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pOutline

� Motivation to search for event co-occurrence

− origin – market basket analysis,

− another example, general aims,

− local models,

� association rule formalization

− definitions – support, confidence,

− (sub)problem – frequent itemset mining,

� frequent itemset mining algorithms

− APRIORI algorithm,

− ECLAT and (FPGrowth) algorithm,

− reduction of the set of frequent itemsets,

� generate rules from frequent itemsets

− AR-Gen algorithm,

� equivalence quantifiers and rules

− alternatives to implication rules based on confidence.
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pGeneral motivation

� a data mining legend

− beer and nappies.

� plagiarism detection

− is AVATAR’s story original?
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pAssociation rules

� Association Rules (ARs)

� Definition

− simple event co-occurrence assertions based on data,

− probabilistic character – co-occurrence is not strict,

� Notation and meaning

− if Ant then Suc,

− another notation: Ant ⇒ Suc,

− antecedent (Ant) and succedent/consequent (Suc) define general events observable in data,

− event – a binary phenomenon, it either occurs or not,

− an extensive representation (data) transformed into a concised and understandable descrip-

tion (knowledge).

� Association rules, examples

− book store recommendations (Amazon):

{Castaneda: Teachings of Don Juan}
⇒ {Hesse: Der Steppenwolf & Ruiz: The Four Agreements}

− relation among risk factors and diseases in medicine (Stulong):

{beer ≥ 1litre/day & liquors=0} ⇒ {not(heart disease)}
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pAssociation rules – basic terms

� Items: I = {i1, i2, . . . , im}

− binary features or outcomes of relational operators,

� Transaction database: D = {t1, t2, . . . , tn}, ti ⊆ I

− transactions = examples, objects, instances,

� Itemsets: {ii1, ii2, . . . , iik} ⊆ I

− a condition analogy, concurrent occurrence of multiple items,

� Itemset cover: KD(J) = {k ∈ {1, 2, . . . , n}|J ⊆ tk}

− a transaction t covers an itemset J iff J ⊆ t (J is contained in t),

− the cover of J wrt D is a set of transaction indices in D covering J ,

� Itemset support: sD(J) = |KD(J)|, resp. sD(J) = 1
n|KD(J)|

− a (relative) number of transactions covering the given itemset,

� Frequent itemset:

− itemset frequency exceeds a threshold,
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pAssociation rules – basic terms

� Association rule (AR):

− the implication Ant ⇒ Suc, where Ant, Suc ⊆ I and Ant ∩ Suc = ∅,

� AR support: sAnt⇒Suc(D) = sD(Ant ∪ Suc)

− the ratio (or number of) transactions covering both Ant and Suc,

− note: support of Ant ⇒ Suc equals to the support of Ant ∪ Suc,

� AR confidence: αAnt⇒Suc(D) = sD(Ant∪Suc)
sD(Ant)

− the ratio between AR support (Ant ∪ Suc) and its antecedent support (Ant),

− can be viewed as Pr(Suc|Ant) estimate,

− always lower or equal to 1.

� If both AR and D are obvious, we will shorten the notation and use s, α etc.
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pAR mining

� Given:

− an itemset I = {i1, i2, . . . , im},
− a transaction database D = {t1, t2, . . . , tn}
∗ where ti = {ii1, ii2, . . . , iik}, a iij ∈ I ,

− minimum threshold support smin,

− minimum threshold confidence αmin.

� Association rule mining task:

− find all the rules Ant ⇒ Suc with support s ≥ smin and confidence α ≥ αmin.

� Implementation can be split into 2 phases:

− identify all the frequent (sub)itemsets,

− take frequent itemset and generate rules out of them.
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pExample: market basket analysis

� Aim: increase sales and minimize costs, i.e. find items often both together in one transaction,

Transaction Items

t1 Bread, Jelly, Butter

t2 Bread, Butter

t3 Bread, Milk, Butter

t4 Beer, Bread

t5 Beer, Milk

� I = {Beer, Bread, Jelly, Milk, Butter},

� A rule: Bread ⇒ Butter,

− Ant={Bread}∈ {t1, t2, t3, t4}, sant=4/5=80%,

− Ant ∪ Suc={Bread,Butter} ∈ {t1, t2, t3},
support AR is s=3/5=60%,

− Confidence AR is α = s/sant=75%.

� Other rules and their parameters:

Ant ⇒ Suc s [%] α [%]

Bread ⇒ Butter 60 75

Butter ⇒ Bread 60 100

Beer ⇒ Bread 20 50

Butter ⇒ Jelly 20 33

Jelly ⇒ Butter 20 100

Jelly ⇒ Milk 0 0
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pFrequent itemset mining

� phase 1 in association rule mining,

� often makes a stand-alone task

− find product families bough together,

− in general, find events that frequently co-occur,

∗ text analysis: transactions = documents, items = words,

∗ plagiarism detection: transactions = sentence occurrences, items = documents,

� exhaustive search of the itemset space

− having m binary items, there are 2m − 1 itemsets,

− having N nominal features, each with K categories, there are (1 +K)N − 1 itemsets,

− complexity increases exponentially with the number of items (features),

� for large tasks assumptions

− sparse data – everything does not relate to everything else,

− early and efficient search space pruning.
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pFrequent itemset mining – method categorization (1)

� a set of all the itemsets is partially ordered (makes a poset)

− can be depicted as an acyclic graph – Hasse diagram,

− nodes = itemsets, an edge I → J iff I < J and there is no K : I < K < J ,

− when depicting all the subsets it also makes a lattice,

− efficient to reduce on a tree (each node needs to be visited and tested only once),

� methods for the itemset lattice/tree search

− breath-first – level-wise, each level concerns itemsets of a certain length,

− depth-first – traverse the itemsets with an identical prefix.
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pFrequent itemset mining – method categorization (2)

� transaction set/database representation

− horizontal – transactions as the main units, transaction ≈ a list/array of items

∗ a natural way,

− vertical – items as the main units, a transaction list is stored for each item

∗ advantage: efficient (recursive) access to the transaction list of an itemset,

∗ the transaction list for a pair of items is the intersection of the transaction lists of the

individual items.

Transactions Items

t1 a, d, e

t2 b, c, d

t3 a, c, e

t4 a, c, d, e

t5 a, e

t6 a, c, d

t7 b, c

t8 a, c, d, e

t9 b, c, e

t10 a, d, e

a b c d e

1 2 2 1 1

3 7 3 2 3

4 9 4 4 4

5 6 6 5

6 7 8 8

8 8 10 9

10 9 10
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pAPRIORI algorithm – the basic idea

� pioneering, the most well-known, but not the most efficient,

� based on the elemental characteristic of any frequent itemset:

Each subset of a frequent itemset is frequent.

� as we proceed bottom-up from subsets to supersets

the logical contraposition principle

(p ⇒ q) ⇔ (¬q ⇒ ¬p)

� the anti-monotone property transformed to a monotone property, consequence:

No superset of an infrequent itemset can be frequent.

� candidate itemsets

− potentially frequent – all the subsets are known to be frequent.

� APRIORI categories: breath-first search, horizontal transaction representation.
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pFrequent itemset mining – example

Transakce Položky

t1 a, d, e

t2 b, c, d

t3 a, c, e

t4 a, c, d, e

t5 a, e

t6 a, c, d

t7 b, c

t8 a, c, d, e

t9 b, c, e

t10 a, d, e

the lattice with frequent itemsets for smin = 3
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pAPRIORI algorithm [Agrawal et al., 1996]

Apriori:

C1 = ∀ candidate itemsets of size 1 in I;

L1 = ∀ frequent itemsets of size 1 (support ≥ smin);

i = 1;

repeat

i = i + 1;

Ci = Apriori-Gen(Li−1);

Get support Ci and create Li;

until no frequent itemset found (Li = ∅);
L =

⋃
Li, ∀ i

Apriori-Gen(Li−1):

Ci = ∅
for ∀ itemset pairs Combp, Combq ∈ Li−1:

if they match in i-2 items then add Combp ∪ Combq do Ci
for ∀ itemsets Comb from Ci:

if any Comb subset of size i-1 /∈ Li−1 then remove Comb.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33SAD



pAPRIORI – pros and cons

� Advantages

− efficient due to monotone property of large itemsets,

− still worst-case exponential time complexity, feasible provided:

∗ a proper (high enough) smin and αmin,

∗ sparse data (in practice rather holds).

− straightforward implementation including parallelization,

− for highly correlated data with a prohibitive number of frequent itemsets

∗ needs improvements, e.g. with a condensed representation.

� Disadvantages

− all frequent itemsets are represented, it can take a lot of memory .

− support counting can take long time for large transactions,

− assumes permanent access to the transaction database (in memory),

− needs up to m (the number of items) database scans

∗ the speed improved with hash trees,

∗ the number of scans can be reduced by merging two consecutive steps into one,

∗ compensated by larger sets of candidate itemsets, but . . .
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pECLAT algorithm (Zaki et al., 1997) – the basic idea

� sorts items lexicographically → canonical itemset representation

− {a, b, c} ≈ abc < bac < bca < · · · < cba,

− an itemset encoded by its lexicographically smallest (largest) code word,

� the tree is searched in a depth-first way

− owing to the canonical representation it is a prefix tree,

� uses purely vertical transaction set representation,

� can generate more candidate itemsets than APRIORI

− decides when support of any subset is not necessarily available.
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pConditional transaction database – depth-first search

� depth-first search the prefix tree, divide and conquer strategy

− find all the frequent itemsets with the given prefix first,

− do the same for the rest of itemsets,

− leads to transaction set splits (transactions with/without the given prefix),

� node colors

− the prefix in blue, itemsets having the prefix in green, itemsets without the prefix in red,

− a recursive procedure, the previous a-step needs also to be concerned.
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pECLAT example, smin = 3 (Borgelt: Frequent Pattern Mining)

t1 a, d, e

t2 b, c, d

t3 a, c, e

t4 a, c, d, e

t5 a, e

t6 a, c, d

t7 b, c

t8 a, c, d, e

t9 b, c, e

t10 a, d, e

� preprocessing: vertical representation by the bit vector (grey/white – item in/out of transac-

tion)

− the only transaction database scan, intersections follow exclusively,

� step 1: the conditional transaction database for a item,

� step 2: {a, b} infrequent – prune,

� step 3: the conditional transaction database for {a, c} itemset,

� step 4: the conditional transaction database for {a, c, d} itemset and prune {a, c, d, e}.
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pECLAT example, smin = 3 (Borgelt: Frequent Pattern Mining)

t1 a, d, e

t2 b, c, d

t3 a, c, e

t4 a, c, d, e

t5 a, e

t6 a, c, d

t7 b, c

t8 a, c, d, e

t9 b, c, e

t10 a, d, e

� the whole tree shown, the outcome (certainly) identical with APRIORI,

� APRIORI might prune {a, c, d, e} without counting its support,

− knowing that s{c,d,e} = 2 ≤ smin = 3,

� in contrary, APRIORI needs more transaction database scans.
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pReducing the output – the pruned sets of frequent itemsets

� the number of frequent itemsets can be prohibitive

− the output is not comprehensible, a user can be interested in long patterns only,

− leads to a notion of maximal itemset

∗ frequent and none of its proper supersets is frequent,

∗ the set of maximal itemsets:

MD(smin) = {J ⊆ I | sD(J) ≥ smin ∧ ∀K ⊃ J : sD(K) < smin},

� the set of frequent itemsets is redundant

− all the information about it can be preserved in a smaller set (subset),

− leads to a notion of closed itemset

∗ frequent and none of its proper supersets has the same support,

∗ the set of closed itemsets:

CD(smin) = {J ⊆ I | sD(J) ≥ smin ∧ ∀K ⊃ J : sD(K) < sD(J)},

� obvious relations

− all maximal itemsets and all closed itemsets are frequent,

− any maximal itemset is necessarily closed.
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pReducing the output – illustration

� the frequent itemsets for smin = 3 (blue), the maximal itemsets (red),

� how many frequent itemsets are not closed?, which itemsets?

Transactions Items

t1 a, d, e

t2 b, c, d

t3 a, c, e

t4 a, c, d, e

t5 a, e

t6 a, c, d

t7 b, c

t8 a, c, d, e

t9 b, c, e

t10 a, d, e
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pSearching for closed and maximal itemsets

� principal ways to find close and maximal itemsets

− filter the set of frequent itemsets

∗ reasonable when the set of frequent itemsets is needed anyway,

− direct search with earlier and more efficient pruning

∗ a compact representation accelerates search,

∗ specialized algorithms derived from classical ones – MaxMiner, Closet, Charm, GenMax,

∗ among other properties, for any closed itemset it holds

· the closed itemset matches the intersection of all the transactions that contain it,

· it also explains why {d, e} is not closed:

Transactions Items

t1 a, d, e

t4 a, c, d, e

t8 a, c, d, e

t10 a, d, e

∩ a, d, e
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pGenerate rules from frequent itemsets – step 2

Inputs:

I, D, L, αmin;

Output:

R; % pravidla splňujı́cı́ smin a αmin

AR-Gen:

R = ∅;
for ∀ l ∈ L do:

for ∀ x ⊂ l such that x 6= ∅ and x 6= l do:

if s(l)/s(x) ≥ αmin, then R = R ∪ {x ⇒ (l-x)}
(apply the property: s(l)/s(x) < α min ⇒ ∀ x’⊂ x s(l)/s(x’) < α min)

� Example: market basket analysis

− Inputs: L={Bread, Butter} (generated for smin=30%), αmin=50%

− Output: R={Bread ⇒ Butter: s=60%, α=75%, Butter ⇒ Bread: s=60%, α=100%}
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pExample: the study plan

� Aim: find out whether the real study plans correspond with recommendations/study programs

� Courses: RZN (Knowledge representation), PAH (Planning and games), VI (Computational

intelligence), MAS (Multi-agent systems), SAD (Machine learning and data analysis),

AU (Automatic reasoning)

Transactions Items

t1 RZN

t2 VI, SAD, AU

t3 PAH, AU

t4 PAH, VI, AU

t5 PAH, MAS

t6 VI, AU

t7 PAH, SAD

t8 PAH, VI, MAS, AU

t9 PAH

t10 PAH, VI, AU

Transactions Items

t11 AU

t12 RZN, PAH, VI, SAD, AU

t13 PAH, VI, MAS, AU

t14 VI, SAD, AU

t15 PAH, AU

t16 SAD, AU

t17 RZN, PAH, SAD

t18 PAH, VI, MAS, AU

t19 PAH

t20 PAH, VI, MAS, AU
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pAPRIORI step – smin=20%, resp. 4

i Ci Li

1 {RZN}, {PAH}, {VI} {PAH}, {VI}, {MAS}
{MAS}, {SAD}, {AU} {SAD}, {AU}

2 {PAH, VI}, {PAH, MAS}, {PAH, SAD} {PAH, VI}, {PAH, MAS}
{PAH, AU}, {VI, MAS}, {VI, SAD} {PAH, AU}, {VI, MAS}
{VI, AU}, {MAS, SAD}, {MAS, AU} {VI, AU}, {MAS, AU}

{SAD, AU} {SAD, AU}
3 {PAH, VI, MAS}, {PAH, VI, AU} {PAH, VI, MAS}
{PAH, MAS, AU}, {PAH, SAD, AU} {PAH, VI, AU}
{VI, MAS, AU}, {VI, SAD, AU} {PAH, MAS, AU}

{MAS, SAD, AU} {VI, MAS, AU}
4 {PAH, VI, MAS, AU} {PAH, VI, MAS, AU}
5 ∅ ∅
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pAR-Gen step – αmin=80%, selected frequent itemsets

L2

PAH, VI: PAH ⇒ VI α=50%, VI ⇒ PAH α=70%

(PAH & VI concurrently 7times, PAH 14times, VI 10times)

PAH, MAS: PAH ⇒ MAS 36%, MAS ⇒ PAH 100%

(PAH & MAS concurrently 5times, PAH 14times, MAS 5times)

L3

PAH, VI, MAS: PAH & VI ⇒ MAS 57%, PAH & MAS ⇒ VI 80%, VI & MAS ⇒ PAH 100%

(PAH nor VI cannot make an antecedent, test MAS only)

MAS ⇒ PAH & VI 80%

L4

PAH, VI, MAS, AU: PAH & VI & MAS ⇒ AU 100%, PAH & VI & AU ⇒ MAS 57%,

PAH & MAS & AU ⇒ VI 100%, VI & MAS & AU ⇒ PAH 100%

(the antecedents PAH & VI, PAH & AU, VI & AU without testing)

PAH & MAS ⇒ VI & AU 80%, VI & MAS ⇒ PAH & AU 100%,

MAS & AU ⇒ PAH & VI 100%

(the antecedents PAH, VI a AU without testing)

MAS ⇒ PAH & VI & AU 80%
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pFour-fold table, quantifiers for the relation between Ant and Suc

� 4-fold table (4FT),

− a, b, c, d → the numbers of transactions meeting conditions.

4FT Suc ¬Suc
∑

Ant a b r=a+b

¬Ant c d s=c+d∑
k=a+c l=b+d n=a+b+c+d

� Confidence is not the only/always best quantifier

− its implicative nature is misleading for frequent succedents,

− independent itemsets can show a high confidence,

− 4-fold table example (s=45%,α=90%, Ant and Suc independent):

450 50 500

450 50 500

900 100 1000
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pAlternative quantifiers

� Confidence can be replaced by an arbitrary 4ft function in the AR-Gen step:

− lift (above-average) how many times more often Ant and Suc occur together than expected

under independence assumption

∗ lift=an/rk

− leverage the difference in the real Ant and Suc co-occurrence and the co-occurrence

expected under independence assumption

∗ leverage=1/n(a-rk/n)

− conviction measures the effect of the right-hand-side of the rule not being true

∗ conviction=rl/bn

450 50 500

450 50 500

900 100 1000

s=0.45, α=0.9,

lift=1, leverage=0,
conviction=1

10 1 11

90 899 989

100 900 1000

s=0.01, α=0.91,

lift=9.09, leverage=0.01,

conviction=9.9

450 50 500

50 450 500

500 500 1000

s=0.45, α=0.9,

lift=1.8, leverage=0.2,

conviction=5
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pAssociation rules – summary

� One of the basic descriptive data mining procedures

− identify frequent co-occurrences of events in data,

− detecting hidden dependencies, subgroup discovery, knowledge discovery.

� Practical applications

− not only market basket analysis!!!

− generally applicable to any attribute-valued data

∗ medicine, industrial measurements, temporal and spatial data, . . . ,

− the necessary preprocessing step – binarization

∗ dichotomization ((gradual) division into two sharply different categories),

∗ for continuous features discretization,

∗ coding could also be concerned (minizes the number of items, human understandability

usually decreases),

∗ example: temperature in Celsius degrees

· discretization: {(-∞,0〉 ≡ low, (0,15〉 ≡ medium, (15, ∞) ≡ high},
· dichotomization: {i1 ≡ t=low, i2 ≡ t=medium, i3 ≡ t=high},

� Demo

− census data, relations between social factors and salary.
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pRecommended reading, lecture resources

:: Reading

� Agrawal, Srikant: Fast Algorithms for Mining Association Rules.

− the article that introduced the task and proposed APRIORI algorithm,

− http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf,

� Borgelt: Frequent Pattern Mining.

− slides, a detailed course, including a formal notation,

− http://www.borgelt.net/teach/fpm/slides.html,

� Hájek, Havránek: Mechanizing Hypothesis Formation.

− a pioneering theory from 1966, decades before Agrawal,

− http://www.cs.cas.cz/hajek/guhabook/.
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