Machine Learning and Data Analysis Learning Logic Formulas

Filip Železný

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Intelligent Data Analysis lab http://ida.felk.cvut.cz

January 6, 2012

(b) a (B) b (a (B))

PAC Learning

So far our PAC-learning framework considered sample complexity

- how fast m grows with $1/\epsilon$, $1/\delta$, and n
- we requested *m* to grow polynomially

Note about PAC-learning: inability to produce a consistent hypothesis implies inability to PAC-learn

- Fix a finite $X' \subseteq X$, set $P_X(x) = 1/|X'|$ for all $x \in X'$, set $\epsilon < \frac{1}{|X'|+1}$ and $\delta < 1$ (we are allowed to set any P_X , ϵ , and δ in PAC-learning).
- If hypothesis f is not consistent on an arbitrary example (x,y), then $e(f)\geq 1/|X'|>\epsilon$, violating a PAC-learning condition with probability $1>\delta$
- Thus if *f* is not consistent then we did not PAC-learn.

イロト イポト イヨト イヨト

Efficient PAC-Learning

We now also consider *computational complexity*

Efficient PAC Learnability

An algorithm *efficiently PAC-learns* C by F if it PAC-learns C by F in polynomial time.

Polynomial: again in $1/\epsilon$, $1/\delta$, and the size *n* of examples

- Learning time grows at least as *m* does: learner needs at least a unit of time for processing each example
- Efficient PAC-learning thus requires each example to be processed in polynomial time
- Previous slide now implies: if finding a consistent model is NP-hard then we cannot efficiently PAC-learn (unless RP=NP)

Conjunctions and Disjunctions

$$X=\{0,1\}^n$$
, i.e each $x=(x^1,\ldots,x^n)$ where $x^i\in\{0,1\}$, $Y=\{0,1\}$

each f in $\mathcal{F} = \mathcal{C}$ defined by a conjunction ϕ of literals using propositional variables from set $\{p_1 \dots p_n\}$

f(x)=1 iff ϕ is true under assignment of values x^i to p^i

Generalization algorithm:

$$\begin{split} \phi &= p_1 \wedge \neg p_1 \wedge \ldots p_n \wedge \neg p_n \text{ {`most specific hypothesis'} } \\ \textbf{for each example } (x,1) \in S \text{ do} \\ \textbf{for i} &= 1 \ldots n \text{ do} \\ \textbf{if } x^i &= 0 \text{ then} \\ \text{ delete } p_i \text{ from } \phi \\ \textbf{else} \\ \text{ delete } \neg p_i \text{ from } \phi \\ \textbf{return } \phi \end{split}$$

Conjunctions and Disjunctions (cont'd)

Algorithm never deletes a literal that must stay in ϕ . Final ϕ is thus consistent or no consistent ϕ exists.

A consistent algorithm exists and $|\mathcal{F}|=3^n,$ therefore conjunctions are PAC-learnable.^1

Sample complexity: $m \ge \frac{1}{\epsilon} \left(n \ln 3 + \ln \frac{1}{\delta} \right)$

Algorithm makes $m \cdot n$ steps, i.e. time linear in n (size of examples), therefore conjunctions are *efficiently PAC-learnable*.

Same applies for *disjunctions* using a simple transformation:

- run algorithm on 'negated' examples (x, 1 c(x))
- negate its output ϕ ($\neg \phi$ is a disjunction)

 $|\mathcal{F}| = 2^{2n}$ if $p_i \wedge \neg p_i$ allowed in the conjunction.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらで

k-Conjunctions and k-Disjunctions

Generalization algorithm produces the most specific (longest) consistent ϕ . Often, small ϕ are wanted.

A *k*-conjunction contains at most *k* literals. C^{kconj} is efficiently PAC-learnable simply by trying the $O(n^k)$ possible *k*-conjunctions on *n* variables.

Heuristic approaches such as best-first search may be employed to speed-up the search within the polynomial bound. Search would start from the empty conjunction, adding a single literal in each step. The heuristic function evaluating the current conjunction ϕ would e.g. be

$$h(\phi) = -|\{(x,0) \in S \mid x \models \phi\}|$$

while all descendants of any ϕ such that $x \nvDash \phi$ for some $(x, 1) \in S$ would be pruned.

k-disjunctions $\mathcal{C}^{k ext{-disj}}$: analogical case, reduce by negating examples and ϕ

・ロト ・回ト ・ヨト

k-term DNF and k-clause CNF

A k-term DNF formula: disjunction of at most k conjunctions ('terms'). Example of a 3-term DNF formula:

$$(\neg p_1 \land p_3) \lor (p_2 \land \neg p_3 \land p_4 \land \neg p_6) \lor p_2$$

A k-clause CNF formula: conjunction of at most k disjunctions ('clauses'). Example of a 3-clause CNF formula:

$$(p_1 \lor \neg p_3) \land (\neg p_2 \lor p_3 \lor \neg p_4 \lor p_6) \land \neg p_2$$

Learnability results for the two classes analogical (again reduction by negation), we continue analysis with k-term DNF.

Consistent 3-term DNF as Graph Coloring

Finding a 3-term DNF formula consistent with a sample is as hard graph 3-coloring.

Graph 3-coloring:

- given vertices V and edges E,
- assign one of 3 colors to each vertex $v \in V$ so that no adjacent vertices have same color
- NP-complete problem

Graph Coloring

3

・ロト ・聞ト ・ヨト ・ヨト

Reduction from a Graph to a Learning Sample

Graph	Sample
vertices $v_1 \dots v_n$	propositional variables $p_1 \dots p_n$
vertex v_i	example $(x, 1)$, $x^k = \begin{cases} 0 \text{ if } k = i \\ 1 \text{ otherwise} \end{cases}$
e.g.: vertex v_3	example (11011, 1)
edge e_{ij}	example $(x, 0)$, $x^k = \begin{cases} 0 \text{ if } k = i \text{ or } k = j \\ 1 \text{ otherwise} \end{cases}$
e.g.: edge v_{34}	example (11001,0)

Reduction takes time linear in m = |V| + |E| and n.

Remind: (x, 1) denote positive examples, (x, 0) negative examples.

Consistent 3-term DNF as Graph Coloring (cont'd)

Let S be a sample obtained by reduction of graph (V, E). We will show:

- If (V, E) is 3-colorable then there is a 3-term DNF formula ϕ consistent with S
- **2** If there is a 3-term DNF formula ϕ consistent with S then (V, E) is 3-colorable

$Colorability \Rightarrow Consistency$

Assume vertices V are split in partitions R, B, Y (red, black, yellow) representing a valid coloring.

Consider 3-term DNF formula

$$\phi = T_R \vee T_B \vee T_Y$$

such that

$$T_R = \bigwedge_{v_i \notin R} p_i \qquad T_B = \bigwedge_{v_i \notin B} p_i \qquad T_Y = \bigwedge_{v_i \notin Y} p_i$$

We will show that ϕ is consistent with S reduced from graph (V, E).

Colorability \Rightarrow Consistency (cont'd)

Consistency with positive examples:

- One positive example (x, 1) for each vertex v_i
- Solution $v_i \in R$ (B and Y are analogical)
- T_R does not contain p_i (by definition of T_R)
- $x^j = 1$ for $i \neq j$ (by reduction)
- So x satisfies T_R (denote $x \models T_R$) (from 3 and 4)
- Therefore $x \models \phi$

Colorability \Rightarrow Consistency (cont'd)

Consistency with negative examples:

- **One negative example** (x, 0) for each edge e_{ij}
- 2 $x^i = 0$ (by definition)
- v_i and v_j cannot both be red (because the coloring is valid)
- \bigcirc Assume v_i is not red
- **(a)** $p_i \in T_R$ (by definition of T_R)
- **(**) Therefore $x \nvDash T_R$ (from 2 and 5)
- Analogically $x \nvDash T_B$ and $x \nvDash T_Y$ (repeat from Step 3 for the remaining colors)

1 Therefore $x \nvDash \phi$

$\mathsf{Consistency} \Rightarrow \mathsf{Colorability}$

Assume there is a consistent 3-term DNF ϕ , denote the 3 terms T_R , T_B , T_Y :

$$\phi = T_R \vee T_B \vee T_Y$$

This prescribes coloring:

```
for all positive examples (x, 1) do
  Let v_i be the vertex corresponding to x
  if x \models T_R then
     color v_i red
  else
     if x \models T_B then
        color v_i black
     else
        if x \models T_Y then
           color v_i yellow
```

Consistency \Rightarrow Colorability (cont'd)

We prove that invalid coloring implies inconsistency of ϕ .

- Suppose the coloring is not valid.
- 2 Then there are some adjacent v_i and v_j of same color, say red
- Solution Let $(x_i, 1)$, $(x_j, 1)$ and $(x_{ij}, 0)$ denote the examples corresponding to v_i , v_j and e_{ij}
- $x_i, x_j \models T_R$ (by coloring algorithm)
- $x_i^i = x_j^j = 0$ (by reduction)
- T_R does not contain p_i or p_j (from 4 and 5)
- $x_{ij}^k = 1$ for $k \notin \{i, j\}$ (by reduction)
- **3** $x_{ij} \models T_R$ (from 5 and 7)
- Therefore $x_{ij} \models \phi$ but then ϕ is not consistent since $(x_{ij}, 0)$ is a negative example

3-term DNF not Efficiently PAC-Learnable

We proved that graph 3-coloring can be solved by linear-time reduction to a learning sample S and learning a 3-term DNF formula ϕ consistent with S.

Since graph 3-coloring is NP-hard, finding a consistent ϕ is also NP-hard. Therefore $C^{3-\text{term DNF}}$ is not efficiently PAC-learnable by $C^{3-\text{term DNF}}$.

• This follows from the fact that inability to find a consistent hypothesis implies inability to PAC-learn (as we have already shown)

Can be also shown for any $\mathcal{C}^{k-\text{term DNF}}$, $k \geq 2$.

k-CNF and k-DNF

 C^{k-CNF} contains conjunctions of *k*-disjunctions. Example:

$$(p_1 \lor p_2) \land (\neg p_3 \lor p_4 \lor p_5)$$

belongs in C^{3-CNF} .

 $\mathcal{C}^{\text{3-DNF}}$ analogical, we continue with $\mathcal{C}^{\text{3-CNF}}$

 $\mathcal{C}^{k\text{-}\mathsf{CNF}}$ is as easy to learn as monotone conjunctions:

- \bullet assign a new atom p_i^\prime to each clause that can be written with the original symbols p_i
- there is $\mathcal{O}(n^k)$ (i.e. poly number) of such clauses
- \bullet convert all examples into the new representation using symbols p_i^\prime (in poly time)
- learn a monotone conjunction with the new examples using symbols p'_i
- \bullet convert it back to the original representation using symbols p_i

= 900

k-CNF vs. k-term DNF

Every k-term DNF formula can be written as an equivalent k-CNF formula. Example:

$$(p_1 \wedge p_2) \lor (p_2 \wedge p_3) \equiv (p_1 \lor p_2) \land (p_1 \lor p_3) \land p_2 \land (p_2 \lor p_3)$$

Thus $\mathcal{C}^{k\text{-term DNF}} \subseteq \mathcal{C}^{k\text{-CNF}}$.

$$|\mathcal{C}^{k\text{-term DNF}}| = \mathcal{O}(2^{n})$$
$$|\mathcal{C}^{k\text{-CNF}}| = \mathcal{O}(2^{\binom{2n}{k}}) = \mathcal{O}(2^{n^{k}})$$

So $C^{k-\text{term DNF}} \subset C^{k-\text{CNF}}$, thus not every k-CNF formula can be written as an equivalent k-term DNF formula.

Learning k-term DNF by k-CNF

Learning k-term DNF can be reduced to learning k-CNF. Assume examples in sample S contain values for n propositional variables.

- Create a new variable for each possible clause; there are $\mathcal{O}(n^k)$ of them
- Create a new sample S' using the new variables computed from the original variables.
- Learn a monotone conjunction from S'. Translating it back to the original variables yields a k-CNF formula

Since conjunctions are efficiently PAC-learnable, k-term DNF are efficiently PAC-learnable by k-CNF. (Caveat: Learning may produce a k-CNF formula not rewrittable into a k-term DNF formula.)

In general: a hypothesis class may not be efficiently PAC-learnable by itself, but may be efficiently PAC-learnable by a larger hypothesis class!

k-Decision Lists

A k-Decision list is an ordered set of conjunctive rules with at most k literals in each, and a default value.

Example of a 2-DL:

k-Decision Lists (cont'd) For $|C^{k-DL}|$ we have

$$|\mathcal{C}^{k\text{-}\mathsf{DL}}| = \mathcal{O}(3^{|\mathcal{C}^{k\text{-}\mathsf{conj}}|}(|\mathcal{C}^{k\text{-}\mathsf{conj}}|)!)$$

(each conjunction in in the list can be either be absent, attached to 0, or 1, and the order in the list is arbitrary). Therefore $\log(|\mathcal{C}^{k-DL}|)$ is polynomial in n, implying polynomial sample complexity.

Every k-DNF formula can be written as a k-Decision List

- every term T of the formula (in any order) forms one rule $|\mathsf{T}| \rightarrow 1$
- default value is 0

Thus

$$\mathcal{C}^{k-\mathsf{DNF}} \subseteq \mathcal{C}^{k-\mathsf{DL}}$$

For every $c \in C^{k-DL}$, also $\neg c \in C^{k-DL}$ (revert values in leaves). Therefore also

$$\mathcal{C}^{k\text{-}\mathsf{CNF}} \subseteq \mathcal{C}^{k\text{-}\mathsf{DL}}$$

k-Decision Lists (cont'd)

 $\mathcal{C}^{k\text{-}\mathsf{DL}}$ is efficiently PAC-learnable (by $\mathcal{C}^{k\text{-}\mathsf{DL}}$) with the covering algorithm

1:
$$S =$$
 training sample, $DL =$ empty decision list
2: while $S \neq \{\}$ do
3: $\phi =$ any k-conjunction such that
 $\{(x,0) \in S \mid x \models \phi\} \neq \{\}$ and $\{(x,1) \in S \mid x \models \phi\} = \{\}$ or
 $\{(x,0) \in S \mid x \models \phi\} = \{\}$ and $\{(x,1) \in S \mid x \models \phi\} \neq \{\}$
4: add $\phi \rightarrow 0$ or $\phi \rightarrow 1$ (respectively) to DL
5: $S = S \setminus \{(x,y) \in S \mid x \models \phi\}$
6: if $S = \{\}$ then
7: add default value 1 or 0 (respectively) to DL
8: return DL

Note: in Step 3 may go over all $\mathcal{O}(n^k)$ k-conjunctions; heuristic search applicable as in learning k-conjunctions.

k-Decision Trees

A tree in which each path from the root to a leaf has length at most k and represents a rule. Each non-leaf vertex contains one propositional variable, each leaf a class value.

Example of a 3-decision tree:

k-Decision Trees (cont'd)

Any k-DT can be represented by a k-DNF:

• create one term for each path leading to a leaf labelled with "1"

Any *k*-DT can be represented by a *k*-CNF:

• create one clause for each path leading to a leaf labelled with "0"

Therefore

$$\mathcal{C}^{k\text{-}\mathsf{D}\mathsf{T}} \subseteq \mathcal{C}^{k\text{-}\mathsf{C}\mathsf{N}\mathsf{F}} \cap \mathcal{C}^{k\text{-}\mathsf{D}\mathsf{N}\mathsf{F}}$$

Since $C^{k-\text{CNF}} \neq C^{k-\text{DNF}}$, we have $C^{k-\text{DT}} \subset C^{k-\text{CNF}}$ and $C^{k-\text{DT}} \subset C^{k-\text{DNF}}$ and since $C^{k-\text{CNF}} \subseteq C^{k-\text{DL}}$ we also have

$$\mathcal{C}^{k\text{-}\mathsf{D}\mathsf{T}}\subset\mathcal{C}^{k\text{-}\mathsf{D}\mathsf{L}}$$

k-Decision Trees (cont'd)

It is NP-hard to find a consistent k-Decision tree. C^{k-DT} is not efficiently PAC-learnable by C^{k-DT} .

What is the error bound for an inconsistent tree? Remind: if

$$m \geq rac{1}{2\epsilon^2} \ln rac{2|\mathcal{F}|}{\delta}$$

then classification error will not exceed training error by more than ϵ with at least $1-\delta$ probability.

Need to calculate $|\mathcal{F}| = |\mathcal{C}^{k-\mathsf{DT}}|$

k-Decision Trees (cont'd)

$$|\mathcal{C}^{1-\mathsf{DT}}| = 2$$

For depth k + 1 we have n choices of the root variable, $|C^{k-DT}|$ possible left subtrees and $|C^{(k-DT)}|$ possible right subtrees.

$$|\mathcal{C}^{(k+1)\text{-}\mathsf{DT}}| = n \cdot |\mathcal{C}^{k\text{-}\mathsf{DT}}|^2$$

Denote
$$l_k = \log_2 |\mathcal{C}^{k\text{-}\mathsf{D}\mathsf{T}}|$$

$$l_1 = 1$$

$$l_{k+1} = \log_2 n + 2l_k$$

Solution:

$$l_k = (2^k - 1)(1 + \log_2 n) + 1$$

I.e. $\ln |\mathcal{C}^{k-\mathsf{DT}}|$ polynomial in *n* (and exponential in *k*).

Filip Železný (ČVUT)

k-leave Decision Trees

Altnernatively, we may bound the number of leaves.

 $\mathcal{C}^{k-\text{leave DT}}$: trees with at most k leaves.

Finding a consistent k-leave DT still NP-hard. $C^{k-\text{leave DT}}$ not efficiently PAC-learnable with $C^{k-\text{leave DT}}$.

Error bound for an inconsistent tree? Size of the concept space:

$$|\mathcal{C}^{k\text{-leave DT}}| \leq n^{k-1}(k+1)^{(2k-1)}$$

Provides better bound than in k-DT: $\ln |C^{k-\text{leave DT}}|$ polynomial in both n and k.

TDIDT algorithm

A recursive heuristic algorithm for quick (poly-time) construction of a possibly inconsistent DT .

TDIDT(S: sample, $P = \{p_1, \ldots, p_n\}$: propositional variables)

if all examples in \boldsymbol{S} have same class \boldsymbol{y} then

return vertex labeled y

else

if $P = \{\}$ then

return vertex labeled by the *majority class* in *S* **else**

```
Choose p_i \in P and create a vertex labeled p_i
for v \in \{0, 1\} do
```

Create an edge from the p_i vertex, label it v $S' = \{(x,y) \in S \mid x^i = v\}$ if C'_i () then

if $S' = \{\}$ then

add a leaf to edge v, label it by the majority class in S

else

```
add TDIDT(S', P \setminus p_i) to edge v
```

- 3

イロト イポト イヨト イヨト

TDIDT algorithm: remarks

• The heuristic in Choose $p_i \in P$

Define $S_i = \{(x, y) | x \models p_i\}$. Usually we choose p_i maximizing

$$\Delta H(S, p_i) = H(S) - \frac{|S_i|}{S}H(S_i) - \frac{|S \setminus S_i|}{S}H(S \setminus S_i)$$

where *entropy* H(S) is defined as

$$H(S) = -\sum_{y \in \{0,1\}} \frac{|\{(x,y) \in S\}|}{|S|} \log_2 \frac{|\{(x,y) \in S\}|}{|S|}$$

Remarks

• TDIDT easily adaptable to constructing *k*-DT

Condition $P = \{\}$ is replaced by $P = \{\}$ or current depth = k

• TDIDT and other logic-based learners applicable also non-Boolean classification

TDIDT: No change in code needed. Decision lists: use multiple target values instead of 0 and 1, covering strategy remains same.

• TDIDT and other logic-based learners easily adaptable to nominal features

TDIDT: Instead of going over the Boolean range $v \in \{0, 1\}$, we go over all possible values of the nominal feature x^i . Other learners: pre-construct Boolean features from nominal features (similarly to what follows).

Filip Železný (ČVUT)

Remarks (cont'd)

TDIDT and other logic-based learners easily adaptable to real-valued features

Use pre-constructed Boolean features such as p:

p is true iff $x^i > 153.56$

where x^i is an original real-valued feature and the threshold value 153.56 is determined in a preprocessing step. Multiple thresholds for one real-valued feature may be considered and used to define multiple Boolean features.

Discretization: 3 General Approaches

• Equilength intervals

• Equiprobable intervals

• Intervals containing same-class examples (most popular)

Inconsistent Hypotheses

Remind: when $C \nsubseteq \mathcal{F}$ or $P_{Y|X}$ is not a concept, we must learn inconsistent hypotheses. Then we do not PAC-learn but we still have error bounds:

• Training error vs. classification error bound

$$|e(f) - e(S,f)| \le \sqrt{\frac{1}{2m} \ln \frac{2|\mathcal{F}|}{\delta}}$$

does not assume the learner minimizes training error, i.e. that it outputs $\arg\min_{f\in\mathcal{F}}e(S,f)$

• Classification error of learned vs. best hypothesis bound

$$e(f) \leq \left(\min_{f \in \mathcal{F}} e(f)\right) + 2\sqrt{\frac{1}{2m} \ln \frac{2|\mathcal{F}|}{\delta}}$$

assumes the learner minimizes training error. This may be difficult.

Consistency vs. Error Minimization

Class	Find f , $e(S,f) = 0$	Find $\arg \min_{f \in \mathcal{F}} e(S, f)$
k-DT, k-leave DT	NP-hard	NP-hard
any ${\mathcal C}$ where $ {\mathcal C} $ poly	easy	easy
such as <i>k</i> -conjunctions	easy	easy
general conjunctions	easy	NP-hard

Minimizing e(S, f) for general conjunctions can be reduced to the NP-hard vertex-cover graph problem.