OPPA European Social Fund Prague \& EU: We invest in your future.

Frequent subsequences, episodal rules

Jiří Kléma

Department of Cybernetics, Czech Technical University in Prague

IDA
 Intelligent Data Analysis
 RESEARCH GRoup

```
http://ida.felk.cvut.cz
```


Outline

- Motivation for frequent subsequence search
- applications, variance in needs and sequence definitions,
- what do we already know?
- connection to itemsets, what changed?
- directed sequences, without noise/gaps and time,
- why is it sometimes more difficult?
- undirected sequences a their canonical form,
- (complete) transactional representation and connected definitions,
- GSP algorithm (Agrawal's APRIORI generalization),
- other algorithms - FreeSpan, PrefixSpan,
- summary
- categorization of methods according to sequence and pattern types,
- STULONG - a case study.

Frequent subsequences - example 1: DNA

- motif discovery
- searches for short sequential patterns in a file of unaligned DNA or protein sequences,
- searches for discriminative patterns (characteristics)
* typical for one sequence class, unusual in the other classes,
* this pattern could relate with the biological/regulation function of the (protein) class,
- transcription factor interacts with DNA through a particular motif,
- frequent subsequence search is a subtask,
- event = nucleotide, string (no time), undirected DNA.
>23066
atgacgtgtctgtatattaataagctaacccgcattgagttaaccaataacggattccatacacaatacg gccaacagagaaagatacctgtgctcacgccattgcttatattggctggttacaatgtgcactatcaatt ttttaaataa
>23067
ttgactgtgaaaattacaggagctacaaaaatgaaccgattctcaaaaactcaaatttatttacattgga taacgetgcttttcgttgcaataacctatgccgcgatggaactccgtggctggtttcctaaaggtagtag tacttatctgctgatgcgagaaacacattacaatgcgggtatattcgtttgggtgttaatgttttcacge ctgattataaaacaccgttatagtgatccttctattgtgccaccgccacctgcctggcaaatgaaagcgg cttcgctaatgcacatcatgctttatataaccttccttgcgcttcctctgctggggattgctttgatggc ttacagtggaaaatcgtggagtttccttggtttcaatgtgtctccctttgttaccccaaacagcgaaatt aaagcactgataaaaaatattcacgaaacctgggcaaatataggctactttttaatcgtagctcacgctg gcgcagcactctttcatcactacattcagaaagataatactctgttacgaatgatgcctcgccgcaaata a
>23069
gtggcggagagagggggatttgaacccccggtagagttgcccctactccggttttcgagacctatgctat gggttaataaaatcaatatattatgtgttttatttggaataaatattctatatttaggattgaaaaatca gatggttagcatcaaacaacctcagaatattccaagcaaacaggttaaaaataaaactgcacccgaacaa ttgataacgacagaaaacgccttttccgagccaccaaaattacttcgcatcctatttattgctcacgtta acgecttgtataactcgagctctccacggtatttaacctctcttctgtttaactataattccaataaatc tcgtcactga

Frequent subsequences - example 2: insurance

- event is signing of a insurance contract of a certain type,
- several events may occur concurrently,
- sequence is a chronological series of events,
- analogy: directed acyclic graph, the edge length equals time between events,
- interesting patterns: typical contract sequences (signed in a reasonable time span).

Meyer: Sequence Mining in Marketing.

Frequent subsequences - similarity to frequent itemsets

- first of all, similarity in task representation,
- the process can be intrinsically identical, but we ask different questions
- itemsets: which insurance contracts people arrange concurrently,
- sequences: how people arrange insurance contracts in their course of life,
- transaction representation still formally possible and helpful (universal)
- more factors must be concerned and stored.

Transaction	Items (insurance type)
t_{1}	home, life
t_{2}	car, home
t_{3}	pension, life
t_{4}	travel
t_{5}	pension, life
\ldots	\ldots

Customer	Date (time)	Items (insurance type)
c_{1}	5.10 .2003	home, life
c_{1}	8.1 .2005	travel
c_{1}	3.8 .2010	car, pension
c_{2}	10.10 .2003	car, home
c_{2}	20.11 .2006	pension
\ldots	\ldots	\ldots

Frequent subsequences - similarity to frequent itemsets

- secondly, similarity in terms of task solution,
- APRIORI property can easily be generalized for sequences:

Each subsequence of a frequent sequence is frequent.

- the anti-monotone property can also be transformed to monotone one:

No supersequence of an infrequent sequence can be frequent.

- the model APRIORI-like algorithm for sequential data
- a direct analogy of the APRIORI algorithm for itemsets,
- the basic operations (informal - a reminder only):

1. search for trivial frequent sequences (typically of the length 0 or 1),
2. generate candidate sequences with the length incremented by 1 ,
3. check for their actual support in the transaction database,
4. reduce the candidate sequence set

* a subset of frequent sequences of the given length is created,

5. until the frequent sequence set non-empty go to the step 2 .

Frequent substrings - a trivial APRIORI application

- a string
- a directed sequence, an equidistant step, exactly one item per transaction,
- events given by a symbol alphabet, a pattern is an ordered list of neighboring events,
$-\left\langle a_{1} \ldots a_{m}\right\rangle$ is a subsequence of $\left\langle b_{1} \ldots b_{n}\right\rangle$ iff $\exists i a_{1}=b_{i} \wedge \cdots \wedge a_{m}=b_{i+m}$.
- Example: DNA sequence ($n=20, A=\{a, g, t\}$)

$$
\begin{aligned}
& \mathrm{ttg} \text { a a } \mathrm{ag} \mathrm{~g} \mathrm{~g} \mathrm{gttg} \text { a } \operatorname{tgtt} \quad \mathrm{s}>10 \%, \mathrm{~s}=\mathrm{f} /(\mathrm{n}-\mathrm{m}+1)
\end{aligned}
$$

i	C_{i}	L_{i}
1	$\{\mathrm{a}\},\{\mathrm{g}\},\{\mathrm{t}\}$	$\{\mathrm{a}\},\{\mathrm{g}\},\{\mathrm{t}\}$
2	$(9$ patterns $)$	$\{\mathrm{aa}\},\{\mathrm{ga}\},\{\mathrm{gg}\},\{\mathrm{gt}\},\{\mathrm{tg}\},\{\mathrm{tt}\}$
3	$\{\mathrm{aaa}\},\{$ gaa $\},\{$ gga $\}, \ldots(12$ patterns $)$	$\{$ gaa $\},\{\mathrm{ggg}\},\{\mathrm{gtt}\},\{\mathrm{tga}\},\{\mathrm{ttg}\}$
4	$\{$ gggg $\},\{\mathrm{gttg}\},\{$ tgaa $\},\{$ ttga $\}$	$\{\mathrm{gggg}\},\{$ tgaa $\},\{\mathrm{ttga}\}$
5	$\{$ ttgaa $\}$	$\{\mathrm{ttgaa}\}$

- how to check for support quickly, i.e. how to find all subsequence occurrences in a sequence?
- algorithms Knuth-Morris-Pratt or Boyer-Moore.

Canonical form for sequences

- a canonical (standard) code word
- a unique sequence representation, based on the symbol alphabet ordering,
- a usual (not necessary) choice:
* the lexicographical symbol alphabet ordering $a<b<c<\ldots$,
* the lexicographically smallest (smaller) code word taken as canonical ($b a c<c a b$),
- a directed sequence
- the only interpretation (way of reading), each (sub)sequence is a canonical code word,
- an undirected sequence
- two possible ways of reading = two alternative code words,
- the routine application of lexicographical ordering is not possible,
- prefix property in a space of canonical code words does not hold:
* every prefix of a canonical word is a canonical word itself,

sequence	canonical form	prefix	canonical form
$b a b$	$b a b$	$b a$	$a b$
$c a b d$	$c a b d$	$c a b$	$b a c$

- we have to find a different way of forming code words.

Canonical form for undirected sequences

- The canonical code words with the prefix property will be formed as follows
- even and odd length words will be handled separately,
- code words are started in the middle of sequence,

	even length	odd length
sequence	$a_{m} a_{m-1} \ldots \ldots a_{2} a_{1} b_{1} b_{2} \ldots \ldots b_{m-1} b_{m}$	$a_{m} a_{m-1} \ldots \ldots a_{2} a_{1} a_{0} b_{1} b_{2} \ldots \ldots b_{m-1} b_{m}$
code word	$a_{1} b_{1} a_{2} b_{2} \ldots a_{m-1} b_{m-1} a_{m} b_{m}$	$a_{0} a_{1} b_{1} a_{2} b_{2} \ldots a_{m-1} b_{m-1} a_{m} b_{m}$
code word	$b_{1} a_{1} b_{2} a_{2} \ldots b_{m-1} a_{m-1} b_{m} a_{m}$	$a_{0} b_{1} a_{1} b_{2} a_{2} \ldots \ldots b_{m-1} a_{m-1} b_{m} a_{m}$

- canonical is the lexicographically smaller code word in the table,
- the sequence is extended by adding
- a pair $a_{m+1} b_{m+1}$ or $b_{m+1} a_{m+1}$,
- one item at the front and one item at the end.
- an example

even length		odd length			
sequence	code words		sequence	code words	
$a t$	$a t$	ta	ule	lue	leu
data	atda	taad	rules	luers	leusr

Canonical form for undirected sequences - the prefix property

- Prefix property proof for the new representation by contradiction

1. suppose the prefix property does not hold,
2. then there exists a canonical code word $w_{m}=a_{1} b_{1} a_{2} b_{2} \ldots a_{m-1} b_{m-1} a_{m} b_{m}$,
3. whose prefix $w_{m-1}=a_{1} b_{1} a_{2} b_{2} \ldots a_{m-1} b_{m-1}$ is not a canonical code word,
4. as a consequence we have $w_{m}<v_{m}$, where $v_{m}=b_{1} a_{1} b_{2} a_{2} \ldots b_{m-1} a_{m-1} b_{m} a_{m}$,
5. and $v_{m-1}<w_{m-1}$, where $v_{m-1}=b_{1} a_{1} b_{2} a_{2} \ldots b_{m-1} a_{m-1}$,

6 . however $v_{m-1}<w_{m-1} \Rightarrow v_{m}<w_{m}$

- because v_{m-1} is a prefix of v_{m} and w_{m-1} is a prefix of w_{m},

7. $v_{m}<w_{m}$ from the step 6 contradicts $w_{m}<v_{m}$ from the step $4 \square$.

Canonical form for undirected sequences - efficiency

- two possible code words can be created and compared in $\mathcal{O}(m)$,
- an additional symmetry flag introduced for each sequence enables the same in $\mathcal{O}(1)$

$$
s_{m}=\bigwedge_{i=1}^{m}\left(a_{i}=b_{i}\right)
$$

- the symmetry flag is maintained in constant time with

$$
s_{m+1}=s_{m} \wedge\left(a_{m+1}=b_{m+1}\right)
$$

- sequence extension is permissible when the flag:
- if $s_{m}=$ true, it must be $a_{m+1} \leq b_{m+1}$,
- if $s_{m}=$ false, any relation between a_{m+1} and b_{m+1} is possible.
- sequences and symmetry flags at the beginning
- even length: an empty sequence, $s_{0}=1$,
- odd length: all frequent alphabet symbols, $s_{1}=1$,
- the procedure guarantees exclusively the canonical sequence extensions.

Frequent subsequences - APRIORI application to undirected sequences

- consider undirected sequences, otherwise the formalization as yet
$-\left\langle a_{1} \ldots a_{m}\right\rangle$ is a subsequence of $\left\langle b_{1} \ldots b_{n}\right\rangle$ if:
$\exists i a_{1}=b_{i} \wedge \cdots \wedge a_{m}=b_{i+m}$, or
$\exists i a_{1}=b_{i+m} \wedge \cdots \wedge a_{m}=b_{i}$.
- Example: DNA sequence $(n=20, A=\{a, g, t\})$

	$s>10 \%, s=f /[2(n-m+1)]$
$\mathrm{ttg} \mathrm{a} a \mathrm{agggg} \mathrm{gtg}$ a tgtt	$\mathrm{s}_{\mathrm{gtt}}=4 / 36, \mathrm{~s}_{\mathrm{gggg}}=4 / 34$

i	C_{i}	L_{i}
0	\{\}	\{\}
1	$\{\mathrm{a}\},\{\mathrm{g}\},\{\mathrm{t}\}$	$\{\mathrm{a}\},\{\mathrm{g}\},\{\mathrm{t}\}$
2	\{at $\},\{\mathrm{ag}\},\{\mathrm{at}\},\{\mathrm{gg}\},\{\mathrm{gt}\},\{\mathrm{tt}\}$	\{aa\}, \{gg\}, \{gt \}, \{tt \}
3	\{aaa\}, \{aag\}, \{aat\}, \{gag\}, \{gat\}, \{tat\}, \{aga\}, \{agg\},\{agt\}, $\{\mathrm{ggg}\},\{\mathrm{ggt}\},\{\mathrm{tgt}\},\{a t a\},\{\operatorname{atg}\},\{a t t\},\{\mathrm{gtg}\},\{\mathrm{gtt}\},\{\mathrm{ttt}\}$	\{ggg\}, \{gtt \}
4	```{aaaa}, {aaag}, {aaat}, {gaag}, {gaat}, {taat}, {agta}, {agtg}, {ggta}, {agtt}, {tgta}, {ggtg}, {ggtt}, {tgtg}, ...in total 27 (1) patterns```	\{gggg \}

A generalized subsequence definition in transactional representation

- Items: $I=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$,
- itemsets: $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \subseteq I, k \geq 1, x_{i} \in I$,
- sequences: $\left\langle s_{1}, \ldots, s_{n}\right\rangle, s_{i}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \subseteq I, s_{i} \neq \emptyset, x_{1}<x_{2}<\ldots<x_{k}$,
- an ordered list of elements, elements = itemsets,
- the canonical representation: lexicographical ordering of items in each itemset,
- example: $\langle a(a b c)(a c) d(c f)\rangle$, a simplification of the form: $\left(x_{i}\right) \sim x_{i}$,
- the sequence length l
- given by the number of item instances (occurrences) in sequence,
- l-sequence contains exactly l item instances,
- ex.: $\langle a(a b c)(a c) d(c f)\rangle$ is a 9 -sequence,
- α is a subsequence of β, β is a supersequence of α : $\alpha \sqsubseteq \beta$
$-\alpha=\left\langle a_{1}, \ldots, a_{n}\right\rangle, \beta=\left\langle b_{1}, \ldots, b_{m}\right\rangle, \exists 1 \leq j_{1}<\ldots<j_{n} \leq m, \forall i=1 \ldots n: a_{i} \subseteq b_{j_{i}}$,
- example: $\langle a(b c) d f\rangle \sqsubseteq\langle a(a b c)(a c) d(c f)\rangle,\langle d(a b)\rangle \nsubseteq\langle a(a b c)(a c) d(c f)\rangle$
- a sequence database: $S=\left\{\left\langle s i d_{1}, s_{1}\right\rangle \ldots,\left\langle s i d_{k}, s_{k}\right\rangle\right\}$
- a set of ordered pairs a sequence identifier and a sequence.

Subsequence search in transaction representation

- Support of α sequence in the database S
- the number of sequences $s \in S$ satisfying: $\alpha \sqsubseteq s$,
- Subsequence search in transaction representation, task definition
- input: S a $s_{\text {min }}$ - minimum support,
- output: the complete set of frequent sequential patterns
* all the subsequences with or above the threshold frequency.

Id	Sequence
10	$\langle a(a b c)(a c) d(c f)\rangle$
20	$\langle(a d) c(b c)(a e)\rangle$
30	$\langle(e f)(a b)(d f) c b\rangle$
40	$\langle e g(a f) c b c\rangle$

Id	Time	Items
10	t_{1}	a
10	t_{2}	a, b, c
10	t_{3}	a, c
10	t_{4}	d
10	t_{5}	c, f

l	sequential pattern $\left(s_{\text {min }}=2\right)$
3	$\langle a(b c)\rangle,\langle a b a\rangle,\langle a b c\rangle,\langle(a b) c\rangle,\langle(a b) d\rangle,\langle(a b) f\rangle,\langle a c a\rangle,\langle a c b\rangle,\langle a c c\rangle,\langle a d c\rangle, \ldots$
4	$\langle a(b c) a\rangle,\langle(a b) d c\rangle, \ldots$

GSP: Generalized Sequential Patterns [Agrawal, Srikant, 1996]

- applies the core idea of APRIORI to sequential data,
- the key issue is generation of the candidate sequential patterns
- divided into two steps

1. join

* l-sequence is created by joining of two (l-1)-sequences,
* (l-1)-sequences can be joined when identical after removal of the first item in one and the last one in second,

2. prune

* skip each l-sequence which contains an infrequent (l-1)-subsequence.

L_{3}	C_{4}	
	after join	after prune
$\langle(a b) c\rangle,\langle(a b) d\rangle$,	$\langle(a b)(c d)\rangle$	$\langle(a b)(c d)\rangle$
$\langle a(c d)\rangle,\langle(a c) e\rangle$,	$\langle(a b) c e\rangle$	
$\langle b(c d)\rangle,\langle b c e\rangle$		

Agrawal, Srikant: Mining Sequential Patterns: Generalizations and Performance.

Example: GSP, $s_{\min }=2$

Id	Sequence
10	$\langle(b d) c b(a c)\rangle$
20	$\langle(b f)(c e) b(f g)\rangle$
30	$\langle(a h)(b f) a b f\rangle$
40	$\langle(b e)(c e) d\rangle$
50	$\langle a(b d) b c b(a d e)\rangle$

APRIORI algorithm for sequences - disadvantages

- the generate (join step) and test (prune step) method,
- the problems discussed in terms of frequent itemsets persist and intensify

1. generates a large amount of candidate patterns

- obvious even for 2-sequences: $m \times m+\frac{m(m-1)}{2} \rightarrow \mathcal{O}\left(m^{2}\right)$ (for itemsets it was just the second fraction, one third or so of candidates),

2. requires a lot of database scans

- one scan per sequence length,
- the number of scans given by the max pattern length the length $\leq \max (|s|, s \in S)$ (typically $\gg m$), (max itemset length is m and thus m scans at most),

3. search for long sequential patterns is difficult

- the total amount of candidate patterns is exponential with the pattern length, (the same growth as for itemsets, however the problem $\max (|s|, s \in S) \gg m$).
- the disadvantages addressed by alternative methods in FreeSpan and PrefixSpan algorithms.

FreeSpan [Han, Pei, Yin, 2000], $s_{\text {min }}=2$

- takes the recursive divide and conquer approach
- decides along the decreasingly sorted list of frequent items,

$$
* f \text {-list }=\langle(a: 4),(b: 4),(c: 4),(d: 3),(e: 3),(f: 3)\rangle,
$$

* $(g: 1)$ is not frequent,
- the sequential patterns splits into disjoint groups
* the patterns containing the most frequent item only,
* the patterns containing the second most frequent item and no less frequent items, etc.
- creates a projection sequence database (one per each group)
* from sequences it removes all the items disregarded by the group,
* it removes sequences missing item which must be in the pattern.
- subproblems have fewer items (beginning), and contain fewer sequences (end of f-list).

Id	Sequence	a-projection	b-projection	\ldots	f-projection
10	$\langle a(a b c)(a c) d(c f)\rangle$	$\langle a a a\rangle$	$\langle a(a b) a\rangle$	\ldots	$\langle a(a b c)(a c) d(c f)\rangle$
20	$\langle(a d) c(b c)(a e)\rangle$	$\langle a a\rangle$	$\langle a b a\rangle$	\ldots	
30	$\langle(e f)(a b)(d f) c b\rangle$	$\langle a\rangle$	$\langle(a b) b\rangle$	\ldots	$\langle(e f)(a b)(d f) c b\rangle$
40	$\langle e g(a f) c b c\rangle$	$\langle a\rangle$	$\langle a b\rangle$	\ldots	$\langle e(a f) c b c\rangle$

[^0]
PrefixSpan [Pei, Han et al., 2001]

- a similar idea, more efficient than its predecessor FreeSpan,
- the projection based on prefix subsequence occurrence (in FreeSpan arbitrary occurrence)
- allows for a more efficient database decomposition,
- $\beta=\left\langle s_{1}^{\prime}, \ldots, s_{m}^{\prime}\right\rangle$ is a prefix of $\alpha=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ if:
(1) $m \leq n$, (2) $\forall i \leq m-1 s_{i}^{\prime}=s_{i}$, (3) $s_{m}^{\prime} \subseteq s_{m}$,
(4) \forall items from $\left(s_{m}-s_{m}^{\prime}\right)>\forall$ items from s_{m}^{\prime},
- ex.: $\langle a\rangle,\langle a a\rangle,\langle a(a b)\rangle$ and $\langle a(a b c)\rangle$ are the prefixes $\langle a(a b c)(a c) d(c f)\rangle$,
- ex.: $\langle a b\rangle,\langle a(b c)\rangle$ are not the prefixes $\langle a(a b c)(a c) d(c f)\rangle$,
- informally: postfix is a prefix complement
- ex.: prefix $\langle a\rangle$ has wrt $\langle a(a b c)(a c) d(c f)\rangle$ the postfix $\langle(a b c)(a c) d(c f)\rangle$,
- ex.: prefix $\langle a a\rangle$ has wrt $\langle a(a b c)(a c) d(c f)\rangle$ the postfix $\langle(-b c)(a c) d(c f)\rangle$,
- $\alpha^{\prime} \sqsubseteq \alpha$ is a projection α wrt the prefix $\beta \sqsubseteq \alpha$, if:
(1) α^{\prime} has a prefix β,
(2) there is no $\alpha^{\prime \prime}$ that is (i) a supersequence of α^{\prime} (i.e. $\alpha^{\prime} \sqsubset \alpha^{\prime \prime}$),
(ii) subsequence of α and (iii) has the prefix β,
- ex.: the projection of $\langle a(a b c)(a c) d(c f)\rangle$ wrt the prefix $\langle(a c) d\rangle$ is $\langle(a c) d(c f)\rangle$.

PrefixSpan - algorithm, example ($s_{\min }=2$)

- PrefixSpan: the input is S and $s_{\text {min }}$

1. $i=1$, the init projection prefix database $\left.S\right|_{\alpha_{0}}=\left.S\right|_{\emptyset}=S$,
2. repeat for all the projection prefix databases $\left.S\right|_{\alpha_{i-1}}$
(a) find frequent i-patterns (sufficient support in $\left.\alpha_{i-1} \cdot S\right|_{\alpha_{i-1}}$),
(b) until the set of i-patterns is not empty
i. split the state space having the i-patterns $\left(\alpha_{i}\right)$ as prefixes a projection database set originates $\left.S\right|_{\alpha_{i}}=\left.\left(\left.\alpha_{i-1} \cdot S\right|_{\alpha_{i-1}}\right)\right|_{\alpha_{i}}$,
ii. $i=i+1$ and go to the step (2).

Id	Sequence
10	$\langle a(a b c)(a c) d(c f)\rangle$
20	$\langle(a d) c(b c)(a e)\rangle$
30	$\langle(e f)(a b)(d f) c b\rangle$
40	$\langle e g(a f) c b c\rangle$

Prefix	Projection database (postfixes) or patterns
$\langle a\rangle$	$\langle(a b c)(a c) d(c f)\rangle,\left\langle\left(_d\right) c(b c)(a e)\right\rangle,\left\langle\left(_b\right)(d f) c b\right\rangle,\langle(-f) c b c\rangle$
	2-patterns: $\langle a a\rangle: 2,\langle a b\rangle: 4,\langle a c\rangle: 4,\langle a d\rangle: 2,\langle a f\rangle: 2,\langle(a b)\rangle: 2$
$\langle b\rangle$	$\left\langle\left(_c\right)(a c) d(c f)\right\rangle,\left\langle\left(_c\right)(a e)\right\rangle,\langle(d f) c b\rangle,\langle c\rangle$
	2-patterns: $\langle b a\rangle: 2,\langle b c\rangle: 3,\langle(b c)\rangle: 2,\langle b d\rangle: 2,\langle b f\rangle: 2$
$\langle a a\rangle$	$\left\langle\left(_b c\right)(a c) d(c f)\right\rangle,\langle(-e)\rangle$
	STOP (no 3-patterns)
$\langle(a b)\rangle$	$\langle(-c)(a c) d(c f)\rangle,\langle(d f) c b\rangle$
	3-patterns: $\langle(a b) c\rangle: 2,\langle(a b) d\rangle: 2,\langle(a b) f\rangle: 2$

Frequent sequence search - problem generalization

- subsequence definition (slide 13) is still not general enough for certain practical problems,
- ex.: book stores

ID	Time	Items
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C2	1	Foundation, Ringworld
C2	20	Foundation and Empire
C2	50	Ringworld Engineers

- the GSP algorithm contributed in several additional aspects

1. introduction of time constraints

- adjoining sequence elements must not be too far (MaxGap) nor close (MinGap),

2. extended transaction definition

- the items with near time stamps included in the same transaction,
- sliding window, the parameter WinSize gives its size,

3. a taxonomy of items

- a directed acyclic graph defines a concept hierarchy built upon items.

Episodal rules

- association rule analogy,
- predict the further development of sequence with the aid of patterns,
- ex.: the only sequence, the only item per position, MaxGap=3

- S is a sequence, $\alpha=\langle A B\rangle$ and $\beta=\langle A B C\rangle$ its subsequences,
- α is a prefix of β,
- episodal rule is a probabilistic implication
$-\alpha \Rightarrow \operatorname{postfix}(\beta, \alpha)$, i.e. $\langle A B\rangle \Rightarrow\langle C\rangle$
- likewise for association rules, min support parameter is usually completed by min confidence
$-\operatorname{conf}(\alpha \Rightarrow \operatorname{postfix}(\beta, \alpha))=\frac{s(\beta, S, 3)}{s(\alpha, S, 3)}=\frac{1}{2}$.

Frequent subsequences - summary, categorization

- Different problem types distinguished according to the sequence types
- single vs more sequences in a database
* asks for different support definition,
- directed vs undirected sequences
* asks for different treatment of canonical representation,
- one item vs more items per single sequence position
* influences complexity of the solution,
- constraints may be needed
* e.g. the window size for transaction definition,
* MinGap and MaxGap for sequence definition,
* constraints extend practical applicability, slightly increase complexity,
- a taxonomy of items may exist
* similar to constraints - extends applicability, but it may increase complexity,
- items or (labeled) intervals
* an interval: $I=($ start, end, label $)$.
- the next lecture: from sequences towards structural patterns (trees/graphs).

Recommended reading, lecture resources

:: Reading

- Agrawal, Srikant: Mining Sequential Patterns.
- Agrawal, Srikant: MSPs: Generalizations and Performance.
- from APRIORI towards its sequential versions AprioriAll and GSP,
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2818\&rep=rep1\&type=pdf,
- Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.
- FreeSpan (idea) and PrefixSpan algorithms, efficiency comparison with GSP,
- http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7211,
- Mannila et al.: Discovery of Frequent Episodes in Event Sequences.
- episodal rules,
- http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3594,
- Borgelt: Frequent Pattern Mining.
- undirected sequences,
- http://www.borgelt.net/teach/fpm/slides.html.

OPPA European Social Fund Prague \& EU: We invest in your future.

[^0]: Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

