‖, dij = ‖Xj −Xi‖, cij = cos(∠vi vj)

configuration w/o rotation

X3X1 v2
X2z1 v1 v3z2

C
d12

4. Solve system of 3 quadratic eqs in 3 unknowns zi [Fischler & Bolles, 1981]

there may be no real root; there are up to 4 solutions that cannot be ignored

(verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi from (10) and R
from (9)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)
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Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular
cylinder with base circumscribing the three points Xi

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3)

unstable: a small change of Xi results in a large change of C
can be detected by error propagationX1X3 X2C no solution

1. C cocyclic with (X1, X2, X3)

• additional critical configurations depend on the method to solve the quadratic
equations

[Haralick et al. IJCV 1994]
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IPopulating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

resectioning 6 world–img correspondences
{

(Xi, mi)
}6

i=1
P 65

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3

i=1
R, C 69

• resectioning and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• more problems to come
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Part IV

Computing with a Camera Pair

12 Camera Motions Inducing Epipolar Geometry

13 Estimating Fundamental Matrix from 7 Correspondences

14 Estimating Essential Matrix from 5 Correspondences

15 Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293

(5828):133–135, 1981.
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IGeometric Model of a Camera Pair

Epipolar geometry:

• brings constraints necessary for inter-image matching
• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2b
two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ' P1C2, e2 ' P2C1

• li ∈ πi is the image of epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line in image πj induced
by mi in image πi

Epipolar constraint: d2, b, d1 are coplanar a necessary condition, see also Slide 83
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ICross Products and Maps by Antisymmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 antisymmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]>× = −[b]× the general antisymmetry property

2. ‖[b]×‖F =
√

2 ‖b‖ Frobenius norm (‖A‖2F =
∑
i,j |aij |

2)

3. [b]×b = 0

4. rank [b]× = 2 iff ‖b‖ > 0 check minors of [b]×

5. if RR> = I then [Rb]× = R [b]×R
>

6. [Bz]× ' B−>[z]×B
−1 in general, [A−1t]× · det A = A>[t]×A

7. if Rb is rotation about b then [Rbb]× = [b]×
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IExpressing Epipolar Constraint Algebraically"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2 Pi =

[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

R21 – relative camera rotation, R21 = R2R>1
t21 – relative camera translation, t21 = t2−R21t1 = −R2b

remember: C = −Q−1q = −R>t (Slides 30 and 32)

0 = d>2 pε︸︷︷︸
normal of ε

' (Q−1
2 m2)>︸ ︷︷ ︸

optical ray

Q>1 l1︸ ︷︷ ︸
optical plane

= m>2 Q−>2 Q>1 (e1 ×m1)︸ ︷︷ ︸
image of ε in π2

= m>2
(
Q−>2 Q>1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m>2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ' Fm1

• point m1 is incident on epipolar line l1 ' F>m2

• Fe1 = F>e2 = 0 (non-trivially)

• all epipolars meet at the epipole

e1 ' Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b

F = Q−>2 Q>1 [e1]× = Q−>2 Q>1 [K1R1b]× =
~ 1· · · = K−>2 [−t21]×R21︸ ︷︷ ︸

essential matrix E

K−1
1 Slide 74

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21 = R21 [R1b]×︸ ︷︷ ︸
baseline in Cam 1
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Epipole is the Image of the Other Camera

 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

 1
 2 3
 4 5

 6

 7 8 910111213
1415

1617

18

image 1 image 2

Camera moved horizontally: How high is it above floor?

movement2 1 h=?
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IA Summary of Epipolar Constraint

�2�1 e2e1m1 l1 m2l2
Fm1 0 = m>2 Fm1

F ' K−>2 EK−1
1

E ' [−t21]×R21 = [R2b]×R21 = R21[R1b]×

e1 ' null(F), e2 ' null(F>)

• E captures the relative pose
[Longuet-Higgins 1981]

• the translation length t21 is lost
E is homogeneousm>2 Fm1 = 0

Q�>1 Q>2 ' F>[e2℄�
m1 m2

l1l2 F>F Q�>2 Q>1 ' F [e1℄� proof of l2 ' F [e1]× l1: line/point transmutation

l2 ' F x' F(k× l1) = F [k]× l1 = F [e1]× l1l1 e1xk def= e1
x 6= e1, e1 /∈ k: k>e1 = ‖e1‖2 6= 0
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IThe Representation Theorem for Essential Matrices

Let E = UDV> s.t. D = diag(1, 1, 0) then E ' [u3]×R, where R is orthogonal nonunique!

Proof.

We introduce W =

 0 α 0
−α 0 0
0 0 1

 s.t. |α| = 1 (rotation by ±90◦). Then

UDV> = UDW>︸ ︷︷ ︸WV> = U

1 0 0
0 1 0
0 0 0

0 −α 0
α 0 0
0 0 1


︸ ︷︷ ︸

U

0 −α 0
α 0 0
0 0 0

=U

0
0
α


×

=α[u3]×U →Slide 74

WV> = α[u3]×UWV>︸ ︷︷ ︸
R

ut

• we needed rotation W s.t. DW> is antisymmetric, the choice is unique up to signα

Theorem
Let E be a 3× 3 matrix with SVD E = UDV>. Then E is essential iff D ' diag(1, 1, 0).

Proof.
Direct implication above. Converse: Let UDV> be an SVD with D = diag(1, 1, 0). Then

UDV> = UDW>︸ ︷︷ ︸
[u3]×U

WV>

ut
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IEssential Matrix Decomposition

We are decomposing E to E = [−t21]×R21 [H&Z, sec. 9.6]

1. compute SVD of E = UDV> s.t. D = diag(1, 1, 0)
2. if detU < 0 transform it to −U, do the same for V the overall sign is dropped

3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1


︸ ︷︷ ︸

W

V>, t21 = −β u3, |α| = 1, β 6= 0 (11)

Notes

• t21 recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• change of sign in W rotates the solution by 180◦ about t

R1 = UWV>, R2 = UW>V> ⇒ T = R2R
>
1 = · · · = U diag(−1,−1, 1)U> which is

a rotation by 180◦ about u3 = t21:

U diag(−1,−1, 1)U
>
u3 = U

−1 0 0
0 −1 0
0 0 1

0
0
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation
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IFour Solutions to Essential Matrix Decomposition

C1 C2
C1 C2

α, β −α, β (twisted pair)

C1
C2

C1
C2

α, −β (baseline reversal) −α, −β (combination of both)

• chirality constraint: all 3D points are in front of both cameras

• this singles-out the upper left case [H&Z, Sec. 9.6.3]
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I7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 correspondences, estimate f. m. F.

y>i Fxi = 0, i = 1, . . . , k, known: xi = (u1
i , v

1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesised corresp.

Solution:

D =


u1

1u
2
1 u1

1v
2
1 u1

1 u2
1v

1
1 v1

1v
2
1 v1

1 u2
1 v2

1 1
u1

2u
2
2 u1

2v
2
2 u1

2 u2
2v

1
2 v1

2v
2
2 v1

2 u2
2 v2

2 1
u1

3u
2
3 u1

3v
2
3 u1

3 u2
3v

1
3 v1

3v
2
3 v1

3 u2
3 v2

3 1
...

...
u1
ku

2
k u1

kv
2
k u1

k u2
kv

1
k v1

kv
2
k v1

k u2
k v2

k 1

D ∈ Rk,9

Df = 0, f =
[
f11 f21 f31 . . . f33

]>
, f ∈ R9,

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional
• but we know that detF = 0, hence

1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for α from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices F = αiF1 + (1− αi)F2

• the result may depend on image transformations
• normalization improves conditioning → Slide 88
• this gives a good starting point for the full algorithm → Slide 104
• dealing with mismatches need not be a part of the 7-point algorithm → Slide 105
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IDegenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a. camera centers coincide C1 = C2: H = K2R21K−1

1

b. camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n>/d)K−1
1

• epipolar geometry is not defined
• we do get an F from the 7-point algorithm but it is of the form of F = [s]×H with s

arbitrary (nonzero)

l

s

y ≃ Hx
• correspondence x↔ y

• y is the image of x: y ' Hx

• this can be written as y ∈ l, l' s×Hx arbitrary s

0 = y>(s×Hx) = y>[s]×Hx

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes

• estimation of E can deal with planes: [s]×H = [s]×(R21 − t21n>/d) has equal eigenvalues

iff s = t21, the decomposition works (nonunique, as before) ~ 1pt for a proof

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]

• a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint preserves orientations
• requires all points and cameras be on the same side of the plane at infinity"

b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

e2 ×m2 +∼ Fm1

notation: m +∼ n means m = λn, λ > 0

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see Slide 105 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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IFive-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. R – 3DOF, t – we can recover 2DOF only, in total 5 DOF → we need 3 constraints on E

2. real F ∈ R3,3 is a fundamental matrix iff det F = 0

3. fundamental matrix is essential iff its two non-zero eigenvalues are equal

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v ' K−1m)

detE = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method, this gives
E = xE1 + yE2 + zE3 + E4

2. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 solutions (twisted-pair)
can be disambiguated in 3 views

or by chirality constraint (Slide 80) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

3D Computer Vision: IV. Computing with a Camera Pair (p. 84/208) R. Šára, CMP; rev. 18–Dec–2012
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IThe Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x↔ y compute a 3D point X
projecting to x and y

λ1 x = P1X , λ2 y = P2X , x =

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi1)>

(pi2)>

(pi3)>


Linear triangulation method

u1 (p1
3)>X = (p1

1)>X, u2 (p2
3)>X = (p2

1)>X,

v1 (p1
3)>X = (p1

2)>X, v2 (p2
3)>X = (p2

2)>X,

Gives

DX = 0, D =


u1 (p1

3)> − (p1
1)>

v1 (p1
3)> − (p1

2)>

u2 (p2
3)> − (p2

1)>

v2 (p2
3)> − (p2

2)>

 , D ∈ R4,4, X ∈ R4 (12)

• back-projected rays will generally not intersect due to image error, see next

• using Jack-knife (Slide 66) not recommended sensitive to small error

• we will use SVD (Slide 86)

• but the result will not be invariant to projective frame
replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• the homogeneous form in (12) can represent points at infinity
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IThe Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ‖DX‖2 s.t. ‖X‖ = 1, X ∈ R4

• let Di be the i-th row of D, then

‖DX‖2 =
4∑
i=1

(DiX)2 =
4∑
i=1

X>D>iDiX = X>QX, where Q =
4∑
i=1

D>iDi = D>D ∈ R4,4

• we write the SVD of Q as Q =
4∑
j=1

σ2
j uju

>
j , in which [Golub & van Loan 1996, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u>l um =

{
0 if l 6= m

1 otherwise

• then

X = arg min
q,‖q‖=1

q>Qq = u4, q>Qq =
4∑
j=1

σ2
j q
>uj u

>
j q =

4∑
j=1

σ2
j (u>j q)2

we have a sum of non-negative elements 0 ≤ (u>j q)2 ≤ 1, let q = u4 + q̄ s.t. q̄ ⊥ u4, then

q>Q q = σ2
4 +

3∑
j=1

σ2
j (u>j q̄)2 ≥ σ2

4
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Icont’d

• if σ4 � σ3, there is a unique solution X = u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = O(3,3)/O(4,4);

~ P1; 2pt: Why did we decompose D and not Q = D>D? Could we use QR decomposition
instead of SVD?
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INumerical Conditioning

• The equation DX = 0 in (12) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = Dq = DSS−1q = D̄ q̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(max(abs(D)),1))

2. solve for q̄ as before
3. get the final solution as q = S q̄

• when SVD is used in camera resectioning, conditioning is essential for success → Slide 65
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Algebraic Error vs Reprojection Error

• algebraic residual error: from SVD → Slide 87

ε
2

= σ
2
4 =

2∑
c=1

[(
u
c
(p
c
3)
>
X− (p

c
1)
>
X
)2

+
(
v
c
(p
c
3)
>
X− (p

c
2)
>
X
)2
]

• reprojection error

e
2

=

2∑
c=1

[(
u
c − (pc1)>X

(pc3)>X

)2

+

(
v
c − (pc2)>X

(pc3)>X

)2]
• algebraic error zero ⇒ reprojection error zero σ4 = 0 ⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results

• in general: minimizing algebraic error cheap but it gives inferior results

• minimizing reprojection error expensive but it gives good results

• the gold standard method – deferred to Slide 100

Ex:
C1 C2

XT
Xa

Xr

• forward camera motion

• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

C1

mT = m

ma mr

e1

C2

mT

ma
mr

e2

m
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Optimal Triangulation for the Geeks

• detected image points x, y do not satisfy epipolar geometry exactly

• as a result optical rays do not intersect in space, we must correct the image points to x̂, ŷ first

ŷ l2�1 �2� yx X
e1l1 x̂

1. given epipolar line l1 and l2, l2 ' F[e1]×l1 the x̂, ŷ are the closest points on l1, l2
2. parameterize all possible l1 by θ

• find θ after translating x, y to (0, 0, 1), rotating the epipoles to (1, 0, f1), (1, 0, f2), and

parameterising l1 = (0, θ, 1)× (1, 0, f1)

3. minimise the error
θ∗ = arg min

θ
d2(x, l1(θ)

)
+ d2(y, l2(θ)

)
the problem reduces to 6-th degree polynomial root finding, see [H&Z, Sec 12.5.2]

4. compute x̂, ŷ and triangulate using the linear method on Slide 85

• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

• a fully optimal procedure requires error re-definition in order to get the most probable x̂, ŷ
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IWe Have Added to The ZOO

Continuation from Slide 71

problem given unknown slide

resectioning 6 world–img correspondences
{

(Xi, mi)
}6

i=1
P 65

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3

i=1
R, C 69

fundamental matrix 7 img–img correspondences
{

(mi, m
′
i)
}7

i=1
F 81

relative orientation K, 5 img–img correspondences
{

(mi, m
′
i)
}5

i=1
R, t 84

triangulation 1 img–img correspondence (mi, m
′
i) X 85

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators → Slide 113)

• algebraic error optimization (with SVD) makes sense in resectioning and triangulation only

• but it is not the best method; we will now focus on ‘optimizing optimally’
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Part V

Optimization for 3D Vision

16 Algebraic Error Optimization
17 The Concept of Error for Epipolar Geometry
18 Levenberg-Marquardt’s Iterative Optimization
19 The Correspondence Problem
20 Optimization by Random Sampling

covered by
[1] [H&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243.

Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented

epipolar constraint. In Proc ICPR, vol 1:112–115, 2004.
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IThe Concept of Error for Epipolar Geometry

Problem: Given at least 8 corresponding points xi ↔ yj in a general position, estimate
the most likely (or most probable) fundamental matrix F.

xi = (u1
i , v

1
i ), yi = (u2

i , v
2
i ), i = 1, 2, . . . , k, k ≥ 8

F

x̂i

ŷi
xi

yi

image 1 image 2

• detected points xi, yi; the correspondence set is S =
{

(xi, yi)
}k
i=1

• corrected points x̂i, ŷi; the set is Ŝ =
{

(x̂i, ŷi)
}k
i=1

• corrected points satisfy the epipolar geometry exactly ŷ>
i
F x̂i = 0, i = 1, . . . , k

• small correction is more probable
• ok, but we need to choose a definite error function for optimization that is tractable

• the solution for calibrated cameras (unknown E) is essentially the same and is not mentioned
here explicitly
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Icont’d

• Let V (·) be a positive semi-definite ‘energy function’
• e.g., per correspondence,

Vi(xi, yi | x̂i, ŷi,F) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 (13)

• the total (negative) log-likelihood (of all data) then is

L(S | Ŝ,F) =

k∑
i=1

Vi(xi, yi | x̂i, ŷi,F)

• and the optimization problem is

(Ŝ∗,F∗) = arg min
F

rank F = 2

min
Ŝ

ŷ>
i
F x̂i = 0

k∑
i=1

Vi(xi, yi | x̂i, ŷi,F) (14)

we mention 3 approaches

1. direct optimization of ‘geometric error’ over all variables Ŝ, F Slide 95

2. approximate minimization of L(S | Ŝ,F) over Ŝ followed by minimization over F
Slide 96

3. marginalization of L(S, Ŝ | F) over Ŝ followed by minimization over F
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Method 1: Geometric Error Optimization

• we need to encode the constraints ŷ
i
F x̂i = 0, rankF = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
• equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
[
I 0

]
, P2 =

[
[e2]×F + e2e

>
1 e2

]
~ H3; 2pt: Verify that F is a f.m. of P1, P2, for instance that F ' Q−>2 Q>1 [e1]×

1. compute F(0) by the 7-point algorithm → Slide 81; construct camera P
(0)
2 from F(0)

2. triangulate 3D points X̂
(0)
i from correspondences (xi, yi) for all i = 1, . . . , k → Slide 85

3. express the energy function as reprojection error

Wi(xi, yi | X̂i,P2) = ‖xi − x̂i‖2 + ‖yi − ŷi‖2 where x̂i ' P1X̂i, ŷi ' P2 X̂i

4. starting from P
(0)
2 , X̂(0) minimize

(X̂∗,P∗2) = arg min
P2, X̂

k∑
i=1

Wi(xi, yi | X̂i,P2)

5. compute F from P1, P∗2

• 3k + 12 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: P2

• minimal representation: 3k + 7 parameters, P2 = P2(F) → Slide 138

• there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 131
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IMethod 2: First-Order Error Approximation

An elegant method for solving problems like (14):

• we will get rid of the latent parameters [H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y>F x from Slide 81

Observations:
• correspondences x̂i ↔ ŷi satisfy ŷ>i F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) consistent with F
• let Ẑi be the closest point on VF to measurement Zi, then (see (13))

‖Zi − Ẑi‖2 = (u1
i − û1

i )
2 + (v1

i − v̂1
i )2 + (u2

i − û2
i )

2 + (v2
i − v̂2

i )2 =

= Vi(xi, yi | x̂i, ŷi,F)
def
= ‖e(Ẑi,Zi)‖2

which is what we needed in (14)Zi Ẑie(Ẑi;Zi) VF Zi =
(
u1, v1, u2, v2

)
– measurement

algebraic error: ε(Ẑi)
def
= ŷi

>F x̂i (= 0)

Sampson’s idea: Linearize ε(Ẑi) (with hat!) at Zi (no hat!) and estimate e(Ẑi,Zi) with it
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ISampson’s Idea

Linearize ε(Ẑi) at Zi per correspondence and estimate e(Ẑi,Zi) with it
have: ε(Zi), want: e(Ẑi,Zi)

ε(Ẑi) ≈ ε(Zi) +
∂ε(Zi)

∂Zi︸ ︷︷ ︸
J(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
e(Ẑi,Zi)

def
= ε(Zi) + J(Zi) e(Ẑi,Zi)

!
= 0

Illustration on circle fitting

We are estimating distance from point x to circle VC of radius r in canonical position.
The circle is ε(x) = ‖x‖2 − r2 = 0. Then

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x>

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2 x>x̂− (r2 + ‖x‖2)
def
= εL(x̂)

x

x̂

VC

e

and εL(x̂) = 0 is a line with normal x
‖x‖ and intercept r2+‖x‖2

2‖x‖ not tangent to VC , outside!

ε1(x̂) = 0

ε2(x̂) = 0

VC

x2

x1

line in R2: εL(x̂) = 0

linear function over R2: εL(x̂)
ε(xi)

x̂i

VC

xi

R2

quadratic algebraic error ε(x̂)

e∗(x̂i,xi)
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ISampson Error Approximation

In general, the Taylor expansion is

ε(Zi) +
∂ε(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
e(Ẑi,Zi)

= ε(Zi)︸ ︷︷ ︸
εi∈Rn

+ J(Zi)︸ ︷︷ ︸
Ji∈Rn,d

e(Ẑi,Zi)︸ ︷︷ ︸
ei∈Rd

!
= 0

to find Ẑi closest to Zi, we estimate ei from εi by minimizing per correspondence Xi

e∗i = arg min
ei
‖ei‖2 subject to εi + Ji ei = 0

which gives a closed-form solution ~ P1; 1pt: derive e∗i

e∗i = −J>i (JiJ
>
i )−1εi

‖e∗i ‖2 = ε>i (JiJ
>
i )−1εi

• note that Ji is not invertible!

• we often do not need Ẑi, just the squared distance ‖ei‖2 exception: triangulation → Slide 100

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)
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ISampson Error: Result for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes

F∗ = arg min
F,rank F=2

k∑
i=1

e2
i (F)

Let F =
[
F1 F2 F3

]
(per columns) =

(F1)>

(F2)>

(F3)>

 (per rows), S =

1 0 0
0 1 0
0 0 0

, then

Sampson

εi = y>i Fxi εi ∈ R scalar algebraic error from Slide 81

Ji =

[
∂εi
∂u1

i

,
∂εi
∂v1

i

,
∂εi
∂u2

i

,
∂εi
∂v2

i

]
Ji ∈ R1,4

derivatives over point coords.

e2
i (F) =

ε2
i

‖Ji‖2
ei ∈ R Sampson error

Ji =
[
(F1)>yi, (F2)>yi, (F1)>xi, (F2)>xi

]
e2
i (F) =

(y>i Fxi)
2

‖SFxi‖2 + ‖SF>yi‖2

• Sampson correction ‘normalizes’ the algebraic error

• automatically copes with multiplicative factors F 7→ λF

• actual optimization not yet covered → Slide 103
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IBack to Triangulation: The Golden Standard Method

We are given P1, P2 and a single correspondence x↔ y and we look for 3D point X
projecting to x and y. → Slide 85

Idea:

1. compute F from P1, P2, e.g. F = (Q1Q
−1
2 )>[q1 − (Q1Q

−1
2 )q2]×

2. correct measurement by the linear estimate of the correction vector → Slide 98
û1

v̂1

û2

v̂2

 ≈

u1

v1

u2

v2

− ε

‖J‖2
J> =


u1

v1

u2

v2

− y>Fx

‖SFx‖2 + ‖SF>y‖2


(F1)>y
(F2)>y
(F1)>x
(F2)>x


3. use the SVD algorithm with numerical conditioning → Slide 86

Ex (cont’d from Slide 89):
C1 C2

XT
Xa

Xs

XT – noiseless ground truth position
• – reprojection error minimizer

Xs – Sampson-corrected algebraic error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

C1

mT = m

ma ms

e1

C2

mT

ma
ms

e2

m

3D Computer Vision: V. Optimization for 3D Vision (p. 100/208) R. Šára, CMP; rev. 18–Dec–2012



Levenberg-Marquardt (LM) Iterative Estimation

Consider error function ei(θ) = f(xi,yi,θ) ∈ Rm, with xi,yi given, θ ∈ Rq unknown
θ = F, q = 9, m = 1 for f.m. estimation

Our goal: θ∗ = arg min
θ

k∑
i=1

‖ei(θ)‖2

Idea 1 (Gauss-Newton approximation): proceed iteratively for s = 0, 1, 2, . . .

θs+1 := θs + ds , where ds = arg min
d

k∑
i=1

‖ei(θs + d)‖2 (15)

ei(θ
s + d) ≈ ei(θ

s) + Li d,

(Li)jl =
∂
(
ei(θ)

)
j

∂(θ)l
, Li ∈ Rm,q typically a long matrix

Then the solution to Problem (15) is a set of normal eqs

−
k∑
i=1

L>i ei(θ
s)︸ ︷︷ ︸

e∈Rq,1

=

(
k∑
i=1

L>i Li

)
︸ ︷︷ ︸

L∈Rq,q

ds, (16)

• ds can be solved for by Gaussian elimination using Choleski decomposition of L
L symmetric ⇒ use Choleski, almost 2× faster than Gauss-Seidel, see bundle adjustment

slide 134

• such updates do not lead to stable convergence −→ ideas of Levenberg and Marquardt
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LM (cont’d)

Idea 2 (Levenberg): replace
∑
i L
>
i Li with

∑
i L
>
i Li + λ I for some damping factor λ ≥ 0

Idea 3 (Marquardt): replace λ I with λ
∑
i diag(L>i Li) to adapt to local curvature:

−
k∑
i=1

L>i ei(θ
s) =

(
k∑
i=1

(
L>i Li + λ diagL>i Li

))
ds

Idea 4 (Marquardt): adaptive λ small λ → Gauss-Newton, large λ → gradient descend

1. choose λ ≈ 10−3 and compute ds

2. if
∑
i ‖ei(θ

s + ds)‖2 <
∑
i ‖ei(θ

s)‖2 then accept ds and set λ := λ/10, s := s+ 1

3. otherwise set λ := 10λ and recompute ds

• sometimes different constants are needed for the 10 and 10−3

• note that Li ∈ Rm,q (long matrix) but each contribution L>i Li is a square singular q × q
matrix (always singular for k < q)

• error can be made robust to outliers, see the trick on Slide 106

• we have approximated the least squares Hessian by ignoring second derivatives of the error
function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]

• λ helps avoid the consequences of gauge freedom → Slide 136
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LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u1, v1, u2, v2)

e2
i (F) =

ε2
i

‖Ji‖2
=

(y>i Fxi)
2

‖SFxi‖2 + ‖SF>yi‖2
S =

1 0 0
0 1 0
0 0 0



LM (by linearization over parameters F)

Li =
∂ei(F)

∂F
=

1

2‖Ji‖

[(
yi −

2ei
‖Ji‖

SFxi

)
x>i + yi

(
xi −

2ei
‖Ji‖

SF>yi

)>]

• Li is a 3× 3 matrix, must be reshaped to dimension-9 vector

• xi and yi in Sampson error are normalized to unit homogeneous coordinate

• reinforce rank F = 2 after each LM update to stay in the fundamental matrix manifold and
‖F‖ = 1 to avoid gauge freedom (by SVD, see Slide 104)

• LM linearization could be done by numerical differentiation (small dimension)
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ILocal Optimization for Fundamental Matrix Estimation

Given a set {(xi, yi)}ki=1 of k > 7 inlier correspondences, compute an efficient estimate for
fundamental matrix F.

1. Find the conditioned (→ Slide 88) 7-point F0 (→ Slide 81) from a suitable 7-tuple

2. Improve the F∗0 using the LM optimization (→ Slides 101–102) and the Sampson error
(→ Slide 103) on all inliers, reinforce rank-2, unit-norm F∗k after each LM iteration
using SVD

• if there are no wrong matches (outliers), this gives a local optimum

• contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm

• the full problem involves finding the inliers!

• in addition, we need a mechanism for jumping out of local minima (and exploring the space of
all fundamental matrices)
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IThe Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points X = {xi}mi=1 and Y = {yj}nj=1 and their
descriptors D, find the most probable

1. inliers SX ⊆ X, SY ⊆ Y
2. one-to-one perfect matching M : SX → SY perfect matching: 1-factor of the bipartite graph

3. fundamental matrix F such that rank F = 2
4. such that for each xi ∈ SX and yj = M(xi) it is probable that

a. the image descriptor D(xi) is similar to D(yj), and

b. the total geometric error
∑
ij e

2
ij(F) is small note a slight change in notation: eij

5. inlier-outlier and outlier-outlier matches are improbableMSX YSYX
6

7

2

5
3

2

5

8

4 4

6

3

1

1 8 = 16 7X YM : = 01

2

3

4

5

6

1 2 3 4 5

(M∗,F∗) = arg max
M,F

p(M,F | X,Y,D) (17)

• probabilistic model: an efficient language for task formulation

• the (17) is a p.d.f. for all the involved variables (there is a constant number of variables!)

• binary matching table Mij ∈ {0, 1} of fixed size m× n
• each row/column contains at most one unity
• zero rows/columns correspond to unmatched point xi/yj
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Deriving A Robust Matching Model by Marginalization

For algorithmic efficiency, instead of (M∗,F∗) = arg max
M,F

p(M,F | X,Y,D) we will solve

F∗ = arg max
F

p(F | X,Y,D) (18)

by marginalization of p(M,F | X,Y,D) over M this simplification changes the problem!

p(M,F | X,Y,D) ' p(M,F, X, Y,D) = p(X,Y,D,M | F) · p(F)

assuming correspondence-wise independence:

p(X,Y,D,M | F) =

m∏
i=1

n∏
j=1

p(xi, yj , D,mij | F)
def
=

m∏
i=1

n∏
j=1

pe(eij , dij ,mij | F)

• eij represents geometric error for match xi ↔ yi: eij(xi, yi | F)

• dij represents descriptor similarity for match xi ↔ yi: dij = ‖d(xi)− d(yj)‖

Marginalization:∑
m11∈{0,1}

∑
m12

· · ·
∑
mmn

p(X,Y,D,M | F) =
∑
m11

∑
m12

· · ·
∑
mmn

m∏
i=1

n∏
j=1

pe(eij , dij ,mij | F) =

= · · · =
m∏
i=1

n∏
j=1

∑
mij∈{0,1}

pe(eij , dij ,mij | F)

︸ ︷︷ ︸
we will continue with this term

= p(X,Y,D | F)
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Robust Matching Model (cont’d)∑
mij∈{0,1}

pe(eij , dij ,mij | F) =
∑

mij∈{0,1}

pe(eij , dij | mij ,F) · p(mij | F) =

= pe(eij , dij | mij = 1,F)︸ ︷︷ ︸
p1(eij ,dij |F)

· p(mij = 1 | F)︸ ︷︷ ︸
1−α0

+ pe(eij , dij | mij = 0,F)︸ ︷︷ ︸
p0(eij ,dij |F)

· p(mij = 0 | F)︸ ︷︷ ︸
α0

=

= (1− α0) p1(eij , dij | F) + α0 p0(eij , dij | F) (19)

• the p0(eij , dij | F) ≈ const is a penalty for ‘missing a correspondence’ but it should be a
p.d.f. (cannot be a constant) (see Slide 108 for a simplification)

α0 → 1, p0 → 0 so that
α0

1− α0
p0 ≈ const

• the p1(eij , dij | F) is typically an easy-to-design component: assuming independence of
geometric error and descriptor similarity:

p1(eij , dij | F) = p1(eij | F) · p1(dij)

• we choose, eg.

p1(eij | F) =
1

Te(σ1,F)
e
−
e2ij(F)

2σ1
2 , p1(dij) =

1

Td(σd, dim d)
e
−
‖d(xi)−d(yj)‖2

2σd
2

(20)

• σ1, σd, α0 are ‘hyper-parameters’

• the form of T (σ1,F) depends on error definition

• we will continue with the result from (19)
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ISimplified Robust Energy (Error) Function

• assuming the choice of p1 as in (20), we are simplifying

p(X,Y,D | F) =
m∏
i=1

n∏
j=1

[
(1− α0) p1(eij , dij | F) + α0 p0(eij , dij | F)

]
(21)

• we define ‘energy’ as: V (x) = − log p(x) this helps simplify the formulas

• for simplicity, we omit dij
• we choose σ0 � σ1 and the missed-correspondence penalty function as

p0(eij | F) =
1

Te(σ0,F)
e
−
e2ij(F)

2σ0
2

• then

V (X,Y,D | F) =
m∑
i=1

n∑
j=1

− log
1− α0

Te(σ1,F)︸ ︷︷ ︸
∆(F)

− log
(
e
−
e2ij(F)

2σ1
2 +

α0

1− α0

Te(σ1,F)

Te(σ0,F)
e
−
e2ij(F)

2σ0
2

︸ ︷︷ ︸
t ≈ const

)


• by choosing representative of F such that ∆(F) = const, we get

V (X,Y,D | F) = mn∆ +
m∑
i=1

n∑
j=1

− log
(
e
−
e2ij(F)

2σ1
2 + t

)
︸ ︷︷ ︸

V̂ (eij)

(22)

note that m, n are fixed
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IThe Action of the Robust Matching Model on Data

Example for V̂ (e) from (22):

−4 −3 −2eT −1 0 1 eT2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

σ
1
 = 1

e

V

 

 
V when t = 0
V when t = 0.25
t = 0.25

red – the usual (non-robust) error when t = 0

blue – the rejected correspondence penalty t

green – ‘robust energy’ (22)

• if the error of a correspondence exceeds a limit, it is ignored

• then V̂ (e) = const and we essentially count outliers in (22)

• t controls the ‘turn-off’ point

• the inlier/outlier threshold is eT is the error for which
(1− α0) p1(eT ) = α0 p0(eT ): note that t ≈ 0

eT = σ1

√
− log t2 (23)

The full optimization problem is (18):

F∗ = arg max
F

p(F | X,Y,D) = arg max
F

likelihood︷ ︸︸ ︷
p(X,Y,D | F) ·

prior︷︸︸︷
p(F)

p(X,Y,D)︸ ︷︷ ︸
evidence

=

= arg min
F

{
V (X,Y,D | F) + V (F)

}
• typically we take V (F) = 0 unless we need to stabilize a computation, e.g. when video camera moves

smoothly (on a high-mass vehicle) and we have a prediction for F

• evidence is not needed unless we want to compare different models
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Discussion: On The Art of Probabilistic Model Design. . .

• a few models for fitting zero-centered circle C of radius r to points in R2

marginalized over C orthogonal deviation from C Sampson approximation
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≈ 1

σ
√

(2π)3r ‖x‖
e
− (‖x‖−r)2

2σ2 1

2πΓ( r
2

σ
)

1
‖x‖2

(
r‖x‖
σ

) r2
σ
e−

r‖x‖
σ 1

rσ
√

(2π)3
e
− e

2(x;r)

2σ2

•mode inside the circle • peak at the center •mode at the circle
•models the inside well • unusable for small radii • hole at the center
• tends to normal distrib. • tends to Dirac distrib. • tends to normal distrib.
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How To Find the Global Maxima (Modes) of a PDF?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p(
x)

x

0 1000 2000 3000 4000 5000

exhaustive

randomized

MH_crawl

Gibbs

iterations

• averaged over 104 trials

• number of proposals before
|x− xtrue| ≤ step

• uniform and Gibbs give the
theoretical result

• consider the function p(x) at left p.d.f. on [0, 1], mode at 0.1

• consider several methods:
1. exhaustive search

step = 1/(iterations-1);
for x = 0:step:1
if p(x) > bestp
bestx = x; bestp = p(x);

end
end

• slow algorithm (definite quantization); faster variants

exist • fast to implement

2. randomized search with uniform sampling
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);

end

• slow algorithm but better convergence • fast to

implement • how to stop it?

3. random sampling from p(x) (Gibbs sampler)
• faster algorithm • fast to implement but often infeasible (e.g.

when p(x) is data dependent (our case))

4. Metropolis-Hastings sampling
• almost as fast (with care) • not so fast to implement • rarely

infeasible • RANSAC belongs here

3D Computer Vision: V. Optimization for 3D Vision (p. 111/208) R. Šára, CMP; rev. 18–Dec–2012



How To Generate Random Samples from a Complex Distribution?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p(
x)

,  
 q

(x
|x

0)/
10

x

target (red) and scaled proposal (blue) distributions • red: probability density function p(x) of a toy
distribution on the unit interval target distribution

p(x) =

4∑
i=1

αi Be(x;αi, βi),
4∑
i=1

αi = 1, αi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1

• note we can generate samples from this p(x) how?

• suppose we cannot sample from p(x) but we can sample from some ‘simple’
distribution, given the last sample x0 (blue) proposal distribution

q(x | x0) =


U0,1(x) (independent) uniform sampling

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

p(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods on the previous slide

• how to transform proposal samples q(x | x0) to target distribution p(x) samples?
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IMetropolis-Hastings (MH) Sampling

C – configuration (of all variable values) Here C = F and p(C) = p(F | X,Y,D)

Goal: Generate a sequence of random samples {Ci} from p(C)

• setup a Markov chain with a suitable transition probability function so that it
generates the sequence

Sampling procedure
1. given Ci, generate random sample S from q(S | Ci)

q may use some information from Ci (Hastings)

2. compute acceptance ratio the evidence term drops out

a =
p(S)

p(Ci)
· q(Ci | S)

q(S | Ci)
3. generate random number u from unit-interval uniform distribution U0,1

4. if u < a then Ci+1 := S else Ci+1 := Ci

‘Programing’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q

2. write functions q(Ci | S) and q(S | Ci) that are proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• start local optimization from the best sample good trade-off between speed and accuracy
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MH Sampling Demo

sampling process (video, 7:33, 100k samples)

• blue point: current sample

• green circle: best sample so far quality = π(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution of visited
states
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Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd((x0)/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off
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IFrom MH Sampling to RANSAC

• configuration = k-tuple of inlier correspondences
the minimization will be over a discrete set of epipolar geometries proposable from 7-tuples

• data-driven proposals q:
1. select k-tuple from data independently and uniformly q(S) =

(mn
k

)−1

2. solve the minimal geometric problem 7→ geometry proposal (e.g. F from k = 7)

• independent sampling a =
p(S′)

p(Si)
· q(Si)
q(S′)

1. q uniform, then a =
p(S′)
p(Si)

MAPSAC (p(S) includes the prior)

2. q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

LO-MAPSAC
1. generate random sample Sb from q(S)

2. set initial N :=
(
mn
k

)
3. repeat N -times:

a. generate random sample S′ from q(S)
b. if p(S′) > p(Sb) then

i. Sb := S′

ii. threshold-out inliers using eT from (23)

iii. start local optimization from Sb and update Sb with the result
iv. re-estimate N from inlier counts using the standard formula for RANSAC termination, see Slide 117

4. output Sb

• see the MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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IStopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?

N ≥ log(1− P )

log(1− (1− w)s)

• (1− w)s – proposal does not contain an outlier

• 1− (1− w)s – proposal contains at least one outlier

• 1− P = all proposals contained an outlier = (1− (1−w)s)N

P – probability that at least one sample is all-inlier
w – the fraction of outliers among tentative correspondences
s – sample size (7 in 7-point algorithm)

N for s = 7
P

w 0.8 0.99

0.5 205 590
0.8 1.3·105 3.5·105

0.9 1.6·107 4.6·107

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

10
8

10
10

w (outlier fraction)

N
 (

pr
op

os
al

s)

 

 
P=0.5
P=0.8
P=0.99
P=0.9999

• N can be re-estimated using the current estimate for w (if there is LO, then after LO)
the quasi-posterior estimate for w is the average over all samples generated so far

• for w → 1 we gain nothing over the standard MH-sampler stoppig criterion
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IThe Difference between RANSAC and a General MH Sampler

RANSAC = five ideas: [Fischler & Bolles 1981]
1. proposal distribution is given by the empirical distribution of data sample:

• pairs of points define line distribution from p(n | X) (left)

• random correspondence tuples drawn uniformly propose
samples of F from a data-driven distribution q(F | X,Y )

2. stopping based on the probability of mode-hitting → Slide 117

3. standard RANSAC replaces probability maximization with consensus maximization

x1
x22eT

the eT is the inlier/outlier threshold from (23)

4. when counting inliers, do not work with all mij but with a set of tentative
correspondences that form a matching, e.g. selected by stable matching:

a. find a pair mij of greatest p1(dij) and remember it

b. remove row i and column j from the matching table (needs some bookkeeping and reindexing)

c. repeat Steps a–c until the table is empty
d. return the remembered set

5. each time a new best sample occurs, start local optimization from inliers
or LO weighted by posterior p(mij) [Chum et al. 2003]

LM optimization with Sampson error (and re-weighting)

3D Computer Vision: V. Optimization for 3D Vision (p. 118/208) R. Šára, CMP; rev. 18–Dec–2012



Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)
notice wrong matches

• the minimization os over a discrete set of epipolar geometries proposable from 7-tuples
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid

Model

• principal point known, square pixel

• explicit variables

1. two unknown vanishing points v1, v2

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

2. ‘mother lines’ passing through vanishing
points

arg min
v1,v2,Λ,L

V (v1, v2,Λ, L | S)

� = 1
� = 2 � = ;v2

v1
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Beyond RANSAC

Note that by simplification in (18) on Slide 106 we have lost constraints on M
(eg. uniqueness). One can choose a better model when not marginalizing:

p(M,F, X, Y,D) = p(X,Y |M,F)︸ ︷︷ ︸
geometric error

· p(D |M)︸ ︷︷ ︸
similarity

· p(M)︸ ︷︷ ︸
constraints

· p(F)︸ ︷︷ ︸
prior

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | X,Y,D), then S = (M,F)

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− α0) p1(eij | F), α0 p0(eij | F)

)
when p(M) uniform then always accepted, a = 1 ~ derive

• additional proposals from q(F |M) are possible, with explicit inliers Hybrid Monte Carlo
• we can compute the posterior probability of each match p(mij) by histogramming mij

over {Si}
• local optimization can then use explicit inliers and p(mij)

• error can be estimated for elements of F from {Si} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models)
if there are multiple models explaning data, RANSAC will return one of them randomly
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Part VI

3D Structure and Camera Motion

21 Introduction

22 Reconstructing Camera Systems

23 Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.
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IConstructing Cameras from the Fundamental Matrix

Given F, construct some cameras P1, P2 such that F is their fundamental matrix.

Solution See [H&Z, p. 256]
P1 =

[
I 0

]
P2 =

[
[e2]×F + e2 v

> λ e2

]
where

• v is any 3-vector, e.g. v = e1 to make the camera finite

• λ 6= 0 is a scalar,

• e2 = null(F>), i.e. e>2 F = 0

Proof

1. S is antisymmetric iff x>Sx = 0 for all x look-up the proof!

2. we have x' PX

3. a non-zero F is a f.m. iff P>2 FP1 is antisymmetric

4. if P1 =
[
I 0

]
and P2 =

[
SF e2

]
then F corresponds to (P1,P2) by Step 3

5. we can write S = [s]×
6. a suitable choice is s = e2 [Luong96]

7. for the full the class including v, see [H&Z, Sec. 9.5]
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IThe Projective Reconstruction Theorem

Observation: Unless Pi are constrained, then for any number of cameras i = 1, . . . , k

mi = PiX = PiH
−1︸ ︷︷ ︸

P′i

HX︸︷︷︸
X′

= P′iX
′

• when Pi and X are both determined from correspondences (including calibrations
Ki), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Ki known) then H is restricted to a similarity
since it must preserve the calibrations Ki [H&Z, Secs. 10.2, 10.3], [Longuet & Higgins 81]

(translation, rotation, scale)
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IReconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices Êij = [t̂ij ]×R̂ij and
calibration matrices Ki reconstruct the camera system Pi, i = 1, . . . , k

→ Slides 78 and 138 on representing E

P1 P8 P5P6Ê78P7
P4P3P2Ê12 Ê82Ê18 We construct camera pairs P̂ij ∈ R6,4 → Slide 123

P̂ij =

[
P̂i

P̂j

]
=

[
Ki

[
I 0 ]

Kj

[
R̂ij t̂ij ]

]
∈ R6,4

• singletons i, j correspond to vertices V k vertices

• pairs ij correspond to graph edges E p edges

P̂ij are in different coordinate systems but these are related by similarities P̂ijHij = Pij[
I 0

R̂ij t̂ij

]
︸ ︷︷ ︸

R6,4

[
Rij tij
0> sij

]
︸ ︷︷ ︸

Hij∈R4,4

!
=

[
Ri ti
Rj tj

]
︸ ︷︷ ︸

R6,4

(24)

• Ki removed on both sides of eq. (24)

• (24) is a linear system of 24p eqs. in 7p+ 6k unknowns 7p ∼ (tij ,Rij , sij), 6k ∼ (Ri, ti)

• each Pi appears on the right side as many times as is the degree of vertex Pi eg. P5 3-times
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Icont’d

Eq. (24) implies

[
Rij

R̂ijRij

]
=

[
Ri

Rj

] [
tij

R̂ijtij + sij t̂ij

]
=

[
ti
tj

]
• Rij and tij can be eliminated:

R̂ijRi = Rj , R̂ijti + sij t̂ij = tj , sij > 0 (25)

• note transformations that do not change these equations assuming no error in R̂ij

1. Ri 7→ RiR, 2. ti 7→ σ ti and sij 7→ σsij , 3. ti 7→ ti + Rit

• the global frame is fixed by e.g. selecting

R1 = I,
k∑
i=1

ti = 0,
1

p

∑
i,j

sij = 1 (26)

• rotation equations are decoupled from translation equations

• in principle, sij could correct the sign of t̂ij from essential matrix decomposition Slide 78

but Ri cannot correct the α sign in R̂ij

→ therefore make sure all points are in front of cameras and constrain sij > 0; see Slide 80

+ pairwise correspondences are sufficient
– suitable for well-located cameras only (dome-like configurations)

otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (25)

Task: Solve R̂ijRi = Rj , i, j ∈ V , (i, j) ∈ E where R are a 3× 3 rotation matrix each.
Per columns c = 1, 2, 3 of Rj :

R̂ijr
c
i − rcj = 0, for all i, j (27)

• fix c and denote rc =
[
rc1, r

c
2, . . . , r

c
k

]>
c-th columns of all rotation matrices stacked; rc∈R3k

• then (27) becomes D rc = 0 D ∈ R3p,3k

• 3p equations for 3k unknowns → p ≥ k in a 1-connected graph we have to fix rc1 = [1, 0, 0]

Ex: (k = p = 3)Ê23P1Ê13 Ê12P3P2 →
R̂12r

c
1 − rc2 = 0

R̂23r
c
2 − rc3 = 0

R̂13r
c
1 − rc3 = 0

→ Drc =

R̂12 −I 0

0 R̂23 −I
R̂13 0 −I

rc1rc2
rc3

 = 0

• must hold for any c

Idea: [Martinec & Pajdla CVPR 2007]

1. find the space of all rc ∈ R3k that solve (27) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)

2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD because ‖rc‖ = 1 is necessary but insufficient

R∗i = UV>, where Ri = UDV>• global world rotation is arbitrary
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Finding The Translation Component in Eq. (25)

From eqs. (25) and (26): d – rank of camera center set p – No. of pairs, k – No. of cameras

R̂ijti + sij t̂ij − tj = 0,
k∑
i=1

ti = 0,
∑
i,j

sij = p, sij > 0, ti ∈ Rd

• in rank d: d · p+ d+ 1 equations for d · k + p unknowns → p ≥ d(k−1)−1
d−1

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

p = k − 1 k = p = 3 k = p = 4 k = p > 4

k ≤ 2 for any d d ≥ 2: non-collinear ok d ≥ 3: non-planar ok d ≥ k − 1: not possible
‘

• rank is not sufficient for chains, trees, or when d = 1 (collinear cameras)

• 3-connectivity gives a sufficient rank for d = 3 (cams. in general pos. in 3D)

– s-connected graph has p ≥ d sk
2
e edges for s ≥ 2, hence p ≥ d 3k

2
e ≥ 3k

2
− 2

• 4-connectivity gives a sufficient rank for any k for d = 2 (coplanar cams)

– since p ≥ d2ke ≥ 2k − 3
– maximal planar tringulated graphs have p = 3k − 6 and give the rank for
k ≥ 3

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 128/208) R. Šára, CMP; rev. 18–Dec–2012



cont’d

Linear equations in (25) and (26) can be rewritten to

Dt = 0, t =
[
t>1 , t

>
2 , . . . , t

>
k , s12, . . . , sij , . . .

]>
for d = 3: t ∈ R3k+p, D ∈ R3p,3k+p is sparse

t∗ = arg min
t, sij>0

t>D>Dt

• this is a quadratic programming problem (constraints!)

z = zeros(3*k+p,1);
t = quadprog(D’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

• but check the rank first!
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ISolving Eq. (25) by Stepwise Gluing

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with P1, P2,

2. find essential matrix E12 and matches
M12 by the 5-point algorithm Slide 84

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. compute 3D reconstruction {Xi} per

match from M12 Slide 90

5. initialize point cloud X with {Xi}
satisfying chirality constraint zi > 0
and apical angle constraint |αi| > αT

�i
ei1(Xi;P1) eij(Xi;Pj)mijPjP2P1

Xi
mi1 mi2

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj
2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj Slide 69

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l 6= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next
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IBundle Adjustment

Given:
1. set of 3D points {Xi}pi=1

2. set of cameras {Pj}cj=1

3. fixed tentative projections mij

Required:

1. corrected 3D points {X′i}pi=1

2. corrected cameras {P′j}cj=1

Latent:

1. visibility decision vij ∈ {0, 1} per mijP1 Xi
ei1(Xi;P1) eij(Xi;Pj)mijPjP2mi1 mi2

• for simplicity, X, m are considered direct (not homogeneous)

• we have projection error eij(Xi,Pj) = xi −mi per image feature, where xi = PjXi

• for simplicity, we will work with scalar error eij = ‖eij‖
3D Computer Vision: VI. 3D Structure and Camera Motion (p. 131/208) R. Šára, CMP; rev. 18–Dec–2012



Robust Objective Function for Bundle Adjustment

Data likelihood is constructed by marginalization, as in Robust Matching Model, Slide 107

p({m} | {P}) =

p∏
pts:i=1

c∏
cams:j=1

(
(1− α0)p1(eij | Xi,Pj) + α0 p0(eij | Xi,Pj)

)
the simplified log-likelihood is (as on Slide 108)

V ({m} | {P}) = − log p({m} | {P}) =
∑
i

∑
j

− log
(
e
−
e2ij(Xi,Pj)

2σ2
1 + t

)
︸ ︷︷ ︸
ρ(e2ij(Xi,Pj)) = ν2

ij(Xi,Pj)

def
=
∑
i

∑
j

ν2
ij(Xi,Pj)

• νij is a ‘robust’ error fcn.; it is non-robust (νij = eij) when t = 0

• ρ(·) is a ‘robustification function’ we often find in M-estimation

• the Lij in Levenberg-Marquardt changes to vector

(Lij)l =
∂νij

∂θl
=

1

1 + t e
e2ij(θ)/(2σ

2
1)︸ ︷︷ ︸

small for big eij

·
1

νij(θ)
·

1

4σ2
1

·
∂e2ij(θ)

∂θl
(28)

but the LM method stays the same as on Slides 101–102
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ij
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• outliers have virtually no impact on ds in normal equations because of the red term in (28)
that scales contributions to the sums down

−
∑
i,j

L>ij νij(θ
s) =

( k∑
i,j

L>ijLij
)
ds
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ISparsity in Bundle Adjustment

We have q = 3p+ 11c parameters: θ = (X1,X2, . . . ,Xp; P1,P2, . . . ,Pc) points, cameras

We will use a running index r = 1, . . . , k, k = p · c . Then each r corresponds to some i, j

θ∗ = arg min
θ

k∑
r=1

ν2
r (θ), θs+1:=θs+ds, −

k∑
r=1

L>r νr(θ
s) =

(
k∑
r=1

L>r Lr + λ diagL>r Lr

)
ds

The block form of Lr in Levenberg-Marquardt (Slide 101) is zero except in columns i and j:
r-th error term is ν2

r = ρ(e2ij(Xi,Pj))

Lr =
i j blocks:

: Xi, 1× 3
: Pj , 1× 11

L>r Lr =

jij
i

blocks:
: Xi −Xi, 3× 3
: Xi −Pj , 3× 11
: Pj −Pj , 11× 11

k∑
r=1

L>r Lr =

3p3p 11
• “points first, then cameras” scheme

• standard bundle adjustment eliminates points and solves cameras, then back-substitutes
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ICholeski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find ds such that −
k∑
r=1

L>r νr(θ
s) =

( k∑
r=1

L>r Lr + λ diag L>r Lr
)
ds

This is a linear set of equations Ax = b, where

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse and symmetric, A−1 is dense direct matrix inversion is prohibitive

Choleski: Every symmetric positive definite matrix A can be decomposed to
A = LL>, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL> transforms the problem to solving L L>x︸ ︷︷ ︸
c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q

L>x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj
)

back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121c + 66pc ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A [Triggs et al. 1999]

• λ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.

[p,q] = size(A);
if p ~= q, error ’Matrix must be square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix must be positive definite’; end
L(i,i) = sqrt(a);

end
end
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IGauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem, Slide 124

mi ' PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L
>
r Lr is singular

Solutions

• fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

• imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. ‖Xi‖2 = 1 this way we can represent points at infinity

• using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrix can be represented by Cayley transform see next
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IMinimal Representations for Rotation

• o – rotation axis, ‖o‖ = 1, ϕ – rotation angle
• wanted: simple mapping to/from rotation matrices

1. Rodrigues’ representation

R = I + sinϕ[o]× + (1− cosϕ)[o]2×

sinϕ [o]× =
1

2
(R−R>), cosϕ =

1

2
(trR− 1)

• hiding ϕ in the vector o as in [sinϕo]× is not so easy
• Cayley tried:

2. Cayley’s representation; let a = o tan ϕ
2

, then

R = (I + [a]×)(I− [a]×)−1

[a]× = (R + I)−1(R− I)

a1 ◦ a2 =
a1 + a2 − a1 × a2

1− a>1 a2
composition of rotations R = R1R2

• no trigonometric functions
• cannot represent rotation by 180◦

• explicit composition formula

3. exponential map R = exp [ϕo]×, inverse by Rodrigues’ formula
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Minimal Representations for Other Entities

1. with the help of rotation we can minimally represent
• fundamental matrix

F = UDV>, D = diag(d, 1, 0), U,V are rotations, 3 + 1 + 3 = 7 DOF

• essential matrix

E = [−t]×R, R is rotation, ‖b‖ = 1, 3 + 2 = 5 DOF

• camera
P = K

[
R t

]
, 5 + 3 + 3 = 11 DOF

2. homography can be represented via exponential map

expA =

∞∑
k=0

1

k!
Ak

note: A0 = I

some properties

exp 0 = I, exp(−A) =
(
exp A

)−1
, exp(A + B) 6= exp(A) exp(B)

exp(A>) = (exp A)> hence if A antisymmetric then exp A orthogonal(
exp(A)

)>
= exp(A

>
) = exp(−A) =

(
exp(A)

)−1

det exp A = exp(tr A) a key to homography representation:

H = expZ such that trZ = 0, eg. Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)

, 8 DOF
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IImplementing Simple Constraints

What for?
1. fixing external frame → θi = θ0

i ‘trivial gauge’

2. representing additional knowledge → θi = θj e.g. cameras share calibration matrix K

We introduce reduced parameters θ̂:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

Then Lr in LM changes to Lr T and
everything else stays the same

�2�3�4�5T = t =�̂1 �̂2 �̂3 �̂4�1 these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t
or filter the initialization by pseudoinverse θ0 7→ T†θ0

• we need not compute derivatives for θj that correspond to all-zero rows Tj

fixed params

• constraining projective entities → minimal representations

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]
• BA resource: http://www.ics.forth.gr/~lourakis/sba/
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Stereovision
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25 Epipolar Rectification
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27 Image Likelihood
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29 Uniqueness and Ordering as Occlusion Models
30 Three-Label Dynamic Programming Algorithm
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J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.
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Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.
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What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene
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What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden

• we have no help from image interpretation here
• this is how difficult is low-level stereo we will attempt to solve
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What Are The Relative Distances? (Why?)

• a combination of lack of texture and occlusion −→ ambiguous interpretation
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Repetition: How Many Scenes Correspond to a Stereopair?

Consider the fence and the fortress worlds . . .

?

• lack of texture is a limiting case of repetition
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How Difficult Is Stereo?

• when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

• most stereo matching algorithms do not require scene understanding prior to matching

• the success of a model-free stereo matching algorithm is unlikely:

left image disparity map disparity map from WTA

WTA Matching:

• for every left-image
pixel find the most
similar right-image
pixel along the
corresponding epipolar
line [Marroquin 83]
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Why Model-Free Stereo Fails?

• lack of an occlusion model
• lack of a continuity model

⇒ structural ambiguity

left image right image

C 1

2

3

B−2

A−1

C−3

A

B

A

B

C 1

3

C−3

B−1

A−2

2

interpretation 1 interpretation 2
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But What Kind of Continuity Model Applies Here?

• continuity alone is not a sufficient model

• occlusion model is more primal

• but occlusion model alone is insufficient, since it does not solve structural ambiguity
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A Summary of Our Observations and an Outlook

• simple matching algorithms do not work

• decisions on matches are not independent due to occlusions
occlusion constraint works along epipolars only

• occlusion model alone is insufficient does not resolve the structural ambiguity

• a continuity model can resolve structural ambiguity
but continuity is piecewise due to object boundaries

• in sufficiently complex scenes the only possibility is that stereopsis uses scene
interpretation (or another-modality measurement)

Outlook:

1. represent the occlusion constraint:
• epipolar rectification
• disparity
• uniqueness as an occlusion constraint

2. represent piecewise continuity
• ordering as a weak continuity model

3. use a consistent framework
• looking for the most probable solution (MAP)
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IEpipolar Rectification

Problem: Given fundamental matrix F or camera matrices P1, P2, transform images so
that epipolar lines become horizontal with the same row coordinate. The result is a
standard stereo pair. for easier correspondence search

Procedure:
1. find a pair of rectification homographies H1 and H2.
2. warp images using H1 and H2 and modify fundamental matrix F 7→ H−>2 FH−1

1 or
cameras P1 7→ H1P1, P2 7→ H2P2.

Rectification 1 Rectification 2

Original pair

• there is a 9-parameter family of rectification homographies for binocular rectification, see next

• trinocular rectification has 9 or 6 free parameters (depends on additional constrains)

• in general, rectification is not possible for more than three cameras
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Rectification Example

Four cameras in general position

cam 1 cam 2

cam 3 cam 4

Rectified pairs

pair 1 – 2

pair 2 – 4

pair 1 – 4
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IRectification Homographies

Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗i = HiPi = HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗2, l∗1, etc:
e�2uv m�1 m�2 l�2l�1

corresponding epipolar lines must be:

1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 ⇒ l∗2 ' l∗1 ' e∗1 ×m1 = [e∗1]×m1 = F∗m1

both conditions together give the rectified fundamental matrix

F∗ '

0 0 0
0 0 −1
0 1 0


A two-step rectification procedure

1. Find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. Upgrade them to a pair of optimal rectification homographies from the class
preserving F∗.
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IGeometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2 )>[e1]× Slide 77

• we choose Q∗1 = K∗1, Q∗2 = K∗2R
∗; then

(Q∗1Q
∗
2
−1

)>[e∗1]× = (K∗1R
∗>K∗2

−1)>F∗

• we look for R∗, K∗1, K∗2 compatible with

(K∗1R
∗>K∗2

−1)>F∗ = λF∗, R∗R∗> = I, K∗1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ' P∗1C
∗
2 = K∗1b

∗ b∗ in cam. 1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗1 =

k11 k12 k13

0 f v0

0 0 1

, K∗2 =

k21 k22 k23

0 f v0

0 0 1

 (29)

• rectified cameras are in canonical position with respect to each other
not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only

• when K∗1 = K∗2 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies
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Icont’d

• rectification is a homography (per image)
⇒ rectified camera centers are equal to the original ones

• standard rectified cameras are in canonical orientation
⇒ rectified image projection planes are coplanar

• standard rectification guarantees equal rectified calibration matrices
⇒ rectified image projection planes are equal

standard rectification homographies reproject
onto a common image plane parallel to the base-
line

X

C1 C2

f

Corollary

• the standard rectified stereo pair has vanishing disparity for 3D points at infinity

• but known F alone does not give any constraints to obtain standard rectification homographies
• for that we need either of these:

1. projection matrices, or
2. calibrated cameras, or
3. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (29)
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IPrimitive Rectification

Goal: Given fundamental matrix F, derive some simple rectification homographies H1, H2

1. Let the SVD of F be UDV> = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. decompose D = A>F∗B, where (F∗ is given → Slide 151)

A =

0 0 1
0 d 0
1 0 0

, B =

0 0 1
1 0 0
0 −d 0


3. then

F = UDV> = UA>︸ ︷︷ ︸
Ĥ>2

F∗ BV>︸ ︷︷ ︸
Ĥ1

and the primitive rectification homographies are

Ĥ2 = AU>, Ĥ1 = BV>

~ P1; 1pt: derive some A, B from the admissible class

• rectification homographies do exist

• there are other primitive rectification homographies, these suggested are just simple to obtain
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IPrimitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 are orthogonal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix
2. choose a suitable common calibration matrix K, e.g.

K =

f 0 u0

0 f v0

0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies are

H1 = KĤ1, H2 = KĤ2

• we got a standard camera pair and non-negative disparity

P+
i

def
= K−1

i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P+
1 = KĤ1P+

1 = K BV>R1︸ ︷︷ ︸
R∗

[
I −C1

]
= KR∗

[
I −C1

]
H2P+

2 = KĤ2P+
2 = K AU>R2︸ ︷︷ ︸

R∗

[
I −C2

]
= KR∗

[
I −C2

]

• one can prove that BV>R1 = AU>R2 with the help of (11)

• points at infinity project to KR∗ in both images ⇒ they have zero disparity Slide 159
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IThe Degrees of Freedom in Epipolar Rectification

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay
rectified, i.e. if A2

−> F∗A1
−1 ' F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3

0 sv tv
0 q 1

 ,
uv

where s 6= 0, u0, l1, l2 6= 0, l3, r1, r2 6= 0, r3, q are 9 free parameters.

general transformation canonical type

l1, r1 horizontal scales l1 = r1 algebraic

l2, r2 horizontal skews l2 = r2 algebraic

l3, r3 horizontal shifts l3 = r3 algebraic

q common special projective geometric

sv common vertical scale geometric

tv common vertical shift algebraic

9 DoF 9− 3 = 6 DoF

• q is rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G

• sv changes the focal length
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The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification
homographies. Then H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group with
group operation (A′1, A

′
2) ◦ (A1, A2) = (A′1 A1, A

′
2 A2).

Proof:

• closure by Proposition 1

• associativity by matrix multiplication

• identity belongs to the set

• inverse element belongs to the set by A>2 F∗A1 ' F∗ ⇔ F∗ ' A−>2 F∗A−1
1
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Optimal and Non-linear Rectification

Optimal choice for the free parameters
• by minimization of residual image distortion, eg.

[Gluckman & Nayar 2001]

A∗1 = arg min
A1

∫∫
Ω

(
det J(A1Ĥ1x)− 1

)2
dx

• by minimization of image information loss
[Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion

[Pollefeys et al. 1999], [Geyer & Daniilidis 2003]

forward egomotion
rectified images, Pollefeys’ method
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IBinocular Disparity in Standard Stereo Pair

top view

m2
X z ot�2m1

x
u2 z
�2�1 C2C1 fb zu1

b2z ot�1
x

side view

yC1;2 yXm1;2 vf z

• Assumptions: single image line, standard camera pair

b = z cotα1 − z cotα2

u1 = f cotα1 u2 = f cotα2

b =
b

2
+ x− z cotα2

X = (x, z) from disparity d = u1 − u2:

z =
b f

d
, x =

b

d

u1 + u2

2
, y =

b v

d

f , d, u, v in pixels, b, x, y, z in meters

Observations
• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity

1

z

dz

dd
= −

1

d

• increasing baseline increases disparity and reduces
the error
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IUnderstanding Basic Occlusion Types

surface pt.

r3occluded

transparent

r1

r2

l

X2 X1 X
half occlusion mutual occlusion

• surface point at the intersection of rays l and r1 occludes a world point at the intersection
(l, r3) and implies the world point (l, r2) is transparent, therefore

(l, r3) and (l, r2) are excluded by (l, r1)

• in half-occlusion, every world point such as X1 or X2 is excluded by a binocularly visible
surface point ⇒ decisions on correspondences are not independent

• in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
⇒ decisions in the zone are independent on the rest

m
u
tu

a
lly

−
o
c
c
lu

d
e
d

h
a
lf
−

o
c
c
lu

d
e
d
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IMatching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

C1 C2�1 �24321 1 2 43

�1
�2

1

1 2 3 4 5

5

4

3

2

rays in epipolar plane matching table T

matching table
• rows and columns represent optical rays
• nodes: possible correspondence pairs
• full nodes: correspondences
• numerical values associated with nodes: descriptor similarities see next

3D Computer Vision: VII. Stereovision (p. 161/208) R. Šára, CMP; rev. 18–Dec–2012



Image Point Descriptors And Their Similarity

Descriptors: Tag image points by their (viewpoint-invariant) physical properties:
• texture window [Moravec 77]
• reflectance profile under a moving illuminant
• photometric ratios [Wolff & Angelopoulou 93-94]
• dual photometric stereo [Ikeuchi 87]
• polarization signature
• . . .

• similar points are more likely to match
• we will compute image similarity for all ‘match candidates’ and get the matching table

video
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IConstructing A Suitable Image Similarity

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows

in matching table T :

�2l
r

�1
in the left image: L(l)l

• a natural descriptor similarity is sim(l, r) =
‖L(l)−R(r)‖2

σ2
I (l, r)

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2

[
s2
(
L(l)

)
+ s2

(
R(r)

)]
, giving

sim(l, r) = 1−
2 s
(
L(l),R(r)

)
s2
(
L(l)

)
+ s2

(
R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
s
2
(·) is sample (co-)variance (30)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’
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cont’d

• we choose some probability distribution on
[0, 1], e.g. Beta distribution

p1

(
sim(l, r)

)
=

1

B(α, β)
ρ2(α−1)(1− ρ2)β−1

• note that uniform distribution is obtained for
α = β = 1

0 0.2 0.4 0.6 0.8 1
0
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e
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2
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,β
)

−2

0

2

4

6

8

10

ρ

−
lo
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α=10, β=1.5

• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1

• perfect similarity is ‘suspicious’ (depends on expected camera noise level)

• from now on we will work with

V1

(
sim(l, r)

)
= − log p1

(
sim(l, r)

)
(31)
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How A Scene Looks in The Filled-In Similarity Table

scene left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscrimiable

• MNCC ρ used
(α = 1.5, β = 1)

• high-correlation structures
correspond to scene objects

constant disparity

• a diagonal in correlation
table

• zero disparity is the main
diagonal

depth discontinuity

• horizontal or vertical jump
in correlation table

large image window

• better correlation

• worse occlusion localization
see next

repeated texture

• horizontal and vertical
block repetition
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Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

α

β

χ

δ

ε

ρ

γ

η

σ

ϕ

κ

λ

µ

ν

τ

• this used really large window of 25× 25 px
• errors depend on the relative contrast across the occlusion boundary
• the direction of ‘overlow’ depends on the combination of texture contrast and edge

contrast
• solutions:

1. small windows (5× 5 typically suffices)
2. eg. ‘guided filtering’ methods for computing image similarity [Hosni 2011]
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IMarroquin’s Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel

SAD(l, r) = ‖L(l)−R(r)‖1 L1 norm instead of the L2 norm in (30); unnormalized

2. represent the dissimilarity table diagonals in a compact form

d = 0

d = 1

d = 2

d = 0

d = 1

d = 2

3. use the ‘image sliding aggregation algorithm’

imr

×
∑ d
iml

win

4. threshold results by maximal allowed dissimilarity
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The Matlab Code for WTA

function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood)

% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);

% computing dissimilarity per pixel (unscaled SAD)
for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end
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WTA: Some Results

thr = 20 thr = 10

• results are bad
• false matches in textureless image regions and on repetitive structures (book shelf)
• a more restrictive threshold (thr=10) does not work as expected
• we searched the true disparity range, results get worse if the range is set wider
• chief failure reasons:

• unnormalized image dissimilarity does not work well
• no occlusion model
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INegative Log-Likelihood of Observed Images

• given matching M what is the likelihood of observed data D?
• we need the ability ‘not to match’
• matches are pairs pi = (li, ri), i = 1, . . . , n
• we will mask-out some matches by a binary label λ ∈ {e, m} excluded, matched

• labeled matching is a set

M =
{(
p1, λ(p1)

)
,
(
p2, λ(p2)

)
, . . . ,

(
pn, λ(pn)

)}
pi are matching table pairs; there are no more than n in the table T

The negative log-likelihood is then the likelihood of data D given labeled matching M

V (D |M) =
∑
pi∈M

V
(
D(pi) | λ(pi)

)
Our choice:

V
(
D(pi) | λ(pi) = e

)
= Ve penalty for unexplained data, Ve ≥ 0

V
(
D(pi) | λ(pi) = m

)
= V1

(
D(l, r)

)
probability of match pi = (l, r) from (31)

• the V
(
D(pi) | λ(pi) = e

)
could also be a non-uniform distribution but the extra effort does not pay off
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IMaximum Likelihood (ML) Matching�1
�2pjpi X(p)

Uniqueness constraint: Each point in the left image matches
at most once and vice versa.

A node set of T that follows the uniqueness constraint is called

matching in graph theory

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

The X(p) is called the X-zone of p and it defines dependencies

• ML matching will observe the uniqueness constraint only

• epipolar lines are independent wrt uniqueness constraint

• we can solve the problem per image lines i independently:

M∗ = arg min
M∈M

∑
p∈M

V
(
D(p) | λ(p)

)
= arg min

M∈M

( ∣∣M |
e
·Ve

︸ ︷︷ ︸
unexplained pixels

+
∑

p∈M : λ(p)=m

V (D(p) | λ(p) = m)

︸ ︷︷ ︸
matching likelihood proper

)

M – set of all perfect labeled matchings, |M |e – number of pairs with λ = e in M , |M |e ≤ n
perfect = every table row (column) contains exactly 1 match

• the total number of individual terms in the sum is n (which is fixed)

3D Computer Vision: VII. Stereovision (p. 171/208) R. Šára, CMP; rev. 18–Dec–2012
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I‘Programming’ The ML Matching Algorithm

• we restrict ourselves to a single (rectified) image line and reduce the problem to min-cost
perfect matching

• extend every matching table pair p ∈ T , p = (j, k) to 4 combinations
(
(j, sj), (k, sk)

)
,

sj ∈ {0, 1} and sk ∈ {0, 1} selects/rejects pixels for matching unlike λ selecting matches

• binary label mjk = 1 then means that (j, sj) matches (k, sk)

(j, 1)

(k, 1) (j, 0)

(k, 0)

Vjk = V (D(j, k) | λjk = m) Vjk = 0

Vjk =
1

2
Ve Vjk =∞

• each (j, 1) either matches some (k, 1) or it ‘matches’ (j, 0)

• each (k, 1) either matches some (j, 1) or (k, 0)

• if M is maximal in the yellow quadrant then there will be n
auxiliary ‘matches’ in the gray quadrant

• otherwise every empty line in the yellow quadrant induces an
empty column in the quadrant, the cost is 2 · 1

2Ve = Ve

• our problem becomes minimum-cost perfect matching in an (m+ n)× (m+ n) table

M+ = arg min
M

∑
j,k

Vjk ·mjk,
∑
k

mjk = 1 for every j,
∑
j

mjk = 1 for every k

• we collect our matches M∗ in the yellow quadrant
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Some Results for the ML Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff
• middle row: Ve set to error rate of 3% (and 61% density is achieved) holes are black

• bottom row: Ve set to density of 76% (and 4.3% error rate is achieved)
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Some Notes on ML Matching

• an algorithm for maximum weighted bipartite matching can be used as well, with V 7→ −V
• maximum weighted bipartite matching = maximum weighted assignment problem

by eg. Hungarian Algorithm

Idea?: This looks simpler: Run matching with Ve = 0 and then threshold the result to
remove bad matches.

Ex: Ve = 8

thresholding

8 3 9

10 6 9

7 1 8

V = 9 + 2 · 8 = 25

our ML matching

8 3 9

10 6 9

7 1 8

V = 9 + 10 + 8 = 27

• our matching gives a better cost,
also greater cardinality (density)

• the idea was not good!

thresholding our ML
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A Stronger Model Needed

• notice many small isolated errors in the ML matching
• we need a continuity model
• does human stereopsis teach us something?

Potential models for M
1. Monotonicity (ie. ordering preserved):

For all (i, j) ∈M, (k, l) ∈M, k > i⇒ l > j

Notation: (i, j) ∈M or j = M(i) – left-image pixel i matches right-image pixel j.

2. Coherence [Prazdny 85]

“the world is made of objects each occupying a well defined 3D volume”

i

k

j l

continuous

monotonic

coherent

non-monotonic non-monotonic monotonic
incoherent coherent coherent model ‘strength’
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IAn Auxiliary Construct: Cyclopean Camera

Cyclopean coordinate u from the psychophysiology of vision [Julesz 1971]

new: u = f
x

z
, known: d = f

b

z
, x =

b

d

u1 + u2

2
⇒ u =

u1 + u2

2

m0 m2 fC1 C2

X
z C

x0
zx z0m1 xmu

b2 b2

X 0
Disparity gradient

[Pollard, Mayhew, Frisby 1985]

DG =
|d− d′|
|u− u′| =

∣∣bf ( 1
z
− 1

z′

)∣∣∣∣f (x
z
− x′

z′

)∣∣ =

= b
|z′ − z|
|xz′ − x′z|

• human stereovision fails to perceive
a continuous surface when disparity
gradient exceeds a limit
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IForbidden Zone and The Ordering Constraint

Forbidden zone F (X): DG > k with boundary b (z′ − z) = ±k (xz′ − x′z)

C2
X = (x; z) X 0 = (x0; z0)m02m01C1 m2m1

F (X) • boundary: a pair of lines in the x− z plane
a degenerate conic

• point x = x′, z = z′ lies on the boundary

• coincides with optical rays for k = 2

• small k means wide F

• disparity gradient limit is exceeded when X ′ ∈ F (X)

• symmetry: X ′ ∈ F (X)⇔ X ∈ F (X ′)

• Obs: X ′ and X swap their order in the other image when X ′ ∈ F (X) k = 2

• real scenes often preserve ordering

• thin and close objects violate ordering see next
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Ordering and Critical Distance κ

C1
X4

C21−2−4−3 1−4−2−3

�
F (X4)X2X1 X3 • object (thick):

• black – binocularly visible
• yellow – half-occluded
• red – ordering violated wrt foreground

• solid red zone of depth κ:

• spatial points visible in neither camera
• bounded by the foreground object

Ordering is violated iff both Xi, Xj s.t.
Xi ∈ F (Xj) are visible in both cameras.

eg. X2, X4

• ordering is preserved in scenes where critical
distances κ are not exceeded, ie. when ‘the
red background hides in the solid red zone’

Thinner objects and/or wider baseline
require flatter scenes to preserve ordering.
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IThe X-zone and the F -zone in Matching Table T

• these are necessary and sufficient conditions for uniqueness and monotonicity

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}Ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M, i 6= j : pj /∈ X(pi).

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈M : pj /∈ F (pi).

• ordering constraint: matched points form a
monotonic set in both images

• ordering is a powerful constraint:
monotonic matchings O(4N )� O(N !) all matchings

in N ×N table

~ 2: how many are there maximal monotonic matchings?

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model
and partly also an occlusion model
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IUnderstanding Matching Table

• this is essentially the picture from Slide 178

right image pixel index

le
ft

 i
m

a
g

e
 p

ix
e

l 
in

d
e

x

depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J

d
k

dk
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Bayesian Decision Task for Matching

Idea: L(d,M) – decision cost (loss) d – our decision (matching) M – true correspondences

Choice: L(d,M) :

{
if d = M then L(d,M) = 0

if d 6= M then L(d,M) = 1
i.e. L(d,M) = [d 6= M ]

Bayesian Loss

L(d | D) =
∑
M∈M

p(M | D)L(d,M)

M – the set of all matchings D = {IL, IR} – data

Solution for the best decision d

d∗ = arg min
d

∑
M∈M

p(M | D) (1− [d = M ]) = arg min
d

(
1−

∑
M∈M

p(M | D)[d = M ]

)
=

= arg max
d

∑
M∈M

p(M | D) [d = M ] = arg max
M

p(M | D) =

= arg min
M

(− log p(M | D))
def
= arg min

M
V (M | D) = arg min

M∈M

(
V (D |M)︸ ︷︷ ︸

likelihood

+V (M)︸ ︷︷ ︸
prior

)

• this is Maximum Aposteriori Probability (MAP) estimate
• other loss functions result in different solutions
• our choice of L(d,M) looks oversimple but it results in algorithmically tractable

problems
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IConstructing The Prior Model Term V (M)

• the prior V (M) should capture
1. uniqueness
2. ordering
3. coherence

M∗ = arg min
M∈M

(
V (D |M) + V (M)

)

• we need a suitable representation to encode V (M)
• Every p = (l, r) of the |I| × |J | matching table T (except for the last row and column)

receives two succesors (l + 1, r) and (l, r + 1)rl p
t

s s
t

• this gives an acyclic directed graph G optimal paths in acyclic graphs are an easier problem
• the set of s-t paths starting in s and ending in t will represent the set of matchings
• all such s-t paths have equal length n = |I|+ |J | − 1

all prospective matchings will have the same number of terms in V (D |M) and in V (M)
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Endowing s-t Paths with Useful Properties

• introduce node labels Λ = {m, eL, eR} matched, left-excluded, right-excluded

• s-t path neighbors are allowed only some label combinations:

eLm eL eL

eL

m

eR m

eL

eR

meR
eR

eR

eLeR

Observations
• no two neighbors have label m

• in each labeled s-t path there is at most one transition:
1. m→ eL or eR → m per matching table row,
2. m→ eR or eL → m per matching table column

• pairs labeled m on every s-t path satisfy uniqueness and ordering constraints

• transitions eL → eR or eR → eL along an s-t path allow skipping a contiguous segment in
either or in both images this models half occlusion and mutual occlusion

• disparity change is the number of edges
eL eL

or
eR eR

• a given monotonic matching can be traversed by one or more s-t paths

Labeled s-t paths

P =
(
(p1, λ1), (p2, λ2), . . . , (pn, λn)

) �1 p2 p3p1 pn�n
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The Structure of The Prior Model V (P ) Gives a MC Recognition Problem

ideas:

• we choose energy of path P dependent on its labeling only

• we choose additive penalty per transition eL → eL, eR → eR, and eL → eR, eR → eL

• no penalty for m→ eL, m→ eR

Employing Markovianity
�1 p2 p3p1 pn�n

V (P ) = V (λn, λn−1, . . . , λ1) = V (λn | λn−1, . . . , λ1) + V (λn−1, . . . , λ1) =

= V (λn | λn−1) + V (λn−1, . . . , λ1) = V (λ1) +

n∑
i=2

V (λi | λi−1)

The matching problem is then a decision over labeled s-t paths P ∈ P:

P ∗ = arg min
P∈P

{
Vp1(D | λ1) + V (λ1) +

n∑
i=2

[
Vpi(D | λi) + V (λi | λi−1)

]}
(32)

• the data likelihood term Vpi (D | λi) is the same as in (31) on Slide 164

• note that one can add/subtract a fixed term from any of the functions Vp, V in (32)
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A Choice of V (λi | λi−1)

• A natural requirement: symmetry of probability p(λi, λi−1) = e−V (λi, λi−1)

λi
p(λi, λi−1)

m eL eR

m 0 p(m, e) p(m, e)

λi−1 eL p(m, e) p(e, e) p(eL, eR)

eR p(m, e) p(eL, eR) p(e, e)

3 DOF, 1 constraint ⇒ 2 parameters

α1 =
p(eL, eR)

p(e, e)
0 ≤ α1 ≤ 1

α2 =
p(m, e)

p(e, e)
0 < α2 ≤ 1 + α1

• Result for V (λi | λi−1) (after subtracting common terms):

λi
V (λi | λi−1)

m eL eR

m ∞ 0 0

λi−1 eL ln 1+α1+α2
2α2

ln 1+α1+α2
2

ln 1+α1+α2
2α1

eR ln 1+α1+α2
2α2

ln 1+α1+α2
2α1

ln 1+α1+α2
2

by marginalization:

V (m) = ln
1 + α1 + α2

2α2

V (eL) = V (eR) = 0

parameters
• α1 – likelihood of mutual occlusion (α1 = 0 forbids mutual occlusion)

• α2 – likelihood of irregularity (α2 → 0 helps suppress small objects and holes)

• α, β – similarity model parameters (see V1

(
D(l, r)

)
on Slide 164)

• Ve – penalty for disregarded data (see V (D(pi) | λ(pi) = e) on Slide 170)
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‘Programming’ the Matching Algorithm: 3LDP

• given G, construct directed graph G+

• triple of vertices per node of s-t path representing three hypotheses λ(p) for λ ∈ Λ
• arcs have costs V (λi | λi−1), nodes have costs V (D | λi)
• orientation of G+ is inherited from the orientation of s-t paths
• we converted the shortest labeled-path problem to ordinary shortest path problem

p

s

t

l

r

G

(l − 1, r)

(l, r − 1)

(l + 1, r)

p = (l, r) (l, r + 1)

G+

eLeLeL

eL

eR

eR

eR

eL

m mm

m

m

eReR

neighborhood of p; strong blue edges are of zero penalty
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cont’d: Dynamic Programming on G+

• G+ is a topologically ordered directed graph

• we can use dynamic programming on G+

t

p2

s

p1

q

V ∗s:q(λq) = min
z∈{p1,p2},λz∈Λ

{
V ∗s:z(λz) + Vz(D | λz) + V (λq | λz)

}
V ∗s:q(λq) – cost of min-path from s to label λq at node q

• complexity is O(|I| · |J |), ie. stereo matching on N ×N images needs O(N3) time

• speedup by limiting the range in which the disparities d = l − r are allowed to vary
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Implementation of 3LDP in a few lines of code. . .

#define clamp(x, mi, ma) ((x) < (mi) ? (mi) : ((x) > (ma) ? (ma) : (x)))

#define MAXi(tab,j) clamp((j)+(tab).drange[1], (tab).beg[0], (tab).end[0])

#define MINi(tab,j) clamp((j)+(tab).drange[0], (tab).beg[0], (tab).end[0])

#define ARG_MIN2(Ca, La, C0, L0, C1, L1) if ((C0) < (C1)) { Ca = C0; La = L0; } else { Ca = C1; La = L1; }

#define ARG_MIN3(Ca, La, C0, L0, C1, L1, C2, L2) \

if ( (C0) <= MIN(C1, C2) ) { Ca = C0; La = L0; } else if ( (C1) < MIN(C0, C2) ) { Ca = C1; La = L1; } else { Ca = C2; La = L2; }

void DP3LForward(MatchingTableT tab) {

int i = tab.beg[0]; int j = tab.beg[1];

C_m[j][i-1] = C_m[j-1][i] = MAXDOUBLE;

C_oL[j][i-1] = C_oR[j-1][i] = 0.0;

C_oL[j-1][i] = C_oR[j][i-1] = -penalty[0];

for(j = tab.beg[1]; j <= tab.end[1]; j++)

for(i = MINi(tab,j); i <= MAXi(tab,j); i++) {

ARG_MIN2(C_m[j][i], P_m[j][i],

C_oR[j-1][i] + penalty[2], lbl_oR,

C_oL[j][i-1] + penalty[2], lbl_oL);

C_m[j][i] += 1.0 - tab.MNCC[j][i];

ARG_MIN3(C_oL[j][i], P_oL[j][i], C_m[j-1][i], lbl_m,

C_oL[j-1][i] + penalty[0], lbl_oL,

C_oR[j-1][i] + penalty[1], lbl_oR);

C_oL[j][i] += penalty[3];

ARG_MIN3(C_oR[j][i], P_oR[j][i], C_m[j][i-1], lbl_m,

C_oR[j][i-1] + penalty[0], lbl_oR,

C_oL[j][i-1] + penalty[1], lbl_oL);

C_oR[j][i] += penalty[3];

}

}

void DP3LReverse(double *D, MatchingTableT tab) {

int i,j; labelT La; double Ca;

for(i=0; i<nl; i++) D[i] = nan; /* not-a-number */

i = tab.end[0]; j = tab.end[1];

ARG_MIN3(Ca, La, C_m[j][i], lbl_m,

C_oL[j][i], lbl_oL, C_oR[j][i], lbl_oR);

while (i >= tab.beg[0] && j >= tab.beg[1] && La > 0)

switch (La) {

case lbl_m: D[i] = i-j;

switch (La = P_m[j][i]) {

case lbl_oL: i--; break;

case lbl_oR: j--; break;

default: Error(...);

} break;

case lbl_oL: La = P_oL[j][i]; j--; break;

case lbl_oR: La = P_oR[j][i]; i--; break;

default: Error(...);

}

}
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Some Results: AppleTree

left image right image ML (slide 172)

3LDP (slide 186) näıve DP [Cox et al. 1992] stable segmented 3LDP (see [SP])

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

left image right image ML (slide 172)

3LDP (slide 186) näıve DP stable segmented 3LDP

• näıve DP does not model mutual occlusion

• but even 3LDP has errors in mutually occluded region

• stable segmented 3LDP has few errors in mutually occluded region since it uses a weak form
of ‘image understanding’
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Algorithm Comparison

Winner-Take-All (WTA)
• the ur-algorithm [Marroquin 83] no model

• dense disparity map

• O(N3) algorithm, simple but it rarely works

Maximum Likelihood (ML)

• semi-dense disparity map

• many small isolated errors

• models basic occlusion

• O(N3 log(NV )) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map

• models occlusion in flat, piecewise continuos
scenes

• has ‘illusions’ if ordering does not hold

• O(N3) algorithm

Stable Segmented 3LDP

• better (fewer errors at any given density)

• O(N3 logN) algorithm

• requires image segmentation itself a difficult task
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ROC curves and their average error rate bounds

 

 

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the
density/accuracy tradeoff

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)
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Part VIII

Shape from Reflectance

31 Reflectance Models (Microscopic Phenomena)

32 Photometric Stereo

33 Image Events Linked to Shape (Macroscopic Phenomena)

mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice
Hall 2003. Chap. 5

additional references

R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451, July 1988.

P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision

and Pattern Recognition, pp. 1060–1066, 1997.
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IBasic Surface Reflectance Mechanismsl n vL
macroscopic scale

n = 1:5 : : :2:3
refration index n = 1optial boundary

air
partiles in medium

microscopic scale

• reflection on (rough) optical boundary
• masking and shadowing
• interreflection

• refraction into the body
• subsurface scattering
• refraction into the air
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IParametric Reflectance Models

Image intensity (measurement) at pixel m given by surface reflectance function R

J(m) = η fi,r(θi, φi; θr, φr) ·
Φe

4π‖L− x‖2︸ ︷︷ ︸
σ

n>l = R(n), l =
L− x

‖L− x‖

η – sensor sensitivity for simplicity, we select η = 2π

fi,r() – bidirectional reflectance distribution function (BRDF)

[fi,r()] = sr−1 how much of irradiance in Wm−2 is
redistributed per solid angle element

L – point light source position

Φe – radiant power of the light source, [Φe] = W

n – surface normal

σ – irradiance of a surfel orthogonal to incident light
direction

Isotropic (Lambertian) reflection [Lambert 1760]

no optical boundary

fi,r(θi, φi; θr, φr) =
ρ

2π
, ρ – albedo

J(m) = σρ cos θi = σρn>l

l n l+ v
x�i �r

�i �r�
L

vV
pixel projected onto surface
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IPhotometric Stereo

Lambertian model (light j ∈ {1, 2, 3}, pixel i ∈ {1, . . . , n})

Jji = (σj lj)
>(ρi ni) = s>j bi

bi – scaled normals, sj – scaled lights

3 independent scaled lights and n scaled normals, one per pixel
(in n pixels); can be stacked in matrices:J11 J12

J21 J22

J31 J32

 =

s>1 b1 s>1 b2

s>2 b1 s>2 b2

s>3 b1 s>3 b2

 =

s>1s>2
s>3

 [b1 b2

]
n = 2 pixels, 3 lights

in general, stacked per columns:

S = [ s1, s2, s3 ] ∈ R3,3 B = [b1, b2, . . . , bn] ∈ R3,n

nilj vi�i
pixel indexing i:

1 2 3 4

8765

9 10 11 12

Solution to Photometric Stereo

J = S>B ⇒ B = S−>J J ∈ R3,n

ρi = ‖bi‖ albedo map, ni =
1

ρi
bi needle map
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Photometric Stereo: Plaster Cast Example

input images (known lights) needle & albedo maps

We have: 1. shape (surface normals), 2. intrinsic texture (albedo)

The shape can be represented as unit normal vectors n or as a gradient field (p, q):

n(u, v) =
(
n1(u, v), n2(u, v), n3(u, v)

)
,

∂z(u, v)

∂u

def
= zu(u, v) = p(u, v) = ± n1(u, v)

2n3(u, v)2 − 1
,

∂z(u, v)

∂v

def
= zv(u, v) = q(u, v) = ± n2(u, v)

2n3(u, v)2 − 1
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IThe Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields p(u, v), q(u, v), find height function z(u, v) such that zu is
close to p and zv is close to q in the sense of a functional norm.

z∗ = arg min
z
Q(z), Q(z) =

∫∫
|zu(u, v)− p(u, v)|2 + |zv(u, v)− q(u, v)|2 du dv

In the Fourier domain this can be written as F(z;ω) = 1
2π

∫∫
z(u, v)e−j(uωu+vωv) du dv

Q(z) =

∫∫
|jωu F(z;ω)−F(p;ω)|2 + |jωv F(z;ω)−F(q;ω)|2︸ ︷︷ ︸

A(F(z;ω))

dω, ω = (ωu, ωv)

and its minimiser is from vanishing formal derivative of A(F(z;ω)) wrt F(z;ω)

[Frankot & Chellappa 1988]

F(z;ω) = − jωu|ω|2 F(p;ω)− jωv
|ω|2 F(q;ω)

[m,n] = size(p);
Wu = fft2(fftshift([-1,0,1]/2),m,n); % discrete differential operator
Wv = fft2(fftshift([-1;0;1]/2),m,n);
Z = -(Wu.*fft2(p) + Wv.*fft2(q))./(abs(Wu).^2 + abs(Wv).^2 + eps);
z = real(ifft2(Z));
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Photometric Stereo: Examples

3 input images surface

3 input images surface

• integrated by the FC algorithm from Slide 197

• bias due to interreflections can be removed [Drew & Funt, JOSA-A 1992]
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IIntegrability of a Vector Field

• not every vector field p(u, v), q(u, v) is integrable (born by a surface z(u, v))
• integrability constraint

pv(u, v) = qu(u, v)

• this is because a regular surface has rot∇z(u, v) = 0 irrotational gradient field

zuv(u, v) = zvu(u, v)

• noise causes non-integrability
• the FC algorithm finds the closest integrable surface

integrable non-integrable non-integrable (noisy)
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Optimal Light Configurations

For n lights S the error ∆b = S−>∆J in normal b due to error ∆J in image is

ε(S) = E
[
∆b>∆b

]
= E

[
∆J>(S>S)−1∆J

]
= σ2 tr

[
(SS>)−1] ≥ 9σ2

n
.

assuming pixel-independent normal camera noise ∆Ji ∼ N(0, σ)

The error ε is minimum if [Drbohlav & Chantler 2005]

SS> =
n

3
I, where S = [s1, s2, . . . , sn]

• either n ≥ 3 equidistant and equiradiant lights on a circle of uniform slant of
arctan

√
2 ≈ 54.74◦

• n− 1 lights in this configuration plus a light parallel to the sum
∑n−1
i=1 si

• or light matrix S is a concatenation of optimal solutions (each of ≥ 3 lights)
eg. 3 optimally placed (s1, s2, s3) + 3 lights (s4, s5, s6) = (s1, s2, s3) + α rotated by angle α around nn 54:74Æ
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Uncalibrated Photometric Stereo

Factorization J = S>B [Hayakawa94]

LS solution by SVD decomposition of J = UDV>

S = D1:3U> scaled pseudo-lights

B = (V1:3)> scaled pseudo-normals V1:3 are columns 1–3

Ambiguity J = S>B = S>A−1︸ ︷︷ ︸
S̄>

AB︸ ︷︷ ︸
B̄

, A ∈ GL(3) [Koenderink94]

information ambiguity

3+ normals B̄ known λI (identity 3× 3 mtx) B̄ = AB ⇒ A B is measured

uniform albedo λR (orthogonal 3× 3 mtx) 6 points: [Drew92]

‖Abi‖ = 1 ⇒ b>i A>Abi = 1 ⇒ A>A ⇒ A up to rot.
(Choleski)

equal light intensity λR ‖sjA−1‖ = 1 ⇒ A up to rot. [Hayakawa94]

integrable normals pv = qu
for n ∼ (p, q, 1)

 λ 0 µ
0 λ ν
0 0 τ

 generalized bas-relief ambiguity
[Yuille99, Fan97, Belhumeur99]

uniform albedo
and integrability

λI

integrability and
2+ specular pts

λI [Drbohlav & Chantler, ICCV 2005]
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IGeneralized Bas Relief Ambiguity (GBR)

GBR maps surface z′(u, v) = λz(u, v) + µu+ ν v, i.e. it maps normals to n′ = Gn, where

G =

λ 0 −µ
0 λ −ν
0 0 1


Obs: If normals change n′ = Gn and lights change l′ = G−> l then Lambertian shading does not
change:

n′
>

l′ = (n>G>)(G−>l) = n>l

nl l0
f(t) 0:6f(t) + 0:5t

t n0
Reproduced from [Belhumeur et al. 1997]

Obs: Shadow boundaries of surface S illuminated by light l are identical to those of surface S′
transformed by GBR G and illuminated by light l′ = G−>l

weak assumptions [Belhumeur et al. 1997]
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IA Quick Glance at the Classical Differential Geometry of Surfaces

Darboux frame

n
n+ dn

ds s

tθ
κθ = t>θ

dn

ds
normal curvature, direction θ

κ1, κ2 principal curvatures

K = κ1 · κ2 Gaussian curvature

H = κ1 + κ2 mean curvature

κθ = κ1 cos2 θ + κ2 sin2 θ

umbilical elliptical parabolic hyperbolic
convex κ1 = κ2 > 0 κ1 > 0, κ2 > 0 κ1 > 0, κ2 = 0 κ1 > 0, κ2 < 0

concave κ1 < 0, κ2 < 0

the transition elliptic → parabolic → hyperbolic occurs at parabolic lines

non-umbilical surface like a torus
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IOccluding Contour Structure

smooth self-occlusion contour (back)
not smooth contour (mane)

• surface curves are tangent to smooth
self-occlusion contour

• isophotes are surface curves ⇒ their
density approaches infinity on smooth
self-occlusion contour

vn t�rI
n = Q>t optical plane normal

K = κs κt → sign(K) = sign(κt)

κs > 0 – curvature in the direction of sight
κt – occluding contour curvature

xst = 0 since xs ' v [Koenderink 84]

• this is a basis for
shape from occluding contour
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Self-Shadow Contour Structurel
• loci where occluding and self-shadow

meet: the projection of light direction
vector to image plane is tangent to the
contour there
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Isophotes on Simple Lambertian Surfaces

n

l

l

n n

l

Surface is parameterized by: σ – slant, τ – tilt, where n>l = cosσ
• isophotes – green

• apex – where n ' l

• isophotes parallel to rulings on developable surfaces

• illuminant on cylinder axis: constant reflectance cylindrical part illumination w/o shading

• in general: isophotes are parallel to zero-curvature principal direction
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Isophotes on a Complex Surface

shaded Lambertian surface isophotes w/ approximate parabolic curves

singular image points
• Lambertian apex: move with light, n = l (T1)

• extrema and saddles on parabolic lines: move along parabolic lines (T2)

• planar points: do not move (not shown)

• specular points: move with light and/or viewer but slower (not shown)

[Koenderink & van Doorn 1980]
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The Crater Illusion
Ambiguity in Local Shading and The Human Vision Preference

Apollo 17 landing site (Taurus-Littrow); courtesy of NASA

Shading at Lambertian apex:

K2 = det
(
HG−1

)
2H2 −K = −

1

2
tr
(
HG−1

)
H =

[
Iuu Iuv
Iuv Ivv

]
image Hessian

G =

[
1 + l21 l1l2
l1l2 1 + l22

]
from light dir. l = (l1, l2, l3)

bottom: crater-like surface
top: surface illuminated from lower-left

and top-right

Apex: Up to 4 solutions for surface
principal curvatures:

convex/concave × elliptic/hyperbolic
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Thank You
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Camera 0, im. 6: Reprojection errors (16x)
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line in R2: εL(x̂) = 0

linear function over R2: εL(x̂)
ε(xi)

x̂i

VC

xi

R2

quadratic algebraic error ε(x̂)

e∗(x̂i,xi)
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 18–Dec–2012
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 18–Dec–2012
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