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Probability notation

PX A probability distribution (density) on a countable
(uncountable, respectively) set X.

PX(x) The value of PX for value x.

PX,Y A joint probability distribution (density) on X× Y.

PX,Y(x,y) The value of PX,Y for values x and y.

PX|Y A conditional probability distribution, i.e. PX|Y = PX,Y/PY

PX|Y(x|y) The value of PX|Y for values x and y.

Pr(expression) Probability of an event described by an expression such as
a = 1∧ b = 2, then typically calculated using appropriate
distributions such as PA(1)PB|A(1|2).
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Unsupervised learning
Assumed:

Instance (observation) space X
◮ real vectors, graphs, sequences, relational structures, ...

Probability density PX on X

Learner receives

Finite sample (m ∈ N)

S = {x1, x2, . . . , xm}

drawn i.i.d. from PX. S is a multiset, elements called examples.

Goals

General: learn PX: density estimation task, or

Special: learn something about PX: manifold learning task
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Density estimation

Non-parametric

No prior knowledge about PX

Unfeasible in general, unless PX very simple and/or m very large

Parametric, e.g.

Mixture of multivariate Gaussian distributions
◮ X = Rn

◮ Number of mixed Gaussians known
◮ Learned parameters: means ~µ and covariance matrices Σ

Bayesian networks
◮ Usually X = {0, 1}n (i.e., random events)
◮ Independence structure (graph) known
◮ Learned parameters: probabilities at vertices (CPT’s)

etc.
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Manifold learning

Clustering

Learns partitions with high PX

Represented explicitly (examples assigned to partitions)

Pattern learning

Patterns define manifolds of X with unexpectedly high PX

Frequent itemsets, subgraphs, subsequences, ...

How do patterns define manifolds?
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Supervised learning

Assumed:

Instance (observation) space X
◮ real vectors, graphs, sequences, relational structures, ...

State space Y
◮ also various kinds, but usually subsets of R

Probability density PXY on X× Y

Learner receives

Finite sample (m ∈ N)

S = {(x1, y1), (x2, y2) . . . , (xm, ym)}

drawn i.i.d. from PXY. S is a multiset, elements called examples.

Goal?
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Supervised learning: example

Age Gender Smoking Cancer

56 Male Yes Yes
32 Female No No
48 Female Yes Yes
80 Female No Yes
80 Male No No
60 Male Yes Yes

Smoking ⇒ Cancer
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Supervised learning: goals
What should we learn from the sample? Consider options

PXY
◮ The most general case
◮ Principally same methods applicable as for learning PX

Usually we want to learn to estimate the states y from observations x, so
we really need to learn only

PY|X
◮ This is more special than learning PXY. Why?

Estimates are single guesses, not distributions, so we need to learn only

f : X → Y such that

f (x) = argmax
y∈Y

PY|X(y|x)

◮ This is more special than learning PY|X. Why?
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Loss and risk
f will not always predict the correct state. Different errors may incur
different losses. We capture this through a loss function

L : Y× Y → R

L(y, y′) is the amount of loss due to guessing y′ when the actual state is y.

Example: Y = {healthy, ill}, L(healthy, ill) = 1, L(ill, healthy) = 10,
L(healthy, healthy) = 0, L(ill, ill) = 0.

The mean (=expected) value of loss (w.r.t. PXY) incurred by f is called
the risk of f

R(f ) = ∑
x∈X

∑
y∈Y

L (y, f (x))PXY(x, y)

Replace ∑ by
∫

for uncountable X and/or Y (also in what follows).
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Risk minimization

Given a loss function, we want to learn a function f minimizing the risk

f = arg min
f :X→Y

R(f )

Pointwise solution (yields values for individual x)

f (x) = argmin
y′∈Y

∑
y∈Y

L
(
y, y′

)
PY|X(y|x)

That does not help the learner who does not know PY|X. If he did, he
would not have to learn!

Only shows the best thing he possibly could learn.
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Classification
When Y is finite, the task is called classification learning (or simply
classification). Elements of Y are called classes and f is a classifier.

If all errors have equal importance, the usual loss function is

L01(y, y
′) =

{

0 if y = y′

1 if y 6= y′

with L01, risk R becomes classification error e

e(f ) = ∑
x∈X

∑
y∈Y

L01 (y, f (x))PXY(x, y) = 1− ∑
x∈X

PXY (x, f (x))

︸ ︷︷ ︸

Prob. of correct classification

and the pointwise solution of argminf :X→Y e(f ) corresponds to
maximizing the posterior probability

f (x) = argmin
y∈Y

∑
y∈Y

L01 (y, f (x))PY|X(y|x) = argmax
y∈Y

PY|X(y|x)
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Regression
When Y = R, the task is called regression learning (or simply regression).
Then usually X = Rn, and function f is called a regressor.

The usual choice of the loss function is then

LSQ(y, y′) = (y− y′)2

with LSQ, risk R becomes mean squared error MSE

MSE(f ) =
∫

x∈X

∫

y∈Y

LSQ (y, f (x))dPXY(x, y)

and the pointwise solution of argminf :X→Y MSE(f ) corresponds to
yielding conditional expectations

f (x) =
∫

y∈Y

y dPY|X(y|x) = EY|X(x)

We won’t be concerned too much with regression.
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Concept learning
If

Y = {0, 1}

PY|X(y|x) ∈ {0, 1} for all x ∈ X, y ∈ Y

then PY|X represents a function c : X → {0, 1}

c(x) = 1 iff PY|X(1|x) = 1

and is called a concept. In concept learning we adopt loss function L01.

A learned classifier f is then also called a hypothesis. Its classification error

e(f ) = ∑
c(x) 6=f (x)

PX(x)

Examples (x, 1) are called positive, examples (x, 0) are negative.
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Concept learning: a set view

A concept c may be viewed as a subset C = {x ∈ X | c(x) = 1}.

Similarly for a hypothesis f , F = {x ∈ X | f (x) = 1}.

X

F C

...error (f (x) 6= c(x))
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Learnability considerations

Under what conditions can we learn successfully? What does it mean to
learn successfully?

We need a few preliminary thoughts to define this.

Can we learn from any samples, as long as they are large enough
(m → ∞)?

Assumption of an i.i.d. sample is crucial. Otherwise, the sample could
contain just m repetitions of a single example! Even if this is drawn
according to PXY, generalization would not be possible.

Without the i.i.d. assumption, learning would be possible if m → ∞,
examples do not repeat, PXY is a concept and X is finite. (Think this
through.) But that would be a very strong restriction!
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Learnability considerations (cont’d)

If the i.i.d. sample is large enough, can we always learn a perfect
(zero-risk) function?

Unless PXY is a concept, even the best possible function f = arg
minf :X→Y R(f ) will have a non-zero risk. In classification, the best
possible f is called the Bayes classifier.

What if the i.i.d. sample is large enough and PXY is a concept?

Not even concepts can be always learned given arbitrarily large i.i.d.
samples. Any learned concept has to have a finite representation (rule,
decision tree, functional form, program...), so there is a countable number
of learnable concepts. But if X is infinite, there is an uncountable number
|2X| = |R| of concepts.
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Learnability Model

A learnability model defines what it means to learn successfuly. We first
consider concept learning (simpler than general classification learning).

We cannot require that any concept c ∈ 2X can be learned (follows
from previous slide)

◮ Rather, concepts will be chosen from some smaller concept class
C ⊂ 2X.

◮ Similarly, learner will search a hypothesis f in some hypothesis class
F ⊂ 2X

◮ it may or may not be that C = F

We do not require zero error of learned hypotheses f
◮ Rather bound the error with a small constant ǫ.

We do not require that learning never fails (= always produces a f
with acceptable error)

◮ Rather bound the probability of failure with a small constant δ.

We ask how many examples are needed for given ǫ and δ
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PAC Learnability

The PAC Learnability Model

An algorithm PAC-learns a concept class C ⊂ 2X by a hypothesis class
F ⊂ 2X if for any c ∈ C, PX, ǫ > 0, δ > 0, using a polynomial number m
of examples (xi, c(xi)) where xi are drawn i.i.d. from PX, outputs a
hypothesis f ∈ F such that e(f ) ≤ ǫ with probability at least 1− δ.

‘PAC’: Probably Approximately Correct

‘polynomial’: in 1/ǫ and 1/δ, and the size of examples
◮ size must be defined appropriately
◮ if x are tuples (such as vectors), then usually the number of their

components (“features”)

Instead of PXY, the definiton considers PX. Note that
PXY = PY|X · PX and PY|X is represented by c.

Remind that e(f ) = ∑c(x) 6=f (x) PX(x)
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PAC Learning: example

X = [0; 1], Y = {0, 1}, C = {cθ : X → Y | θ ∈ [0; 1]}, F = C

cθ(x) =

{

0 if x ≤ θ

1 if x > θ
fθ̂ =

{

0 if x ≤ θ̂

1 if x > θ̂

Given sample S, learner sets θ̂ as the average of min{x | (x, 1) ∈ S} and
max{x | (x, 0) ∈ S}

Define l and u as

0 1θl u

∫ θ

l dPX(x) = ǫ

∫ u
θ
dPX(x) = ǫ
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PAC Learning: example (cont’d)
If a sample point falls into [l; θ] and another into [θ;u], then learner
succeeds, i.e. produces f with e(f ) ≤ ǫ.

0 1θl u

Guarantee successful learning

Given sample S = {(x1, y1), . . . (xm, ym)}, what is the probability P of that
not happening?

P = Pr{(∀i : xi /∈ [l, θ]) ∨ (∀i : xi /∈ [θ,u])}

≤ Pr (∀i : xi /∈ [l, θ]) + Pr (∀i : xi /∈ [θ,u])

Pr (∀i : xi /∈ [l, θ]) = Πm
1 Pr (xi /∈ [l, θ]) = Πm

1 (1− ǫ) = (1− ǫ)m

Similarly
Pr (∀i : xi /∈ [θ,u]) = (1− ǫ)m
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Exponential bound

For all ǫ ∈ [0, 1], m ≥ 1
(1− ǫ)m ≤ e−ǫm

m = 1

1
0

1

e−ǫm

(1− ǫ)m

ǫ

m = 2

1
0

1

e−ǫm

(1− ǫ)m

ǫ
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PAC Learning: example (cont’d)

P ≤ 2(1− ǫ)m ≤ 2e−ǫm

For PAC-learning, we must make sure that P ≤ δ. This holds if

2e−ǫm ≤ δ

i.e. if the number of examples is

m ≥
1

ǫ
ln

(
2

δ

)

The algorithm PAC-learns Cθ by Fθ because it only needs a number of
examples polynomial in 1/δ and 1/ǫ. Note that m does not depend here
on the size of examples, i.e. the number of digits used to (approximately)
represent real numbers.
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Empirical risk and training error

Given sample S = {(x1, y1) . . . (xm, ym)}, the empirical risk of f (on S) is

R(S, f ) =
1

m

m

∑
i=1

L (yi, f (xi))

With L01 loss function, the empirical risk equals the empirical classification
error

e(S, f ) =
1

m

m

∑
i=1

L01 (yi, f (xi))

which is the proportion of misclassified examples from S.

e(S, f ) is also called the training error of f (on S).

We say that f is consistent with S is e(S, f ) = 0
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Consistent PAC-learning
A consistent learner:

on receiving any i.i.d. sample S of c ∈ C

returns a hypothesis f ∈ F consistent with S

How many examples does this learner need to PAC-learn C by F?

Given an ǫ and S = {(x1, y1), . . . (xm, ym)}, a hypothesis f such that
e(f ) > ǫ is called bad. Denote FB = {f ∈ F | f is bad}.

Probability that a bad hypothesis f ∈ FB is consistent

Pr(f is consistent) = Pr (∧m
i=1{f (xi) = c(xi)})

= Πm
i=1{1− e(f )}

= {1− e(f )}m

< (1− ǫ)m (because f is bad)
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Consistent PAC-learning (cont’d)

Probability that FB contains a consistent hypothesis

Pr(some f ∈ FB is consistent) ≤ ∑
f∈FB

Pr(f is consistent)

< ∑
f∈FB

(1− ǫ)m

= |FB|(1− ǫ)m

≤ |F|(1− ǫ)m

If FB does not contain any consistent hypothesis, then any consistent
hypothesis is good (e(f ) ≤ ǫ), i.e. the learner succeeds. We PAC-learn if
this happens with probability at least 1− δ so we set |F |(1− ǫ)m ≤ δ.
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Consistent PAC-learning (cont’d)

|F |(1− ǫ)m ≤ |F|e−ǫm ≤ δ

solving for m:

m ≥
1

ǫ

(

ln |F | + ln
1

δ

)

Therefore any consistent learner PAC-learns C by F unless |F | grows
super-exponentially with the size of examples.

Remarks:

|F | must be finite for the bound above to make sense!

If C * F then the learner cannot be consistent.
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Consistent PAC-learning: Example

F = C = monotone conjunctions ≡ CMC

n propositional variables p1, p2, . . . , pn

Monotone conjunction: a conjunction of some of the variables,
negation not allowed. E.g. p1 ∧ p4 ∧ p5

x = truth values of all p′s, size of examples = n

Consistent algorithm: outputs a conjunction of all variables true in all
positive examples. Define f (x) = 1 iff the conjunction is true.

ln |F | = ln 2n = n ln 2

m ≥
1

ǫ

(

n ln 2+ ln

(
1

δ

))

⇒ The algorithm PAC-learns CMC by CMC.
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Consistent PAC-learning: Example 2

F = C = formulas in disjunctive normal form ≡ CDNF

n propositional variables p1, p2, . . . , pn

A DNF formula: a disjunction of conjunctions, only variables may be
negated. E.g. (p1 ∧ ¬p4) ∨ (p2 ∧ p3 ∧ p4)

x = truth values of all p′s, size of examples = n

How large is |F |?

3n possible conjunctions

|F | = 23
n

possible disjunctions of these conjunctions

|F | is super-exponential, ln |F | = 3n ln 2 is not polynomial. We cannot
prove PAC-learnability (but neither refute).

PAC-Learnability of CDNF is an open problem.
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Bounds for classification learning
We now assume the general case of classification learning where PY|X may
not be a concept, i.e. may acquire vaues other than 0 or 1. We however
continue assuming the L01 loss function.

Now we can get ‘contradictory’ examples such as (x, 0) and (x, 1) in the
learning sample. Consistent learning is thus not generally possible.

Even if PY|X happens to be a concept, consistent learning may not be
possible if C * F . Then F may not contain a hypothesis consistent with
the learning sample. The following analysis covers this situation.

Under such conditions we assume the learner selects the classifier with the
least training error on the training sample S

argmin
f∈F

e(S, f )

Known as the ERM (empirical risk minimization) principle of learning.
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Questions of interest

Relationship between classification and training errors of the learned
classifier f = argminf∈F e(S, f ):

What is the difference between e(f ) and e(S, f )?

How many examples are needed to make it small with high
probability?

A generalized version of PAC-learning:

Let f ∗ be the ‘best classifier’ in F , i.e. f ∗ = argminf∈F e(f ).
How many examples are needed to make the difference |e(f )− e(f ∗)|
small with high probability?

Note: Since we use the L01 loss, f ∗(x) = argmaxy PY|X(y|x) if this
function is in F .
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Hoeffding inequality

Let PZ be distribution on {0, 1} and {z1, z2, . . . zm} be an i.i.d. sample
from PZ. Then for the difference between the true and sample means it
holds

Pr

(∣
∣
∣
∣
∣
PZ(1) −

1

m

m

∑
i=1

zi

∣
∣
∣
∣
∣
> ǫ

)

≤ 2e−2ǫ2m

Given a training sample S = {(x1, y1), . . . (xm, ym)} and a classifier f , e(f )
and e(S, f ) are respectively the true and sample means of the random
variable acquiring value 1 if an example is misclassified by f , and 0
otherwise (due to the L01 loss). Therefore:

Pr (|e(f )− e(S, f )| > ǫ) ≤ 2e−2ǫ2m
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Classification vs. training error

If |e(f )− e(S, f )| ≤ ǫ for all f ∈ F then it will be so also for the learned f .
So we need to bound the probability that this is not true for some f ∈ F .

Pr (∃f ∈ F : |e(f )− e(S, f )| > ǫ)

≤ ∑
f∈F

Pr (|e(f )− e(S, f )| > ǫ)

=|F |Pr (|e(f )− e(S, f )| > ǫ)

≤2|F |e−2ǫ2m
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Classification vs. training error (cont’d)

If we set this probability to δ

2|F |e−2ǫ2m = δ

we get after arrangements

ǫ =

√

1

2m
ln

2|F |

δ

That is, with probability at least 1− δ, the difference between training and
classification error will be bounded as

|e(f )− e(S, f )| ≤

√

1

2m
ln

2|F |

δ

for all f ∈ F , including the learned classifier.
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Classification vs. training error (cont’d)

If we instead solve
2|F |e−2ǫ2m = δ

for m, we get

m =
1

2ǫ2
ln

2|F |

δ

That is, this number of examples is enough to make |e(f )− e(S, f )| ≤ ǫ

with probability at least 1− δ for all f ∈ F including the learned classifier.
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Deviation from the best possible classifier

Assume we have enough examples to make |e(f )− e(S, f )| ≤ ǫ for all
f ∈ F with probability at least 1− δ (c.f. prev. slide).

Then with probability at least 1− δ

e(f ) ≤ e(S, f ) + ǫ (by the assumption)

≤ e(S, f ∗) + ǫ (since f minimizes e(S, f ) over all f ∈ F)

≤ e(f ∗) + 2ǫ (since e(S, f ∗) ≤ e(f ∗) + ǫ by the assumption)

Combining with the earlier derived formula for ǫ, we get that with
probability at least 1− δ

e(f ) ≤

(

min
f∈F

e(f )

)

+ 2

√

1

2m
ln

2|F |

δ
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The bias-variance trade-off

The smaller F , the more bias and less variance (flexibility).

With less bias (larger F):

e(f ) ≤

(

min
f∈F

e(f )

)

︸ ︷︷ ︸

may decrease

+ 2

√

1

2m
ln

2|F |

δ
︸ ︷︷ ︸

will increase

Too much bias: underfitting

cannot adapt well to data

Not enough bias: overfitting

classification error too different from training error
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The bias-variance trade-off

Typical behavior

small m

e(f )

e(S, f )

← bias
variance →

large m

d

e(f )

e(S, f )

← bias
variance →

To minimize e(f ) we must find a good trade-off between bias and variance.
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