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pOutline

� Motivation for frequent subsequence search

− applications, variance in needs and sequence definitions,

� what do we already know?

− connection to itemsets, what changed?

− directed sequences, without noise/gaps and time,

� why is it sometimes more difficult?

− undirected sequences a their canonical form,

− (complete) transactional representation and connected definitions,

− GSP algorithm (Agrawal’s APRIORI generalization),

− other algorithms – FreeSpan, PrefixSpan,

� summary

− categorization of methods according to sequence and pattern types,

� STULONG – a case study.
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pFrequent subsequences – example 1: DNA

� motif discovery

− searches for short sequential patterns in a file of unaligned DNA or protein sequences,

− searches for discriminative patterns (characteristics)

∗ typical for one sequence class, unusual in the other classes,

∗ this pattern could relate with the biological/regulation function of the (protein) class,

− transcription factor interacts with DNA through a particular motif,

− frequent subsequence search is a subtask,

� event = nucleotide, string (no time), undirected DNA.
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pFrequent subsequences – example 2: insurance

� event is signing of a insurance contract of a certain type,

� several events may occur concurrently,

� sequence is a chronological series of events,

� analogy: directed acyclic graph, the edge length equals time between events,

� interesting patterns: typical contract sequences (signed in a reasonable time span).

Meyer: Sequence Mining in Marketing.
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pFrequent subsequences – similarity to frequent itemsets

� first of all, similarity in task representation,

� the process can be intrinsically identical, but we ask different questions

− itemsets: which insurance contracts people arrange concurrently,

− sequences: how people arrange insurance contracts in their course of life,

� transaction representation still formally possible and helpful (universal)

− more factors must be concerned and stored.

Transaction Items (insurance type)

t1 home, life

t2 car, home

t3 pension, life

t4 travel

t5 pension, life

. . . . . .

Customer Date (time) Items (insurance type)

c1 5.10.2003 home, life

c1 8.1.2005 travel

c1 3.8.2010 car, pension

c2 10.10.2003 car, home

c2 20.11.2006 pension

. . . . . . . . .
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pFrequent subsequences – similarity to frequent itemsets

� secondly, similarity in terms of task solution,

� APRIORI property can easily be generalized for sequences:

Each subsequence of a frequent sequence is frequent.

� the anti-monotone property can also be transformed to monotone one:

No supersequence of an infrequent sequence can be frequent.

� the model APRIORI-like algorithm for sequential data

− a direct analogy of the APRIORI algorithm for itemsets,

− the basic operations (informal – a reminder only):

1. search for trivial frequent sequences (typically of the length 0 or 1),

2. generate candidate sequences with the length incremented by 1,

3. check for their actual support in the transaction database,

4. reduce the candidate sequence set

∗ a subset of frequent sequences of the given length is created,

5. until the frequent sequence set non-empty go to the step 2.
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pFrequent substrings – a trivial APRIORI application

� a string

− a directed sequence, an equidistant step, exactly one item per transaction,

− events given by a symbol alphabet, a pattern is an ordered list of neighboring events,

− 〈a1 . . . am〉 is a subsequence of 〈b1 . . . bn〉 iff ∃i a1 = bi ∧ · · · ∧ am = bi+m.

� Example: DNA sequence (n = 20, A = {a, g, t})

i Ci Li

1 {a}, {g}, {t} {a}, {g}, {t}
2 (9 patterns) {aa}, {ga}, {gg}, {gt}, {tg}, {tt}
3 {aaa}, {gaa}, {gga}, . . . (12 patterns) {gaa}, {ggg}, {gtt}, {tga}, {ttg}
4 {gggg}, {gttg}, {tgaa}, {ttga} {gggg}, {tgaa}, {ttga}
5 {ttgaa} {ttgaa}

� how to check for support quickly, i.e. how to find all subsequence occurrences in a sequence?

− algorithms Knuth-Morris-Pratt or Boyer-Moore.
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pCanonical form for sequences

� a canonical (standard) code word

− a unique sequence representation, based on the symbol alphabet ordering,

− a usual (not necessary) choice:

∗ the lexicographical symbol alphabet ordering a < b < c < . . .,

∗ the lexicographically smallest (smaller) code word taken as canonical (bac < cab),

� a directed sequence

− the only interpretation (way of reading), each (sub)sequence is a canonical code word,

� an undirected sequence

− two possible ways of reading = two alternative code words,

− the routine application of lexicographical ordering is not possible,

− prefix property in a space of canonical code words does not hold:

∗ every prefix of a canonical word is a canonical word itself,

sequence canonical form prefix canonical form

bab bab ba ab

cabd cabd cab bac

− we have to find a different way of forming code words.
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pCanonical form for undirected sequences

� The canonical code words with the prefix property will be formed as follows

− even and odd length words will be handled separately,

− code words are started in the middle of sequence,

even length odd length

sequence am am−1 . . . a2 a1 b1 b2 . . . bm−1 bm am am−1 . . . a2 a1 a0 b1 b2 . . . bm−1 bm
code word a1 b1 a2 b2 . . . am−1 bm−1 am bm a0 a1 b1 a2 b2 . . . am−1 bm−1 am bm
code word b1 a1 b2 a2 . . . bm−1 am−1 bm am a0 b1 a1 b2 a2 . . . bm−1 am−1 bm am

� canonical is the lexicographically smaller code word in the table,

� the sequence is extended by adding

− a pair am+1 bm+1 or bm+1 am+1,

− one item at the front and one item at the end.

� an example

even length odd length

sequence code words sequence code words

at at ta ule lue leu

data atda taad rules luers leusr
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pCanonical form for undirected sequences – the prefix property

� Prefix property proof for the new representation by contradiction

1. suppose the prefix property does not hold,

2. then there exists a canonical code word wm = a1 b1 a2 b2 . . . am−1 bm−1 am bm,

3. whose prefix wm−1 = a1 b1 a2 b2 . . . am−1 bm−1 is not a canonical code word,

4. as a consequence we have wm < vm, where vm = b1 a1 b2 a2 . . . bm−1 am−1 bm am,

5. and vm−1 < wm−1, where vm−1 = b1 a1 b2 a2 . . . bm−1 am−1,

6. however vm−1 < wm−1 ⇒ vm < wm

− because vm−1 is a prefix of vm and wm−1 is a prefix of wm,

7. vm < wm from the step 6 contradicts wm < vm from the step 4 �.
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pCanonical form for undirected sequences – efficiency

� two possible code words can be created and compared in O(m),

� an additional symmetry flag introduced for each sequence enables the same in O(1)

sm =

m∧
i=1

(ai = bi)

� the symmetry flag is maintained in constant time with

sm+1 = sm ∧ (am+1 = bm+1)

� sequence extension is permissible when the flag:

− if sm = true, it must be am+1 ≤ bm+1,

− if sm = false, any relation between am+1 and bm+1 is possible.

� sequences and symmetry flags at the beginning

− even length: an empty sequence, s0 = 1,

− odd length: all frequent alphabet symbols, s1 = 1,

� the procedure guarantees exclusively the canonical sequence extensions.
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pFrequent subsequences – APRIORI application to undirected sequences

� consider undirected sequences, otherwise the formalization as yet

− 〈a1 . . . am〉 is a subsequence of 〈b1 . . . bn〉 if:

∃i a1 = bi ∧ · · · ∧ am = bi+m, or

∃i a1 = bi+m ∧ · · · ∧ am = bi.

� Example: DNA sequence (n = 20, A = {a, g, t})

i Ci Li

0 {} {}
1 {a}, {g}, {t} {a}, {g}, {t}
2 {aa}, {ag}, {at}, {gg}, {gt}, {tt} {aa}, {gg}, {gt}, {tt}
3 {aaa}, {aag}, {aat}, {gag}, {gat}, {tat}, {aga}, {agg}, {agt}, {ggg}, {gtt}
{ggg}, {ggt}, {tgt}, {ata}, {atg}, {att}, {gtg}, {gtt}, {ttt}

4 {aaaa}, {aaag}, {aaat}, {gaag}, {gaat}, {taat}, {gggg}
{agta}, {agtg}, {ggta}, {agtt}, {tgta}, {ggtg},
{ggtt}, {tgtg}, . . . in total 27 (1) patterns
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pA generalized subsequence definition in transactional representation

� Items: I = {i1, i2, . . . , im},
� itemsets: (x1, x2, . . . , xk) ⊆ I , k ≥ 1, xi ∈ I ,

� sequences: 〈s1, . . . , sn〉, si = (x1, x2, . . . , xk) ⊆ I , si 6= ∅, x1 < x2 < . . . < xk,

− an ordered list of elements, elements = itemsets,

− the canonical representation: lexicographical ordering of items in each itemset,

− example: 〈a(abc)(ac)d(cf )〉, a simplification of the form: (xi) ∼ xi,

� the sequence length l

− given by the number of item instances (occurrences) in sequence,

− l-sequence contains exactly l item instances,

− ex.: 〈a(abc)(ac)d(cf )〉 is a 9-sequence,

� α is a subsequence of β, β is a supersequence of α: α v β

− α = 〈a1, . . . , an〉, β = 〈b1, . . . , bm〉, ∃1 ≤ j1 < . . . < jn ≤ m,∀i = 1 . . . n : ai ⊆ bji,

− example: 〈a(bc)df〉 v 〈a(abc)(ac)d(cf )〉, 〈d(ab)〉 6v 〈a(abc)(ac)d(cf )〉

� a sequence database: S = {〈sid1, s1〉 . . . , 〈sidk, sk〉}

− a set of ordered pairs a sequence identifier and a sequence.
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pSubsequence search in transaction representation

� Support of α sequence in the database S

− the number of sequences s ∈ S satisfying: α v s,

� Subsequence search in transaction representation, task definition

− input: S a smin – minimum support,

− output: the complete set of frequent sequential patterns

∗ all the subsequences with or above the threshold frequency.

Id Sequence

10 〈a(abc)(ac)d(cf )〉
20 〈(ad)c(bc)(ae)〉
30 〈(ef )(ab)(df )cb〉
40 〈eg(af )cbc〉

Id Time Items

10 t1 a

10 t2 a, b, c

10 t3 a, c

10 t4 d

10 t5 c, f

l sequential pattern (smin=2)

3 〈a(bc)〉, 〈aba〉, 〈abc〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab)f〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈adc〉, . . .
4 〈a(bc)a〉, 〈(ab)dc〉, . . .

Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.
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pGSP: Generalized Sequential Patterns [Agrawal, Srikant, 1996]

� applies the core idea of APRIORI to sequential data,

� the key issue is generation of the candidate sequential patterns

− divided into two steps

1. join

∗ l-sequence is created by joining of two (l-1)-sequences,

∗ (l-1)-sequences can be joined when identical after removal of the first item in one

and the last one in second,

2. prune

∗ skip each l-sequence which contains an infrequent (l-1)-subsequence.

L3
C4

after join after prune

〈(ab)c〉, 〈(ab)d〉, 〈(ab)(cd)〉 〈(ab)(cd)〉
〈a(cd)〉, 〈(ac)e〉, 〈(ab)ce〉
〈b(cd)〉, 〈bce〉

Agrawal, Srikant: Mining Sequential Patterns: Generalizations and Performance.
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pExample: GSP, smin=2

Id Sequence

10 〈(bd)cb(ac)〉
20 〈(bf )(ce)b(fg)〉
30 〈(ah)(bf )abf〉
40 〈(be)(ce)d〉
50 〈a(bd)bcb(ade)〉

� s(〈g〉) = s(〈h〉) = 1 < smin

(skips a large portion of 92 available 2-candidates),

� 〈(bd)cba〉 v s10 ∧ 〈(bd)cba〉 v s50

(created from 〈(bd)cb〉 a 〈dcba〉),

(the patterns 〈(bd)ba〉, 〈(bd)ca〉 and 〈bcba〉 must also

be frequent).
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pAPRIORI algorithm for sequences – disadvantages

� the generate (join step) and test (prune step) method,

� the problems discussed in terms of frequent itemsets persist and intensify

1. generates a large amount of candidate patterns

− obvious even for 2-sequences: m×m + m(m−1)
2 → O(m2)

(for itemsets it was just the second fraction, one third or so of candidates),

2. requires a lot of database scans

− one scan per sequence length,

− the number of scans given by the max pattern length

the length ≤ max(|s|, s ∈ S) (typically >> m),

(max itemset length is m and thus m scans at most),

3. search for long sequential patterns is difficult

− the total amount of candidate patterns is exponential with the pattern length,

(the same growth as for itemsets, however the problem max(|s|, s ∈ S) >> m).

� the disadvantages addressed by alternative methods in FreeSpan and PrefixSpan algorithms.
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pFreeSpan [Han, Pei, Yin, 2000], smin = 2

� takes the recursive divide and conquer approach

− decides along the decreasingly sorted list of frequent items,

∗ f -list = 〈(a : 4), (b : 4), (c : 4), (d : 3), (e : 3), (f : 3)〉,
∗ (g : 1) is not frequent,

− the sequential patterns splits into disjoint groups

∗ the patterns containing the most frequent item only,

∗ the patterns containing the second most frequent item and no less frequent items, etc.

− creates a projection sequence database (one per each group)

∗ from sequences it removes all the items disregarded by the group,

∗ it removes sequences missing item which must be in the pattern.

� subproblems have fewer items (beginning), and contain fewer sequences (end of f -list).

Id Sequence a-projection b-projection . . . f-projection

10 〈a(abc)(ac)d(cf )〉 〈aaa〉 〈a(ab)a〉 . . . 〈a(abc)(ac)d(cf )〉
20 〈(ad)c(bc)(ae)〉 〈aa〉 〈aba〉 . . .

30 〈(ef )(ab)(df )cb〉 〈a〉 〈(ab)b〉 . . . 〈(ef )(ab)(df )cb〉
40 〈eg(af )cbc〉 〈a〉 〈ab〉 . . . 〈e(af )cbc〉

Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.
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pPrefixSpan [Pei, Han et al., 2001]

� a similar idea, more efficient than its predecessor FreeSpan,

� the projection based on prefix subsequence occurrence (in FreeSpan arbitrary occurrence)

− allows for a more efficient database decomposition,

� β = 〈s′1, . . . , s′m〉 is a prefix of α = 〈s1, . . . , sn〉 if:

(1) m ≤ n, (2) ∀i ≤ m− 1 s′i = si, (3) s′m ⊆ sm,

(4) ∀ items from (sm − s′m) > ∀ items from s′m,

− ex.: 〈a〉, 〈aa〉, 〈a(ab)〉 and 〈a(abc)〉 are the prefixes 〈a(abc)(ac)d(cf )〉,
− ex.: 〈ab〉, 〈a(bc)〉 are not the prefixes 〈a(abc)(ac)d(cf )〉,

� informally: postfix is a prefix complement

− ex.: prefix 〈a〉 has wrt 〈a(abc)(ac)d(cf )〉 the postfix 〈(abc)(ac)d(cf )〉,
− ex.: prefix 〈aa〉 has wrt 〈a(abc)(ac)d(cf )〉 the postfix 〈( bc)(ac)d(cf )〉,

� α′ v α is a projection α wrt the prefix β v α, if:

(1) α′ has a prefix β,

(2) there is no α′′ that is (i) a supersequence of α′ (i.e. α′ @ α′′),

(ii) subsequence of α and (iii) has the prefix β,

− ex.: the projection of 〈a(abc)(ac)d(cf )〉 wrt the prefix 〈(ac)d〉 is 〈(ac)d(cf )〉.
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pPrefixSpan – algorithm, example (smin = 2)

� PrefixSpan: the input is S and smin

1. i = 1, the init projection prefix database S|α0 = S|∅ = S,

2. repeat for all the projection prefix databases S|αi−1

(a) find frequent i-patterns (sufficient support in αi−1 · S|αi−1),

(b) until the set of i-patterns is not empty

i. split the state space having the i-patterns (αi) as prefixes

a projection database set originates S|αi
= (αi−1 · S|αi−1)|αi

,

ii. i=i+1 and go to the step (2).

Id Sequence

10 〈a(abc)(ac)d(cf )〉
20 〈(ad)c(bc)(ae)〉
30 〈(ef )(ab)(df )cb〉
40 〈eg(af )cbc〉

Prefix Projection database (postfixes) or patterns

〈a〉 〈(abc)(ac)d(cf )〉, 〈( d)c(bc)(ae)〉, 〈( b)(df )cb〉, 〈( f )cbc〉
2-patterns: 〈aa〉:2, 〈ab〉:4, 〈ac〉:4, 〈ad〉:2, 〈af〉:2, 〈(ab)〉:2

〈b〉 〈( c)(ac)d(cf )〉, 〈( c)(ae)〉, 〈(df )cb〉, 〈c〉
2-patterns: 〈ba〉:2, 〈bc〉:3, 〈(bc)〉:2, 〈bd〉:2, 〈bf〉:2

〈aa〉 〈( bc)(ac)d(cf )〉, 〈( e)〉
STOP (no 3-patterns)

〈(ab)〉 〈( c)(ac)d(cf )〉, 〈(df )cb〉
3-patterns: 〈(ab)c〉:2, 〈(ab)d〉:2, 〈(ab)f〉:2
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pFrequent sequence search – problem generalization

� subsequence definition (slide 13) is still not general enough for certain practical problems,

� ex.: book stores

ID Time Items

C1 1 Ringworld

C1 2 Foundation

C1 15 Ringworld Engineers, Second Foundation

C2 1 Foundation, Ringworld

C2 20 Foundation and Empire

C2 50 Ringworld Engineers

� the GSP algorithm contributed in several additional aspects

1. introduction of time constraints

− adjoining sequence elements must not be too far (MaxGap) nor close (MinGap),

2. extended transaction definition

− the items with near time stamps included in the same transaction,

− sliding window, the parameter WinSize gives its size,

3. a taxonomy of items

− a directed acyclic graph defines a concept hierarchy built upon items.
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pEpisodal rules

� association rule analogy,

� predict the further development of sequence with the aid of patterns,

� ex.: the only sequence, the only item per position, MaxGap=3

� S is a sequence, α = 〈AB〉 and β = 〈ABC〉 its subsequences,

� α is a prefix of β,

� episodal rule is a probabilistic implication

− α⇒ postfix(β, α), i.e. 〈AB〉 ⇒ 〈C〉

� likewise for association rules, min support parameter is usually completed by min confidence

− conf (α⇒ postfix(β, α)) = s(β,S,3)
s(α,S,3) = 1

2.

� � � � � � � � � � � � � � � � � � � � � � � � A4M33SAD



pFrequent subsequences – summary, categorization

� Different problem types distinguished according to the sequence types

− single vs more sequences in a database

∗ asks for different support definition,

− directed vs undirected sequences

∗ asks for different treatment of canonical representation,

− one item vs more items per single sequence position

∗ influences complexity of the solution,

− constraints may be needed

∗ e.g. the window size for transaction definition,

∗ MinGap and MaxGap for sequence definition,

∗ constraints extend practical applicability, slightly increase complexity,

− a taxonomy of items may exist

∗ similar to constraints – extends applicability, but it may increase complexity,

− items or (labeled) intervals

∗ an interval: I = (start, end, label).

� the next lecture: from sequences towards structural patterns (trees/graphs).
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pRecommended reading, lecture resources

:: Reading

� Agrawal, Srikant: Mining Sequential Patterns.

� Agrawal, Srikant: MSPs: Generalizations and Performance.

− from APRIORI towards its sequential versions AprioriAll and GSP,

− http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2818&rep=rep1&type=pdf,

� Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

− FreeSpan (idea) and PrefixSpan algorithms, efficiency comparison with GSP,

− http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7211,

� Mannila et al.: Discovery of Frequent Episodes in Event Sequences.

− episodal rules,

− http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3594,

� Borgelt: Frequent Pattern Mining.

− undirected sequences,

− http://www.borgelt.net/teach/fpm/slides.html.
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