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PAC Learning

So far our PAC-learning framework considered sample complexity

how fast m grows with 1/ǫ, 1/δ, and n

we requested m to grow polynomially

Note about PAC-learning: inability to produce a consistent hypothesis
implies inability to PAC-learn

Fix a finite X′ ⊆ X, set PX(x) = 1/|X′| for all x ∈ X′, set ǫ <
1

|X′|+1

and δ < 1 (we are allowed to set any PX, ǫ, and δ in PAC-learning).

If hypothesis f is not consistent on an arbitrary example (x, y), then
e(f ) ≥ 1/|X′| > ǫ, violating a PAC-learning condition with
probability 1 > δ

Thus if f is not consistent then we did not PAC-learn.
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Efficient PAC-Learning

We now also consider computational complexity

Efficient PAC Learnability

An algorithm efficiently PAC-learns C by F if it PAC-learns C by F in
polynomial time.

Polynomial: again in 1/ǫ, 1/δ, and the size n of examples

Learning time grows at least as m does: learner needs at least a unit
of time for processing each example

Efficient PAC-learning thus requires each example to be processed in
polynomial time

Previous slide now implies: if finding a consistent model is NP-hard
then we cannot efficiently PAC-learn (unless RP=NP)
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Conjunctions and Disjunctions

X = {0, 1}n, i.e each x = (x1, . . . , xn) where xi ∈ {0, 1}, Y = {0, 1}

each f in F = C defined by a conjunction φ of literals using propositional
variables from set {p1 . . . pn}

f (x) = 1 iff φ is true under assignment of values xi to pi

Generalization algorithm:

φ = p1 ∧ ¬p1 ∧ . . . pn ∧ ¬pn {‘most specific hypothesis’}
for each example (x, 1) ∈ S do

for i = 1 . . . n do

if xi = 0 then

delete pi from φ

else

delete ¬pi from φ

return φ
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Conjunctions and Disjunctions (cont’d)

Algorithm never deletes a literal that must stay in φ. Final φ is thus
consistent or no consistent φ exists.

A consistent algorithm exists and |F | = 3n, therefore conjunctions are
PAC-learnable.1

Sample complexity: m ≥ 1
ǫ

(

n ln 3+ ln 1
δ

)

Algorithm makes m · n steps, i.e. time linear in n (size of examples),
therefore conjunctions are efficiently PAC-learnable.

Same applies for disjunctions using a simple transformation:

run algorithm on ‘negated’ examples (x, 1− c(x))

negate its output φ (¬φ is a disjunction)

1|F | = 22n if pi ∧ ¬pi allowed in the conjunction.
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k-Conjunctions and k-Disjunctions

Generalization algorithm produces the most specific (longest) consistent φ.
Often, small φ are wanted.

A k-conjunction contains at most k literals. Ckconj is efficiently
PAC-learnable simply by trying the O(nk) possible k-conjunctions on n
variables.

Heuristic approaches such as best-first search may be employed to
speed-up the search within the polynomial bound. Search would start from
the empty conjunction, adding a single literal in each step. The heuristic
function evaluating the current conjunction φ would e.g. be

h(φ) = −|{(x, 0) ∈ S | x |= φ}|

while all descendants of any φ such that x 2 φ for some (x, 1) ∈ S would
be pruned.

k-disjunctions Ck-disj: analogical case, reduce by negating examples and φ
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k-term DNF and k-clause CNF

A k-term DNF formula: disjunction of at most k conjunctions (‘terms’).
Example of a 3-term DNF formula:

(¬p1 ∧ p3) ∨ (p2 ∧ ¬p3 ∧ p4 ∧ ¬p6) ∨ p2

A k-clause CNF formula: conjunction of at most k disjunctions (‘clauses’).
Example of a 3-clause CNF formula:

(p1 ∨ ¬p3) ∧ (¬p2 ∨ p3 ∨ ¬p4 ∨ p6) ∧ ¬p2

Learnability results for the two classes analogical (again reduction by
negation), we continue analysis with k-term DNF.
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Consistent 3-term DNF as Graph Coloring

Finding a 3-term DNF formula consistent with a sample is as hard graph
3-coloring.

Graph 3-coloring:

given vertices V and edges E,

assign one of 3 colors to each vertex v ∈ V so that no adjacent
vertices have same color

NP-complete problem
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Graph Coloring

v4

v1

v5

v2

v3
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Reduction from a Graph to a Learning Sample

Graph Sample

vertices v1 . . . vn propositional variables p1 . . . pn

vertex vi example (x, 1), xk =

{

0 if k = i

1 otherwise

e.g.: vertex v3 example (11011, 1)

edge eij example (x, 0), xk =

{

0 if k = i or k = j

1 otherwise

e.g.: edge v34 example (11001, 0)

Reduction takes time linear in m = |V| + |E| and n.

Remind: (x, 1) denote positive examples, (x, 0) negative examples.
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Reduction from a Graph to a Learning Sample (cont’d)

v4

v1

v5

v2

v3

(01111, 1) (10111, 1)

(11101, 1) (11110, 1)(11110, 1)

(11011, 1)(01101, 0) (10110, 0)

(00111, 0)

(11100, 0)

(01011, 0) (10011, 0)

(11001, 0) (11010, 0)
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Consistent 3-term DNF as Graph Coloring (cont’d)

Let S be a sample obtained by reduction of graph (V,E). We will show:

1 If (V,E) is 3-colorable then there is a 3-term DNF formula φ

consistent with S

2 If there is a 3-term DNF formula φ consistent with S then (V,E) is
3-colorable
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Colorability ⇒ Consistency

Assume vertices V are split in partitions R,B,Y (red, black, yellow)
representing a valid coloring.

Consider 3-term DNF formula

φ = TR ∨ TB ∨ TY

such that

TR =
∧

vi/∈R

pi TB =
∧

vi/∈B

pi TY =
∧

vi/∈Y

pi

We will show that φ is consistent with S reduced from graph (V,E).
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Colorability ⇒ Consistency (cont’d)

Consistency with positive examples:

1 One positive example (x, 1) for each vertex vi
2 Assume vi ∈ R (B and Y are analogical)

3 TR does not contain pi (by definition of TR)

4 xj = 1 for i 6= j (by reduction)

5 x satisfies TR (denote x |= TR) (from 3 and 4)

6 Therefore x |= φ
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Colorability ⇒ Consistency (cont’d)

Consistency with negative examples:

1 One negative example (x, 0) for each edge eij

2 xi = 0 (by definition)

3 vi and vj cannot both be red (because the coloring is valid)

4 Assume vi is not red

5 pi ∈ TR (by definition of TR)

6 Therefore x 2 TR (from 2 and 5)

7 Analogically x 2 TB and x 2 TY (repeat from Step 3 for the remaining
colors)

8 Therefore x 2 φ
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Consistency ⇒ Colorability

Assume there is a consistent 3-term DNF φ, denote the 3 terms TR,TB,TY:

φ = TR ∨ TB ∨ TY

This prescribes coloring:

for all positive examples (x, 1) do

Let vi be the vertex corresponding to x
if x |= TR then

color vi red
else

if x |= TB then

color vi black
else

if x |= TY then

color vi yellow
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Consistency ⇒ Colorability (cont’d)

We prove that invalid coloring implies inconsistency of φ.

1 Suppose the coloring is not valid.

2 Then there are some adjacent vi and vj of same color, say red

3 Let (xi, 1), (xj, 1) and (xij, 0) denote the examples corresponding to
vi, vj and eij

4 xi, xj |= TR (by coloring algorithm)

5 xii = x
j
j = 0 (by reduction)

6 TR does not contain pi or pj (from 4 and 5)

7 xkij = 1 for k /∈ {i, j} (by reduction)

8 xij |= TR (from 5 and 7)

9 Therefore xij |= φ but then φ is not consistent since (xij, 0) is a
negative example
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3-term DNF not Efficiently PAC-Learnable

We proved that graph 3-coloring can be solved by linear-time reduction to
a learning sample S and learning a 3-term DNF formula φ consistent with
S.

Since graph 3-coloring is NP-hard, finding a consistent φ is also NP-hard.

Therefore C3-term DNF is not efficiently PAC-learnable by C3-term DNF.

This follows from the fact that inability to find a consistent
hypothesis implies inability to PAC-learn (as we have already shown)

Can be also shown for any Ck-term DNF, k ≥ 2.
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k-CNF and k-DNF

Ck-CNF contains conjunctions of k-disjunctions. Example:

(p1 ∨ p2) ∧ (¬p3 ∨ p4 ∨ p5)

belongs in C3-CNF.

C3-DNF analogical, we continue with C3-CNF.

Ck-CNF is as easy to learn as monotone conjunctions:

assign a new atom p′i to each clause that can be written with the
original symbols pi

there is O(nk) (i.e. poly number) of such clauses

convert all examples into the new representation using symbols p′i (in
poly time)

learn a monotone conjunction with the new examples using symbols p′i
convert it back to the original representation using symbols pi
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k-CNF vs. k-term DNF

Every k-term DNF formula can be written as an equivalent k-CNF formula.
Example:

(p1 ∧ p2) ∨ (p2 ∧ p3) ≡ (p1 ∨ p2) ∧ (p1 ∨ p3) ∧ p2 ∧ (p2 ∨ p3)

Thus Ck-term DNF ⊆ Ck-CNF.

|Ck-term DNF| = O(2n)

|Ck-CNF| = O(2





2n
k





) = O(2n
k
)

So Ck-term DNF ⊂ Ck-CNF, thus not every k-CNF formula can be written as
an equivalent k-term DNF formula.
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Learning k-term DNF by k-CNF

Learning k-term DNF can be reduced to learning k-CNF. Assume examples
in sample S contain values for n propositional variables.

Create a new variable for each possible clause; there are O(nk) of
them

Create a new sample S′ using the new variables computed from the
original variables.

Learn a monotone conjunction from S′. Translating it back to the
original variables yields a k-CNF formula

Since conjunctions are efficiently PAC-learnable, k-term DNF are efficiently
PAC-learnable by k-CNF. (Caveat: Learning may produce a k-CNF formula
not rewrittable into a k-term DNF formula.)

In general: a hypothesis class may not be efficiently PAC-learnable by
itself, but may be efficiently PAC-learnable by a larger hypothesis class!
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k-Decision Lists

A k-Decision list is an ordered set of conjunctive rules with at most k
literals in each, and a default value.

Example of a 2-DL:

p1 ∧ ¬p3 0

p4 1

¬p2 ∧ p3 1

p1 ∧ p5 0

1
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k-Decision Lists (cont’d)
For |Ck-DL| we have

|Ck-DL| = O(3|C
k-conj|(|Ck-conj|)!)

(each conjunction in in the list can be either be absent, attached to 0, or
1, and the order in the list is arbitrary). Therefore log(|Ck-DL|) is
polynomial in n, implying polynomial sample complexity.

Every k-DNF formula can be written as a k-Decision List

every term T of the formula (in any order) forms one rule T → 1

default value is 0

Thus
Ck-DNF ⊆ Ck-DL

For every c ∈ Ck-DL, also ¬c ∈ Ck-DL (revert values in leaves). Therefore
also

Ck-CNF ⊆ Ck-DL
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k-Decision Lists (cont’d)

Ck-DL is efficiently PAC-learnable (by Ck-DL) with the covering algorithm

1: S = training sample, DL = empty decision list
2: while S 6= {} do

3: φ = any k-conjunction such that
{(x, 0) ∈ S |x |= φ} 6= {} and {(x, 1) ∈ S |x |= φ} = {} or
{(x, 0) ∈ S |x |= φ} = {} and {(x, 1) ∈ S |x |= φ} 6= {}

4: add φ → 0 or φ → 1 (respectively) to DL

5: S = S \ {(x, y) ∈ S | x |= φ}
6: if S = {} then

7: add default value 1 or 0 (respectively) to DL
8: return DL

Note: in Step 3 may go over all O(nk) k-conjunctions; heuristic search
applicable as in learning k-conjunctions.
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k-Decision Trees

A tree in which each path from the root to a leaf has length at most k and
represents a rule. Each non-leaf vertex contains one propositional variable,
each leaf a class value.

Example of a 3-decision tree:

p3

false true

p5 1

false true

1 0
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k-Decision Trees (cont’d)

Any k-DT can be represented by a k-DNF:

create one term for each path leading to a leaf labelled with “1”

Any k-DT can be represented by a k-CNF:

create one clause for each path leading to a leaf labelled with “0”

Therefore
Ck-DT ⊆ Ck-CNF ∩ Ck-DNF

Since Ck-CNF 6= Ck-DNF, we have Ck-DT ⊂ Ck-CNF and Ck-DT ⊂ Ck-DNF and
since Ck-CNF ⊆ Ck-DL we also have

Ck-DT ⊂ Ck-DL
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k-Decision Trees (cont’d)

It is NP-hard to find a consistent k-Decision tree. Ck-DT is not efficiently
PAC-learnable by Ck-DT.

What is the error bound for an inconsistent tree? Remind: if

m ≥
1

2ǫ2
ln

2|F |

δ

then classification error will not exceed training error by more than ǫ with
at least 1− δ probability.

Need to calculate |F | = |Ck-DT|

Filip Železný (ČVUT) Learning Logic Formulas January 6, 2012 27 / 36



k-Decision Trees (cont’d)

|C1-DT| = 2

For depth k+ 1 we have n choices of the root variable, |Ck-DT| possible
left subtrees and |C(k-DT| possible right subtrees.

|C(k+1)-DT| = n · |Ck-DT|2

Denote lk = log2 |C
k-DT|

l1 =1

lk+1 = log2 n+ 2lk

Solution:
lk = (2k − 1)(1+ log2 n) + 1

I.e. ln |Ck-DT| polynomial in n (and exponential in k).
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k-leave Decision Trees

Altnernatively, we may bound the number of leaves.

Ck-leave DT: trees with at most k leaves.

Finding a consistent k-leave DT still NP-hard. Ck-leave DT not efficiently
PAC-learnable with Ck-leave DT.

Error bound for an inconsistent tree? Size of the concept space:

|Ck-leave DT| ≤ nk−1(k+ 1)(2k−1)

Provides better bound than in k-DT: ln |Ck-leave DT| polynomial in both n
and k.
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TDIDT algorithm
A recursive heuristic algorithm for quick (poly-time) construction of a
possibly inconsistent DT .

TDIDT(S: sample, P = {p1, . . . , pn}: propositional variables)

if all examples in S have same class y then

return vertex labeled y
else

if P = {} then

return vertex labeled by the majority class in S
else

Choose pi ∈ P and create a vertex labeled pi
for v ∈ {0, 1} do

Create an edge from the pi vertex, label it v
S′ = {(x, y) ∈ S | xi = v}
if S′ = {} then

add a leaf to edge v, label it by the majority class in S
else

add TDIDT(S′,P \ pi) to edge v
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TDIDT algorithm: remarks

The heuristic in Choose pi ∈ P

Define Si = {(x, y) |x |= pi}. Usually we choose pi maximizing

∆H(S, pi) = H(S) −
|Si|

S
H(Si) −

|S \ Si|

S
H(S \ Si)

where entropy H(S) is defined as

H(S) = − ∑
y∈{0,1}

|{(x, y) ∈ S}|

|S|
log2

|{(x, y) ∈ S}|

|S|
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Remarks

TDIDT easily adaptable to constructing k-DT

Condition P = {} is replaced by P = {} or current depth = k

TDIDT and other logic-based learners applicable also non-Boolean
classification

TDIDT: No change in code needed. Decision lists: use multiple target
values instead of 0 and 1, covering strategy remains same.

TDIDT and other logic-based learners easily adaptable to nominal
features

TDIDT: Instead of going over the Boolean range v ∈ {0, 1}, we go over
all possible values of the nominal feature xi. Other learners: pre-construct
Boolean features from nominal features (similarly to what follows).
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Remarks (cont’d)

TDIDT and other logic-based learners easily adaptable to real-valued
features

Use pre-constructed Boolean features such as p:

p is true iff xi > 153.56

where xi is an original real-valued feature and the threshold value 153.56 is
determined in a preprocessing step. Multiple thresholds for one real-valued
feature may be considered and used to define multiple Boolean features.
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Discretization: 3 General Approaches

Equilength intervals

Equiprobable intervals

Intervals containing same-class examples (most popular)
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Inconsistent Hypotheses

Remind: when C * F or PY|X is not a concept, we must learn inconsistent
hypotheses. Then we do not PAC-learn but we still have error bounds:

Training error vs. classification error bound

|e(f )− e(S, f )| ≤

√

1

2m
ln

2|F |

δ

does not assume the learner minimizes training error, i.e. that it outputs
argminf∈F e(S, f )

Classification error of learned vs. best hypothesis bound

e(f ) ≤

(

min
f∈F

e(f )

)

+ 2

√

1

2m
ln

2|F |

δ

assumes the learner minimizes training error. This may be difficult.
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Consistency vs. Error Minimization

Class Find f , e(S, f ) = 0 Find argminf∈F e(S, f )
k-DT, k-leave DT NP-hard NP-hard
any C where |C| poly easy easy
.. such as k-conjunctions easy easy
general conjunctions easy NP-hard

Minimizing e(S, f ) for general conjunctions can be reduced to the NP-hard
vertex-cover graph problem.
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