

OPPA European Social Fund Prague & EU: We invest in your future.

Machine Learning and Data Analysis Infinite Hypothesis Spaces

Filip Železný

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Intelligent Data Analysis lab http://ida.felk.cvut.cz

January 6, 2012

- ヨト - 日日

PAC Learning Summary

Concept class (efficiently) PAC learnable by a hypothesis class if

- a consistent hypothesis can be (efficiently) produced for each sample
- size of hypothesis space at most exponential

Two weeks ago we proved PAC-learnability of threshold hypotheses on $\left[0;1\right]$

Here PAC-learnability does not follow from the above principle since there are ∞ threshold hypotheses. Can we extend the above principle to cover infinite hypothesis classes?

An Intuitive Approach

Assume θ has finite precision, say 64 bits. In a digital machine, this is the case anyway.

For threshold hypotheses on [0, 1]:

$$\ln |\mathcal{F}| = \ln |2^{64}| = 64 \ln 2$$

For threshold hypotheses

$$f(x) = 1$$
 iff $\theta_1 x^{(1)} + \theta_2 x^{(2)} > 0$

on $[0,1]^2$:

$$\ln |\mathcal{F}| = \ln |2^{2 \cdot 64}| = 128 \ln 2$$

Generally for hypothesis classes with n parameters

$$\ln |\mathcal{F}| = \ln |2^{64n}| = 64n \ln 2 = \mathcal{O}(n)$$

An Intuitive Approach (cont'd)

 $\ln |\mathcal{F}|$ linear in number of hypothesis-class parameters and precision of real-number representation

Approach seems viable, allows PAC-learning

Problem:

$$\begin{array}{ll} \mathcal{F}_{1} \colon & f(x) = 1 \, \, \text{iff} \, \, \theta_{1} x^{(1)} + \theta_{2} x^{(2)} > 0 & 2 \, \, \text{parameters} \\ \mathcal{F}_{2} \colon & f(x) = 1 \, \, \text{iff} \, \, |\theta_{1} - \theta_{2}| x^{(1)} + |\theta_{3} - \theta_{4}| x^{(2)} > 0 & 4 \, \, \text{parameters} \end{array}$$

Different number of parameters but $\mathcal{F}_1 = \mathcal{F}_2!$

Instead of the number of parameters and precision, we will build a different characterization of infinite hypothesis classes.

$\Pi_{\mathcal{F}}$ function

A finite sample from P_X will be called an *x*-sample.

```
• x_1, x_2, \ldots instead of (x_1, y_1), (x_2, y_2), \ldots
```

Remind the set-notation we earlier introduced for hypotheses:

•
$$x \in f$$
 means the same as $f(x) = 1$

$\Pi_{\mathcal{F}}$ function For any X and \mathcal{F} and a finite x-sample S define $\Pi_{\mathcal{F}}(S) = \{f \cap S \mid f \in \mathcal{F}\}$

We call $f \cap S$ a *labelling* on S. $\Pi_{\mathcal{F}}(S)$ gives all labellings of S possible with hypotheses from \mathcal{F}

イロト イヨト イヨト

$\Pi_{\mathcal{F}}$ function: Example

Let \mathcal{F} be threshold hypotheses on [0,1] and $S=\{0.3,0.7\}$

 $\Pi_{\mathcal{F}}(S) = \{\{0.3, 0.7\}, \{0.7\}, \{\}\}\}$

Filip Železný (ČVUT)

Shattering

Shattering

If $|\Pi_{\mathcal{F}}(S)| = 2^{|S|}$ then S is *shattered* by \mathcal{F} .

S is shattered by \mathcal{F} if for any subset $S' \subseteq S$ there is a hypothesis $f \in \mathcal{F}$ such that $f \cap S = S'$.

Example: let \mathcal{F} be threshold hypotheses on [0,1]

- $\{0.3\}$ and $\{0.7\}$ are shattered by ${\cal F}$
- $\{0.3, 0.7\}$ is not shattered by ${\cal F}$

VC Dimension

VC Dimension

The Vapnik-Chervonenkis dimension of \mathcal{F} , denoted $\mathcal{V}(\mathcal{F})$, is the largest d such that some x-sample of cardinality d is shattered by \mathcal{F} . If no such d exists, then $\mathcal{V}(\mathcal{F}) = \infty$.

Example: let \mathcal{F} be threshold hypotheses on [0,1]

- $\{0.3\}$ is shattered by ${\cal F}$
- No *x*-sample *S* of cardinality 2 is shattered by \mathcal{F} because $\{\min S\} \subseteq S$, but $S \cap f = \{\min S\}$ for no $f \in \mathcal{F}$.
- Since no x-sample of cardinality 2 is shattered, no x-sample of cardinality > 2 is shattered
- Therefore $\mathcal{V}(\mathcal{F}) = 1$.

- 4 同 6 4 日 6 4 日 6

Let \mathcal{F} be intervals [a, b], 0 < a, b < 1

- $\{0.3, 0.7\}$ is shattered by $\mathcal F$
- No *x*-sample of cardinality 3 or higher is shattered by \mathcal{F} because $\{\min S, \max S\} \subseteq S$ but $S \cap f = \{\min S, \max S\}$ for no $f \in \mathcal{F}$.
- Therefore $\mathcal{V}(\mathcal{F}) = 2$.

Two points shattered

No three points can be shattered, the middle one can never be left out

Let \mathcal{F} be unions of k disjoint intervals [a, b]

- An x-sample of 2k elements shattered by ${\mathcal F}$
- No x-sample of cardinality 2k + 1 or higher is shattered by \mathcal{F} . Let $S = \{x_1, x_2, \dots, x_{2k+1}\}$ such that $x_i < x_j$ for i < j. Then for

$$S' = \{x_1, x_3, \dots x_{2k+1}\}$$

$$S' \subseteq S$$
 but $S' = S \cap c$ for no $f \in \mathcal{F}$.

• Therefore $\mathcal{V}(\mathcal{F}) = 2k$.

No 2k + 1 points can be shattered

Let \mathcal{F} be half-planes in \mathbb{R}^2

- Some 3 points can be shattered (obvious)
- No 4 points can be shattered. Clear if three of them in line. If not, then two cases possible, and impossible labelling exists in each:

• $\mathcal{V}(\mathcal{F}) = 3$

- similarly shown: $\mathcal{V}(\text{circles in } \mathbb{R}^2) = 3$
- Generally, $\mathcal{V}(\mathsf{half}\mathsf{-planes} \text{ in } R^n) = n+1$

Let $\mathcal F$ be rectangles in $\mathbb R^2$

• $\mathcal{V}(\mathcal{F}) = 4$

- More generally, $\mathcal{V}(\text{convex tetragons}) = 9$
- More generally, $\mathcal{V}(\text{convex } d\text{-gons}) = 2d + 1$

PAC Learning with Infinite \mathcal{F} : Result

PAC Learning with Infinite ${\cal F}$

Let \mathcal{F} be a hypothesis class with a finite $\mathcal{V}(\mathcal{F})$ and \mathcal{C} be concept class, both on X. Let $c \in \mathcal{C}$ be a concept. A hypothesis f consistent with a sample $\{(x_1, c(x_1)), \ldots, (x_m, c(x_m))\}$ will have $e(f) \leq \epsilon$ with probability at least $1 - \delta$ if

$$m \geq \max\left(rac{8}{\epsilon}\log_2rac{2}{\delta}, rac{8\mathcal{V}(\mathcal{F})}{\epsilon}\log_2rac{13}{\epsilon}
ight)$$

Therefore any C is (efficiently) PAC-learnable by \mathcal{F} if there is an (efficient) learner producing a consistent $f \in \mathcal{F}$ for any sample, and $\mathcal{V}(\mathcal{F})$ is polynomial (in the size of examples n).

As we have seen, $\mathcal{V}(\mathcal{F})$ is usually linear in the number of hypothesis class parameters, which corresponds to n.

$\mathcal{V}(\mathcal{F})$: Remarks

• The result can be rewritten into a simpler form

$$m \ge c_0 \left(\frac{\mathcal{V}(\mathcal{F})}{\epsilon} \log_2 \frac{1}{\epsilon} + \frac{1}{\epsilon} \log_2 \frac{1}{\delta} \right)$$

where c_0 is a constant.

- The result holds also for finite \mathcal{F} . For some \mathcal{F} , it may even provide better bounds than those we derived specially for finite \mathcal{F} .
- \bullet Finite $\mathcal{V}(\mathcal{F})$ is also a necessary condition for PAC-learning. It can be proved that at least

$$\frac{\mathcal{V}(\mathcal{F})-1}{64\epsilon}$$

examples are needed to PAC-learn a concept class with ${\mathcal F}$ if $\delta \leq 1/15.$

Error Bounds for Infinite ${\cal F}$

 $\mathcal{V}(\mathcal{F})$ also enables to derive error bounds for inconsistent hypotheses. $\mathcal{V}(\mathcal{F})$ is 'analogical' to $\ln |\mathcal{F}|$ for finite hypothesis classes.

With probability at least $1 - \delta$, for a training set S:

$$|e(f) - e(S, f)| \le \mathcal{O}\left(\sqrt{\frac{\mathcal{V}(\mathcal{F})}{m}\log_2\frac{m}{\mathcal{V}(\mathcal{F})} + \frac{1}{m}\log_2\frac{1}{\delta}}\right)$$

and if f minimizes training error e(f, S) then with probability at least $1 - \delta$:

$$e(f) \le e(f^*) + \mathcal{O}\left(\sqrt{\frac{\mathcal{V}(\mathcal{F})}{m}\log_2\frac{m}{\mathcal{V}(\mathcal{F})} + \frac{1}{m}\log_2\frac{1}{\delta}}\right)$$

where f^* minimizes classification error e(f).

Bias-Variance Trade-off Revisited

Remind: in the finite ${\mathcal F}$ case, by extending ${\mathcal F}$

This holds analogically for infinite ${\cal F}$

Bias-Variance Trade-off Revisited (cont'd)

Resulting behavior (we have seen this before)

OPPA European Social Fund Prague & EU: We invest in your future.