

OPPA European Social Fund Prague & EU: We invest in your future.

Frequent subsequences, episodal rules

Jiří Kléma

Department of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

Outline

Motivation for frequent subsequence search

- applications, variance in needs and sequence definitions,
- what do we already know?
 - connection to itemsets, what changed?
 - directed sequences, without noise/gaps and time,
- why is it sometimes more difficult?
 - undirected sequences a their canonical form,
 - (complete) transactional representation and connected definitions,
 - GSP algorithm (Agrawal's APRIORI generalization),
 - other algorithms FreeSpan, PrefixSpan,
- summary
 - categorization of methods according to sequence and pattern types,
- STULONG a case study.

motif discovery

- searches for short sequential patterns in a file of unaligned DNA or protein sequences,
- searches for **discriminative** patterns (characteristics)
 - * typical for one sequence class, unusual in the other classes,
 - * this pattern could relate with the biological/regulation function of the (protein) class,
- transcription factor interacts with DNA through a particular motif,
- frequent subsequence search is a subtask,
- event = nucleotide, string (no time), undirected DNA.

Frequent subsequences – example 2: insurance

- event is signing of a insurance contract of a certain type,
- several events may occur concurrently,
- sequence is a chronological series of events,
- analogy: directed acyclic graph, the edge length equals time between events,
- interesting patterns: typical contract sequences (signed in a reasonable time span).

Meyer: Sequence Mining in Marketing.

Frequent subsequences – similarity to frequent itemsets

- first of all, similarity in task representation,
- the process can be intrinsically identical, but we ask different questions
 - itemsets: which insurance contracts people arrange concurrently,
 - sequences: how people arrange insurance contracts in their course of life,
- transaction representation still formally possible and helpful (universal)
 - more factors must be concerned and stored.

Transaction	Items (insurance type)	Customer	Date (time)	Items (insurance type)
t_1	home, life	c_1	5.10.2003	home, life
t_2	car, home	c_1	8.1.2005	travel
t_3	pension, life	c_1	3.8.2010	car, pension
t_4	travel	c_2	10.10.2003	car, home
t_5	pension, life	c_2	20.11.2006	pension

Frequent subsequences – similarity to frequent itemsets

- secondly, similarity in terms of task solution,
- APRIORI property can easily be generalized for sequences:
 Each subsequence of a frequent sequence is frequent.
- the anti-monotone property can also be transformed to monotone one:
 No supersequence of an infrequent sequence can be frequent.
- the model APRIORI-like algorithm for sequential data
 - a direct analogy of the APRIORI algorithm for itemsets,
 - the basic operations (informal a reminder only):
 - 1. search for trivial frequent sequences (typically of the length 0 or 1),
 - 2. generate candidate sequences with the length incremented by 1,
 - 3. check for their actual support in the transaction database,
 - 4. reduce the candidate sequence set
 - * a subset of frequent sequences of the given length is created,
 - 5. until the frequent sequence set non-empty go to the step 2.

Frequent substrings – a trivial APRIORI application

a string

- a directed sequence, an equidistant step, exactly one item per transaction,
- events given by a symbol alphabet, a pattern is an ordered list of **neighboring** events,
- $-\langle a_1 \dots a_m \rangle$ is a subsequence of $\langle b_1 \dots b_n \rangle$ iff $\exists i \ a_1 = b_i \wedge \dots \wedge a_m = b_{i+m}$.

• Example: DNA sequence
$$(n = 20, A = \{a, g, t\})$$

ttgaaagggggttgaatgtt s>10%, s=f/(n-m+1)

```
ttgaaa<mark>gggggt</mark>tgaatgtt s<sub>ggg</sub>=3/18, s<sub>ttgaa</sub>=2/16
```

i	C_i	L_i
1	${a}, {g}, {t}$	${a}, {g}, {t}$
2	(9 patterns)	${aa}, {ga}, {gg}, {gg}, {gt}, {tg}, {tt}$
3	$\{aaa\}, \{gaa\}, \{gga\}, \dots (12 \text{ patterns})$	${gaa}, {ggg}, {gtt}, {tga}, {ttg}$
4	$\{gggg\}, \{gttg\}, \{tgaa\}, \{ttga\}$	$\{gggg\}, \{tgaa\}, \{ttga\}$
5	{ttgaa}	{ttgaa}

- how to check for support quickly, i.e. how to find all subsequence occurrences in a sequence?
 - algorithms Knuth-Morris-Pratt or Boyer-Moore.

Canonical form for sequences

• a canonical (standard) code word

- a unique sequence representation, based on the symbol alphabet ordering,
- a usual (not necessary) choice:
 - \ast the lexicographical symbol alphabet ordering $a < b < c < \ldots$,
 - * the lexicographically smallest (smaller) code word taken as canonical (bac < cab),
- a directed sequence
 - the only interpretation (way of reading), each (sub)sequence is a canonical code word,
- an undirected sequence
 - two possible ways of reading = two alternative code words,
 - the routine application of lexicographical ordering is not possible,
 - **prefix property** in a space of canonical code words does not hold:
 - * every prefix of a canonical word is a canonical word itself,

sequence	canonical form	prefix	canonical form
bab	bab	ba	ab
cabd	cabd	cab	bac

- we have to find a different way of forming code words.

Canonical form for undirected sequences

• The canonical code words with the prefix property will be formed as follows

- even and odd length words will be handled separately,
- code words are started in the middle of sequence,

	even length	odd length
sequence	$a_m a_{m-1} \ldots a_2 a_1 b_1 b_2 \ldots b_{m-1} b_m$	$a_m a_{m-1} \ldots a_2 a_1 a_0 b_1 b_2 \ldots b_{m-1} b_m$
code word	$a_1 b_1 a_2 b_2 \ldots a_{m-1} b_{m-1} a_m b_m$	$a_0 a_1 b_1 a_2 b_2 \ldots a_{m-1} b_{m-1} a_m b_m$
code word	$b_1 a_1 b_2 a_2 \ldots b_{m-1} a_{m-1} b_m a_m$	$a_0 b_1 a_1 b_2 a_2 \ldots b_{m-1} a_{m-1} b_m a_m$

- canonical is the lexicographically smaller code word in the table,
- the sequence is **extended** by adding
 - a pair $a_{m+1} b_{m+1}$ or $b_{m+1} a_{m+1}$,
 - one item at the front and one item at the end.

an example

even length			odd length			
sequence	code words		sequence	code words		
at	at	ta	ule	lue	leu	
data	atda	taad	rules	luers	leusr	

Prefix property proof for the new representation by contradiction

- 1. suppose the prefix property does not hold,
- 2. then there exists a canonical code word $w_m = a_1 \ b_1 \ a_2 \ b_2 \ \ldots \ a_{m-1} \ b_{m-1} \ a_m \ b_m$,
- 3. whose prefix $w_{m-1} = a_1 \ b_1 \ a_2 \ b_2 \ \ldots \ a_{m-1} \ b_{m-1}$ is not a canonical code word,
- 4. as a consequence we have $w_m < v_m$, where $v_m = b_1 a_1 b_2 a_2 \ldots b_{m-1} a_{m-1} b_m a_m$,
- 5. and $v_{m-1} < w_{m-1}$, where $v_{m-1} = b_1 a_1 b_2 a_2 \ldots b_{m-1} a_{m-1}$,
- 6. however $v_{m-1} < w_{m-1} \Rightarrow v_m < w_m$
 - because v_{m-1} is a prefix of v_m and w_{m-1} is a prefix of w_m ,
- 7. $v_m < w_m$ from the step 6 contradicts $w_m < v_m$ from the step 4 \Box .

Canonical form for undirected sequences – efficiency

- two possible code words can be created and compared in $\mathcal{O}(m)$,
- an additional symmetry flag introduced for each sequence enables the same in $\mathcal{O}(1)$

$$s_m = \bigwedge_{i=1}^m (a_i = b_i)$$

• the symmetry flag is maintained in constant time with

$$s_{m+1} = s_m \land (a_{m+1} = b_{m+1})$$

sequence extension is permissible when the flag:

$$-$$
 if $s_m =$ true, it must be $a_{m+1} \leq b_{m+1}$,

- if s_m = false, any relation between a_{m+1} and b_{m+1} is possible.
- sequences and symmetry flags at the beginning
 - even length: an empty sequence, $s_0 = 1$,
 - odd length: all frequent alphabet symbols, $s_1 = 1$,
- the procedure guarantees exclusively the canonical sequence extensions.

Frequent subsequences – APRIORI application to undirected sequences

consider undirected sequences, otherwise the formalization as yet

$$- \langle a_1 \dots a_m \rangle \text{ is a subsequence of } \langle b_1 \dots b_n \rangle \text{ if:} \\ \exists i \ a_1 = b_i \wedge \dots \wedge a_m = b_{i+m} \text{, or} \\ \exists i \ a_1 = b_{i+m} \wedge \dots \wedge a_m = b_i.$$

• Example: DNA sequence
$$(n = 20, A = \{a, g, t\})$$

i	C_i	L_i
0	{}	{}
1	${a}, {g}, {t}$	$\{a\}, \{g\}, \{t\}$
2	$\{aa\}, \{ag\}, \{at\}, \{gg\}, \{gt\}, \{tt\}$	${aa}, {gg}, {gt}, {tt}$
3	$\{aaa\}, \{aag\}, \{aat\}, \{gag\}, \{gat\}, \{tat\}, \{aga\}, \{agg\}, \{agt\}, $	$\{ggg\}, \{gtt\}$
	$\{ggg\}, \{ggt\}, \{tgt\}, \{ata\}, \{atg\}, {att}, {gtg}, {gtt}, {ttt}$	
4	{aaaa}, {aaag}, {aaat}, {gaag}, {gaat}, {taat},	$\{gggg\}$
	{agta}, {agtg}, {ggta}, {agtt}, {tgta}, {ggtg},	
	{ggtt}, {tgtg}, in total 27 (1) patterns	

A generalized subsequence definition in transactional representation

• Items:
$$I = \{i_1, i_2, \dots, i_m\}$$
,

- itemsets: $(x_1, x_2, \ldots, x_k) \subseteq I$, $k \ge 1$, $x_i \in I$,
- sequences: $\langle s_1, \ldots, s_n \rangle$, $s_i = (x_1, x_2, \ldots, x_k) \subseteq I$, $s_i \neq \emptyset$, $x_1 < x_2 < \ldots < x_k$,
 - an ordered list of elements, elements = itemsets,
 - the canonical representation: lexicographical ordering of items in each itemset,
 - example: $\langle a(abc)(ac)d(cf)\rangle$, a simplification of the form: $(x_i) \sim x_i$,
- the sequence length *l*
 - given by the number of item instances (occurrences) in sequence,
 - -l-sequence contains exactly l item instances,
 - ex.: $\langle a(abc)(ac)d(cf)\rangle$ is a 9-sequence,
- α is a subsequence of β , β is a supersequence of α : $\alpha \sqsubseteq \beta$

$$egin{aligned} &-lpha = \langle a_1, \dots, a_n
angle, \ eta = \langle b_1, \dots, b_m
angle, \ \exists 1 \leq j_1 < \dots < j_n \leq m, orall i = 1 \dots n : a_i \subseteq b_{j_i}, \ - ext{ example: } \langle a(bc)df
angle \sqsubseteq \langle a(abc)(ac)d(cf)
angle, \ \langle d(ab)
angle \nvdash \langle a(abc)(ac)d(cf)
angle, \end{aligned}$$

- a sequence database: $S = \{ \langle sid_1, s_1 \rangle \dots, \langle sid_k, s_k \rangle \}$
 - a set of ordered pairs a sequence identifier and a sequence.

Subsequence search in transaction representation

- ${\scriptstyle \bullet}$ Support of α sequence in the database S
 - the number of sequences $s \in S$ satisfying: $\alpha \sqsubseteq s$,
- Subsequence search in transaction representation, task definition
 - input: S a s_{min} minimum support,
 - output: the complete set of frequent sequential patterns
 - * all the subsequences with or above the threshold frequency.

ld	Sequence
10	$\langle a(abc)(ac)d(cf)\rangle$
20	$\langle (ad)c(bc)(ae)\rangle$
30	$\langle (ef)(ab)(df)cb\rangle$
40	$\langle eg(af)cbc \rangle$

ld	Time	ltems
10	t_1	a
10	t_2	a, b, c
10	t_3	a, c
10	t_4	d
10	t_5	c, f

l	sequential pattern ($s_{min}=2$)
3	$\langle a(bc) \rangle$, $\langle aba \rangle$, $\langle abc \rangle$, $\langle (ab)c \rangle$, $\langle (ab)d \rangle$, $\langle (ab)f \rangle$, $\langle aca \rangle$, $\langle acb \rangle$, $\langle acc \rangle$, $\langle adc \rangle$,
4	$\langle a(bc)a angle$, $\langle (ab)dc angle$, \ldots

Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

GSP: Generalized Sequential Patterns [Agrawal, Srikant, 1996]

- applies the core idea of APRIORI to sequential data,
- the key issue is generation of the candidate sequential patterns
 - divided into two steps
 - 1. **join**
 - * *l*-sequence is created by joining of two (l-1)-sequences,
 - * (l-1)-sequences can be joined when identical after removal of the first item in one and the last one in second,
 - 2. prune
 - * skip each l-sequence which contains an infrequent (l-1)-subsequence.

Т	C_4		
L_3	after join	after prune	
$\langle (ab)c \rangle$, $\langle (ab)d \rangle$,	$\langle (ab)(cd) \rangle$	$\langle (ab)(cd) \rangle$	
$\langle a(cd) \rangle$, $\langle (ac)e \rangle$,	$\langle (ab)ce \rangle$		
$\langle b(cd) angle$, $\langle bce angle$			

Agrawal, Srikant: Mining Sequential Patterns: Generalizations and Performance.

ld	Sequence
10	$\langle (bd)cb(ac)\rangle$
20	$\langle (bf)(ce)b(fg)\rangle$
30	$\langle (ah)(bf)abf \rangle$
40	$\langle (be)(ce)d \rangle$
50	$\langle a(bd)bcb(ade)\rangle$

- s5: 1 cand. 1 5-pattern
- s4: 8 cand. 6 4-patterns
- s3: 46 cand. 19 3-patterns
- s2: 51 cand., 19 2-patterns
- s1: 8 cand., 6 1-patterns

• $s(\langle g \rangle) = s(\langle h \rangle) = 1 < s_{min}$

(skips a large portion of 92 available 2-candidates),

• $\langle (bd)cba \rangle \sqsubseteq s_{10} \land \langle (bd)cba \rangle \sqsubseteq s_{50}$

(created from $\langle (bd)cb \rangle$ a $\langle dcba \rangle$),

(the patterns $\langle (bd)ba \rangle$, $\langle (bd)ca \rangle$ and $\langle bcba \rangle$ must also be frequent).

APRIORI algorithm for sequences – disadvantages

- the generate (join step) and test (prune step) method,
- the problems discussed in terms of frequent itemsets persist and intensify
 - 1. generates a large amount of candidate patterns
 - obvious even for 2-sequences: $m \times m + \frac{m(m-1)}{2} \rightarrow \mathcal{O}(m^2)$
 - (for itemsets it was just the second fraction, one third or so of candidates),
 - 2. requires a lot of database scans
 - one scan per sequence length,
 - the number of scans given by the max pattern length the length $\leq max(|s|, s \in S)$ (typically >> m),
 - (max itemset length is m and thus m scans at most),
 - 3. search for long sequential patterns is difficult
 - the total amount of candidate patterns is exponential with the pattern length,
 - (the same growth as for itemsets, however the problem $max(|s|, s \in S) >> m$).
- the disadvantages addressed by alternative methods in FreeSpan and PrefixSpan algorithms.

FreeSpan [Han, Pei, Yin, 2000], $s_{min} = 2$

- takes the recursive divide and conquer approach
 - decides along the decreasingly sorted list of frequent items,
 - * f-list = $\langle (a:4), (b:4), (c:4), (d:3), (e:3), (f:3) \rangle$,
 - *(g:1) is not frequent,
 - the sequential patterns splits into disjoint groups

* the patterns containing the most frequent item only,

- * the patterns containing the second most frequent item and no less frequent items, etc.
- creates a projection sequence database (one per each group)
 - * from sequences it removes all the items disregarded by the group,
 - * it removes sequences missing item which must be in the pattern.

 subproblems have fewer items 	(beginning), and coi	ntain fewer sequences ([end of <i>f-list</i>])
--	----------------------	-------------------------	-------------------------	---

ld	Sequence	a-projection	b-projection	 f-projection
10	$\langle a(abc)(ac)d(cf)\rangle$	$\langle aaa \rangle$	$\langle a(ab)a \rangle$	 $\langle a(abc)(ac)d(cf)\rangle$
20	$\langle (ad)c(bc)(ae)\rangle$	$\langle aa \rangle$	$\langle aba \rangle$	
30	$\langle (ef)(ab)(df)cb\rangle$	$\langle a \rangle$	$\langle (ab)b angle$	 $\langle (ef)(ab)(df)cb\rangle$
40	$\langle eg(af)cbc \rangle$	$\langle a \rangle$	$\langle ab \rangle$	 $\langle e(af)cbc \rangle$

Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

PrefixSpan [Pei, Han et al., 2001]

- a similar idea, more efficient than its predecessor FreeSpan,
- the projection based on **prefix** subsequence occurrence (in FreeSpan arbitrary occurrence)
 - allows for a more efficient database decomposition,

informally: postfix is a prefix complement

 $-\text{ ex.: prefix } \langle a\rangle \text{ has wrt } \langle a(abc)(ac)d(cf)\rangle \text{ the postfix } \langle (abc)(ac)d(cf)\rangle \text{,}$

- ex.: prefix $\langle aa \rangle$ has wrt $\langle a(abc)(ac)d(cf) \rangle$ the postfix $\langle (_bc)(ac)d(cf) \rangle$,
- $\alpha' \sqsubseteq \alpha$ is a projection α wrt the prefix $\beta \sqsubseteq \alpha$, if:

(1) α' has a prefix β ,

(2) there is no α'' that is (i) a supersequence of α' (i.e. $\alpha' \sqsubset \alpha''$),

(ii) subsequence of α and (iii) has the prefix β ,

- ex.: the projection of $\langle a(abc)(ac)d(cf)\rangle$ wrt the prefix $\langle (ac)d\rangle$ is $\langle (ac)d(cf)\rangle$.

PrefixSpan – algorithm, example $(s_{min} = 2)$

- $\hfill \hfill \hfill$
 - 1. i = 1, the init projection prefix database $S|_{\alpha_0} = S|_{\emptyset} = S$,
 - 2. repeat for all the projection prefix databases $S|_{\alpha_{i-1}}$
 - (a) find frequent i-patterns (sufficient support in $\alpha_{i-1} \cdot S|_{\alpha_{i-1}}$),
 - (b) until the set of i-patterns is not empty
 - i. split the state space having the i-patterns (α_i) as prefixes
 - a projection database set originates $S|_{\alpha_i} = (\alpha_{i-1} \cdot S|_{\alpha_{i-1}})|_{\alpha_i}$,

ii. i=i+1 and go to the step (2).

		Prefix	Projection database (postfixes) or patterns	
		$\langle a \rangle$	$ \langle (abc)(ac)d(cf)\rangle, \ \langle (_d)c(bc)(ae)\rangle, \ \langle (_b)(df)cb\rangle, \ \langle (_f)cbc\rangle \rangle $	
ld	Sequence		2-patterns: $\langle aa \rangle$:2, $\langle ab \rangle$:4, $\langle ac \rangle$:4, $\langle ad \rangle$:2, $\langle af \rangle$:2, $\langle (ab) \rangle$:2	
10	$\langle a(abc)(ac)d(cf)\rangle$	$\langle b \rangle$	$\langle (_c)(ac)d(cf) angle$, $\langle (_c)(ae) angle$, $\langle (df)cb angle$, $\langle c angle$	
20	$\langle (ad)c(bc)(ae)\rangle$		2-patterns: $\langle ba \rangle$:2, $\langle bc \rangle$:3, $\langle (bc) \rangle$:2, $\langle bd \rangle$:2, $\langle bf \rangle$:2	
30	$\langle (ef)(ab)(df)cb\rangle$	$\langle aa \rangle$	$\langle (_bc)(ac)d(cf) angle$, $\langle (_e) angle$	
40	$\langle eg(af)cbc \rangle$		STOP (no 3-patterns)	
		$\langle (ab) \rangle$	$\langle (_c)(ac)d(cf) angle$, $\langle (df)cb angle$	
			3-patterns: $\langle (ab)c \rangle$:2, $\langle (ab)d \rangle$:2, $\langle (ab)f \rangle$:2	

Frequent sequence search – problem generalization

- subsequence definition (slide 13) is still not general enough for certain practical problems,
- ex.: book stores

ID	Time	ltems		
C1	1	Ringworld		
C1	2	Foundation		
C1	15	Ringworld Engineers, Second Foundation		
C2	1	Foundation, Ringworld		
C2	20	Foundation and Empire		
C2	50	Ringworld Engineers		

- the GSP algorithm contributed in several additional aspects
 - 1. introduction of time constraints
 - adjoining sequence elements must not be too far (MaxGap) nor close (MinGap),
 - 2. extended transaction definition
 - the items with near time stamps included in the same transaction,
 - sliding window, the parameter WinSize gives its size,
 - 3. a taxonomy of items
 - a directed acyclic graph defines a concept hierarchy built upon items.

Episodal rules

- association rule analogy,
- predict the further development of sequence with the aid of patterns,
- ex.: the only sequence, the only item per position, MaxGap=3

- $\blacksquare~S$ is a sequence, $\alpha = \langle AB \rangle$ and $\beta = \langle ABC \rangle$ its subsequences,
- α is a prefix of β ,
- episodal rule is a probabilistic implication

$$-\alpha \Rightarrow postfix(\beta, \alpha)$$
, i.e. $\langle AB \rangle \Rightarrow \langle C \rangle$

• likewise for association rules, min support parameter is usually completed by min confidence

$$- \operatorname{conf}(\alpha \Rightarrow \operatorname{postfix}(\beta, \alpha)) = \frac{s(\beta, S, 3)}{s(\alpha, S, 3)} = \frac{1}{2}.$$

Frequent subsequences – summary, categorization

- Different problem types distinguished according to the sequence types
 - single vs more sequences in a database
 - * asks for different support definition,
 - directed vs undirected sequences
 - * asks for different treatment of canonical representation,
 - one item vs more items per single sequence position
 - * influences complexity of the solution,
 - constraints may be needed
 - * e.g. the window size for transaction definition,
 - * MinGap and MaxGap for sequence definition,
 - * constraints extend practical applicability, slightly increase complexity,
 - a taxonomy of items may exist
 - * similar to constraints extends applicability, but it may increase complexity,
 - items or (labeled) intervals

* an interval: I = (start, end, label).

• the next lecture: from sequences towards structural patterns (trees/graphs).

Recommended reading, lecture resources

:: Reading

- Agrawal, Srikant: Mining Sequential Patterns.
- Agrawal, Srikant: MSPs: Generalizations and Performance.
 - from APRIORI towards its sequential versions AprioriAll and GSP,
 - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2818&rep=rep1&type=pdf,
- Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.
 - FreeSpan (idea) and PrefixSpan algorithms, efficiency comparison with GSP,
 - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7211,
- Mannila et al.: Discovery of Frequent Episodes in Event Sequences.
 - episodal rules,
 - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3594,
- Borgelt: Frequent Pattern Mining.
 - undirected sequences,
 - http://www.borgelt.net/teach/fpm/slides.html.

OPPA European Social Fund Prague & EU: We invest in your future.