Frequent itemsets, association rules

Jiří Kléma

Department of Cybernetics, Czech Technical University in Prague

```
http://ida.felk.cvut.cz
```


Outline

- Motivation to search for event co-occurrence
- origin - market basket analysis,
- another example, general aims,
- local models,
- association rule formalization
- definitions - support, confidence,
- (sub)problem - frequent itemset mining,
- frequent itemset mining algorithms
- APRIORI algorithm,
- ECLAT and (FPGrowth) algorithm,
- reduction of the set of frequent itemsets,
- generate rules from frequent itemsets
- AR-Gen algorithm,
- equivalence quantifiers and rules
- alternatives to implication rules based on confidence.

General motivation

- a data mining legend
- beer and nappies.

- plagiarism detection
- is AVATAR's story original?

2154

In 1607, a ship carrying Jehmsinith arrives in the lush "new world" of Aorth Amprica. The settlers are mining for gold; under supervision of Governor-Ratcliffe: Johtr Smith begins exploring the new territory, and encounters Poe-tir i
the Tree of Souls
Grandmother Willow helps her overcome her trepidation. The two begin spending time together Neytri Joedtontas helps circle of life. Furthermore she teaches him how to hunt, grow ereps, and of her culture. We find
Eytucan
that her father is ChiefPownatan, and that she is set to be married to Kocoum, a great warrior, but a serious man, whom Neytoris Jocahentas does not desire. Over time, Jotm and Neytiri they have a love for each other. Back at the settlement, the men, who believe the natives are unditanium Tixtey Jatue
savages, plan to attack the natives for their gold. Kecoum tries to kill Jotn out of jealousy, but he is later killed by the settlers. As the settlers prepare to attack, Jothn is blamed by the thetians, and Eytucan
is sentenced to death. Just before they kill him, the settlers arrive. Chief Rowthcan is nearly-
Jake Colonel Quaritch shot with arrows yo killed, and Jotm sustains injuries from Governor-Rateliffe, who is then brought to-justiceNeytiri Juke Jale Neytiri
-Pocahontas risks her life to save dohn. Jotin and Pocahontas finally have each other, and the
two cultures resolve their differences. IM+1O-MATT BATEMAN

Association rules

- Association Rules (ARs)
- Definition
- simple event co-occurrence assertions based on data,
- probabilistic character - co-occurrence is not strict,
- Notation and meaning
- if Ant then Suc,
- another notation: Ant \Rightarrow Suc,
- antecedent (Ant) and succedent/consequent (Suc) define general events observable in data,
- event - a binary phenomenon, it either occurs or not,
- an extensive representation (data) transformed into a concised and understandable description (knowledge).
- Association rules, examples
- book store recommendations (Amazon):
\{Castaneda: Teachings of Don Juan\}
\Rightarrow \{Hesse: Der Steppenwolf \& Ruiz: The Four Agreements
- relation among risk factors and diseases in medicine (Stulong):
$\{$ beer ≥ 1 litre/day \& liquors $=0\} \Rightarrow\{\operatorname{not}($ heart disease $)\}$

Association rules - basic terms

- Items: $I=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$
- binary features or outcomes of relational operators,
- Transaction database: $D=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t_{i} \subseteq I$
- transactions $=$ examples, objects, instances,
- Itemsets: $\left\{i_{i_{1}}, i_{i_{2}}, \ldots, i_{i_{k}}\right\} \subseteq I$
- a condition analogy, concurrent occurrence of multiple items,
- Itemset cover: $K_{D}(J)=\left\{k \in\{1,2, \ldots, n\} \mid J \subseteq t_{k}\right\}$
- a transaction t covers an itemset J iff $J \subseteq t(J$ is contained in $t)$,
- the cover of J wrt D is a set of transaction indices in D covering J,
- Itemset support: $s_{D}(J)=\left|K_{D}(J)\right|$, resp. $s_{D}(J)=\frac{1}{n}\left|K_{D}(J)\right|$
- a (relative) number of transactions covering the given itemset,
- Frequent itemset:
- itemset frequency exceeds a threshold,

Association rules - basic terms

- Association rule (AR):
- the implication Ant \Rightarrow Suc, where Ant, Suc $\subseteq 1$ and Ant \cap Suc $=\emptyset$,
- AR support: $s_{A n t \Rightarrow S u c}(D)=s_{D}(A n t \cup S u c)$
- the ratio (or number of) transactions covering both Ant and Suc,
- note: support of Ant \Rightarrow Suc equals to the support of Ant \cup Suc,
- AR confidence: $\alpha_{A n t \Rightarrow S u c}(D)=\frac{s_{D}(A n t \cup S u c)}{s_{D}(A n t)}$
- the ratio between AR support (Ant \cup Suc) and its antecedent support (Ant),
- can be viewed as $\operatorname{Pr}(S u c \mid A n t)$ estimate,
- always lower or equal to 1 .
- If both AR and D are obvious, we will shorten the notation and use s, α etc.

AR mining

- Given:
- an itemset $I=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$,
- a transaction database $D=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$
* where $t_{i}=\left\{i_{i_{1}}, i_{i_{2}}, \ldots, i_{i_{k}}\right\}$, a $i_{i_{j}} \in I$,
- minimum threshold support $s_{\text {min }}$,
- minimum threshold confidence $\alpha_{m i n}$.
- Association rule mining task:
- find all the rules Ant \Rightarrow Suc with support $s \geq s_{\min }$ and confidence $\alpha \geq \alpha_{\text {min }}$.
- Implementation can be split into 2 phases:
- identify all the frequent (sub)itemsets,
- take frequent itemset and generate rules out of them.

Example: market basket analysis

- Aim: increase sales and minimize costs, i.e. find items often both together in one transaction,

Transaction	Items
t_{1}	Bread, Jelly, Butter
t_{2}	Bread, Butter
t_{3}	Bread, Milk, Butter
t_{4}	Beer, Bread
t_{5}	Beer, Milk

- I = Beer, Bread, Jelly, Milk, Butter\},
- A rule: Bread \Rightarrow Butter,
$-\mathrm{Ant}=\{$ Bread $\} \in\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}, s_{\text {ant }}=4 / 5=80 \%$,
- Ant $\cup S u c=\{$ Bread,Butter $\} \in\left\{t_{1}, t_{2}, t_{3}\right\}$, support $A R$ is $s=3 / 5=60 \%$,
- Confidence AR is $\alpha=s / s_{\text {ant }}=75 \%$.
- Other rules and their parameters:

Ant \Rightarrow Suc	s [\%]	$\alpha[\%]$
Bread \Rightarrow Butter	60	75
Butter \Rightarrow Bread	60	100
Beer \Rightarrow Bread	20	50
Butter \Rightarrow Jelly	20	33
Jelly \Rightarrow Butter	20	100
Jelly \Rightarrow Milk	0	0

Frequent itemset mining

- phase 1 in association rule mining,
- often makes a stand-alone task
- find product families bough together,
- in general, find events that frequently co-occur,
* text analysis: transactions = documents, items = words,
* plagiarism detection: transactions $=$ sentence occurrences, items $=$ documents,
- exhaustive search of the itemset space
- having m binary items, there are $2^{m}-1$ itemsets,
- having N nominal features, each with K categories, there are $(1+K)^{N}-1$ itemsets,
- complexity increases exponentially with the number of items (features),
- for large tasks assumptions
- sparse data - everything does not relate to everything else,
- early and efficient search space pruning.

Frequent itemset mining - method categorization (1)

- a set of all the itemsets is partially ordered (makes a poset)
- can be depicted as an acyclic graph - Hasse diagram,
- nodes $=$ itemsets, an edge $I \rightarrow J$ iff $I<J$ and there is no $K: I<K<J$,
- when depicting all the subsets it also makes a lattice,
- efficient to reduce on a tree (each node needs to be visited and tested only once),
- methods for the itemset lattice/tree search
- breath-first - level-wise, each level concerns itemsets of a certain length,
- depth-first - traverse the itemsets with an identical prefix.

Frequent itemset mining - method categorization (2)

- transaction set/database representation
- horizontal - transactions as the main units, transaction \approx a list/array of items * a natural way,
- vertical - items as the main units, a transaction list is stored for each item * advantage: efficient (recursive) access to the transaction list of an itemset, * the transaction list for a pair of items is the intersection of the transaction lists of the individual items.

Transactions	Items
t_{1}	a, d, e
t_{2}	b, c, d
t_{3}	a, c, e
t_{4}	a, c, d, e
t_{5}	a, e
t_{6}	a, c, d
t_{7}	b, c
t_{8}	a, c, d, e
t_{9}	b, c, e
t_{10}	a, d, e

a	b	c	d	e
1	2	2	1	1
3	7	3	2	3
4	9	4	4	4
5		6	6	5
6		7	8	8
8		8	10	9
10		9		10

APRIORI algorithm - the basic idea

- pioneering, the most well-known, but not the most efficient,
- based on the elemental characteristic of any frequent itemset:

Each subset of a frequent itemset is frequent.

- as we proceed bottom-up from subsets to supersets
the logical contraposition principle
$(\mathrm{p} \Rightarrow \mathrm{q}) \Leftrightarrow(\neg \mathrm{q} \Rightarrow \neg \mathrm{p})$
- the anti-monotone property transformed to a monotone property, consequence:

No superset of an infrequent itemset can be frequent.

- candidate itemsets
- potentially frequent - all the subsets are known to be frequent.
- APRIORI categories: breath-first search, horizontal transaction representation.
the lattice with frequent itemsets for $s_{\min }=3$

Transakce	Položky
t_{1}	a, d, e
t_{2}	b, c, d
t_{3}	a, c, e
t_{4}	a, c, d, e
t_{5}	a, e
t_{6}	a, c, d
t_{7}	b, c
t_{8}	a, c, d, e
t_{9}	b, c, e
t_{10}	a, d, e

APRIORI algorithm [Agrawal et al., 1996]

```
Apriori:
    C1 = }\forall\mathrm{ candidate itemsets of size 1 in I;
    L
    i = 1;
    repeat
        i = i + 1;
        Ci}=\mathrm{ Apriori-Gen( }\mp@subsup{L}{i-1}{})\mathrm{ ;
        Get support C}\mp@subsup{C}{i}{}\mathrm{ and create }\mp@subsup{L}{i}{}\mathrm{ ;
    until no frequent itemset found ( }\mp@subsup{L}{i}{}=\emptyset\mathrm{ );
    L}=\bigcupLL, \forall
Apriori-Gen(L}\mp@subsup{L}{i-1}{})
    C
    for }\forall\mathrm{ itemset pairs Comb
        if they match in i-2 items then add Comb
    for }\forall\mathrm{ itemsets Comb from C C
    if any Comb subset of size i-1 \not\in Li-1 then remove Comb.
```


APRIORI - pros and cons

- Advantages

- efficient due to monotone property of large itemsets,
- still worst-case exponential time complexity, feasible provided:
* a proper (high enough) $s_{\text {min }}$ and $\alpha_{\text {min }}$,
* sparse data (in practice rather holds).
- straightforward implementation including parallelization,
- for highly correlated data with a prohibitive number of frequent itemsets
* needs improvements, e.g. with a condensed representation.
- Disadvantages
- all frequent itemsets are represented, it can take a lot of memory .
- support counting can take long time for large transactions,
- assumes permanent access to the transaction database (in memory),
- needs up to m (the number of items) database scans
* the speed improved with hash trees,
* the number of scans can be reduced by merging two consecutive steps into one,
* compensated by larger sets of candidate itemsets, but . . .

ECLAT algorithm (Zaki et al., 1997) - the basic idea

- sorts items lexicographically \rightarrow canonical itemset representation
$-\{a, b, c\} \approx a b c<b a c<b c a<\cdots<c b a$,
- an itemset encoded by its lexicographically smallest (largest) code word,
- the tree is searched in a depth-first way
- owing to the canonical representation it is a prefix tree,
- uses purely vertical transaction set representation,
- can generate more candidate itemsets than APRIORI
- decides when support of any subset is not necessarily available.

Conditional transaction database - depth-first search

- depth-first search the prefix tree, divide and conquer strategy
- find all the frequent itemsets with the given prefix first,
- do the same for the rest of itemsets,
- leads to transaction set splits (transactions with/without the given prefix),
- node colors
- the prefix in blue, itemsets having the prefix in green, itemsets without the prefix in red,
- a recursive procedure, the previous a-step needs also to be concerned.

ECLAT example, $s_{\min }=3$ (Borgelt: Frequent Pattern Mining)

t_{1}	a, d, e
t_{2}	b, c, d
t_{3}	a, c, e
t_{4}	a, c, d, e
t_{5}	a, e
t_{6}	a, c, d
t_{7}	b, c
t_{8}	a, c, d, e
t_{9}	b, c, e
t_{10}	a, d, e

- preprocessing: vertical representation by the bit vector (grey/white - item in/out of transaction)
- the only transaction database scan, intersections follow exclusively,
- step 1: the conditional transaction database for a item,
- step 2: $\{a, b\}$ infrequent - prune,
- step 3: the conditional transaction database for $\{a, c\}$ itemset,
- step 4: the conditional transaction database for $\{a, c, d\}$ itemset and prune $\{a, c, d, e\}$.

ECLAT example, $s_{\text {min }}=3$ (Borgelt: Frequent Pattern Mining)

t_{1}	a, d, e
t_{2}	b, c, d
t_{3}	a, c, e
t_{4}	a, c, d, e
t_{5}	a, e
t_{6}	a, c, d
t_{7}	b, c
t_{8}	a, c, d, e
t_{9}	b, c, e
t_{10}	a, d, e

- the whole tree shown, the outcome (certainly) identical with APRIORI,
- APRIORI might prune $\{a, c, d, e\}$ without counting its support,
- knowing that $s_{\{c, d, e\}}=2 \leq s_{\text {min }}=3$,
- in contrary, APRIORI needs more transaction database scans.

Reducing the output - the pruned sets of frequent itemsets

- the number of frequent itemsets can be prohibitive
- the output is not comprehensible, a user can be interested in long patterns only,
- leads to a notion of maximal itemset
* frequent and none of its proper supersets is frequent,
* the set of maximal itemsets:

$$
M_{D}\left(s_{\min }\right)=\left\{J \subseteq I \mid s_{D}(J) \geq s_{\min } \wedge \forall K \supset J: s_{D}(K)<s_{\min }\right\}
$$

- the set of frequent itemsets is redundant
- all the information about it can be preserved in a smaller set (subset),
- leads to a notion of closed itemset
* frequent and none of its proper supersets has the same support,
* the set of closed itemsets:

$$
C_{D}\left(s_{\min }\right)=\left\{J \subseteq I \mid s_{D}(J) \geq s_{\min } \wedge \forall K \supset J: s_{D}(K)<s_{D}(J)\right\}
$$

- obvious relations
- all maximal itemsets and all closed itemsets are frequent,
- any maximal itemset is necessarily closed.

Reducing the output - illustration

- the frequent itemsets for $s_{\text {min }}=3$ (blue), the maximal itemsets (red),
- how many frequent itemsets are not closed?, which itemsets?

Transactions	Items
t_{1}	a, d, e
t_{2}	b, c, d
t_{3}	a, c, e
t_{4}	a, c, d, e
t_{5}	a, e
t_{6}	a, c, d
t_{7}	b, c
t_{8}	a, c, d, e
t_{9}	b, c, e
t_{10}	a, d, e

Searching for closed and maximal itemsets

- principal ways to find close and maximal itemsets
- filter the set of frequent itemsets
* reasonable when the set of frequent itemsets is needed anyway,
- direct search with earlier and more efficient pruning
* a compact representation accelerates search,
* specialized algorithms derived from classical ones - MaxMiner, Closet, Charm, GenMax,
* among other properties, for any closed itemset it holds
- the closed itemset matches the intersection of all the transactions that contain it,
- it also explains why $\{d, e\}$ is not closed:

Transactions	Items
t_{1}	a, d, e
t_{4}	a, c, d, e
t_{8}	a, c, d, e
t_{10}	a, d, e
\cap	a, d, e

Generate rules from frequent itemsets - step 2

Inputs:
I, D, L, $\alpha_{\text {min }}$;

Output:
$R ; \%$ pravidla splñující $s_{\min }$ a $\alpha_{\min }$

AR-Gen:
$R=\emptyset ;$
for $\forall l \in L$ do:
for $\forall \mathrm{x} \subset 1$ such that $\mathrm{x} \neq \emptyset$ and $\mathrm{x} \neq 1$ do:
if $\mathrm{s}(\mathrm{l}) / \mathrm{s}(\mathrm{x}) \geq \alpha_{\text {min }}$, then $\mathrm{R}=\mathrm{R} \cup\{\mathrm{x} \Rightarrow(1-\mathrm{x})\}$
(apply the property: $\left.\mathrm{s}(\mathrm{l}) / \mathrm{s}(\mathrm{x})<\alpha _\min \Rightarrow \forall \mathrm{x}, \subset \mathrm{x} \mathrm{s}(\mathrm{l}) / \mathrm{s}\left(\mathrm{x}^{\prime}\right)<\alpha _\min \right)$

- Example: market basket analysis
- Inputs: $\mathrm{L}=\{$ Bread, Butter $\}$ (generated for $s_{\text {min }}=30 \%$), $\alpha_{\text {min }}=50 \%$
- Output: $\mathrm{R}=\{$ Bread \Rightarrow Butter: $\mathrm{s}=60 \%, \alpha=75 \%$, Butter \Rightarrow Bread: $\mathrm{s}=60 \%, \alpha=100 \%\}$

Example: the study plan

- Aim: find out whether the real study plans correspond with recommendations/study programs
- Courses: RZN (Knowledge representation), PAH (Planning and games), VI (Computational intelligence), MAS (Multi-agent systems), SAD (Machine learning and data analysis), AU (Automatic reasoning)

Transactions	Items
t_{1}	RZN
t_{2}	$\mathrm{VI}, \mathrm{SAD}, \mathrm{AU}$
t_{3}	$\mathrm{PAH}, \mathrm{AU}$
t_{4}	$\mathrm{PAH}, \mathrm{VI}, \mathrm{AU}$
t_{5}	$\mathrm{PAH}, \mathrm{MAS}$
t_{6}	VI, AU
t_{7}	$\mathrm{PAH}, \mathrm{SAD}$
t_{8}	$\mathrm{PAH}, \mathrm{VI}, \mathrm{MAS}, \mathrm{AU}$
t_{9}	PAH
t_{10}	$\mathrm{PAH}, \mathrm{VI}, \mathrm{AU}$

Transactions	Items
t_{11}	AU
t_{12}	RZN, PAH, VI, SAD, AU
t_{13}	PAH, VI, MAS, AU
t_{14}	$\mathrm{VI}, \mathrm{SAD}, \mathrm{AU}$
t_{15}	PAH, AU
t_{16}	SAD, AU
t_{17}	RZN, PAH, SAD
t_{18}	PAH, VI, MAS, AU
t_{19}	PAH
t_{20}	PAH, VI, MAS, AU

APRIORI step $-s_{\min }=20 \%$, resp. 4

i	C_{i}	L_{i}
1	$\begin{aligned} & \text { \{RZN\}, }\{\mathrm{PAH}\},\{\mathrm{VI}\} \\ & \text { \{MAS\}, }\{\mathrm{SAD}\},\{\mathrm{AU}\} \end{aligned}$	$\begin{gathered} \text { \{PAH }\},\{\mathrm{VI}\},\{\mathrm{MAS}\} \\ \{\mathrm{SAD}\},\{\mathrm{AU}\} \end{gathered}$
2	$\begin{gathered} \{\mathrm{PAH}, \mathrm{VI}\},\{\text { PAH, MAS }\},\{\text { PAH, SAD }\} \\ \{\mathrm{PAH}, \mathrm{AU}\},\{\mathrm{VI}, \mathrm{MAS}\},\{\mathrm{VI}, \mathrm{SAD}\} \\ \{\mathrm{VI}, \mathrm{AU}\},\{\mathrm{MAS}, \mathrm{SAD}\},\{\mathrm{MAS}, \mathrm{AU}\} \\ \{\mathrm{SAD}, \mathrm{AU}\} \end{gathered}$	$\begin{gathered} \{\mathrm{PAH}, \mathrm{VI}\},\{\mathrm{PAH}, \mathrm{MAS}\} \\ \{\mathrm{PAH}, \mathrm{AU}\},\{\mathrm{VI}, \mathrm{MAS}\} \\ \{\mathrm{VI}, \mathrm{AU}\},\{\mathrm{MAS}, \mathrm{AU}\} \\ \{\mathrm{SAD}, \mathrm{AU}\} \end{gathered}$
3	\{PAH, VI, MAS\}, \{PAH, VI, AU\} \{PAH, MAS, AU\}, \{PAH, SAD, AU\} \{VI, MAS, AU\}, \{VI, SAD, AU\} \{MAS, SAD, AU \}	\{PAH, VI, MAS $\}$ \{PAH, VI, AU $\}$ \{PAH, MAS, AU $\}$ \{VI, MAS, AU $\}$
4	\{PAH, VI, MAS, AU \}	\{PAH, VI, MAS, AU \}
5	\emptyset	\emptyset

AR-Gen step $-\alpha_{\min }=80 \%$, selected frequent itemsets

L_{2}
$\mathrm{PAH}, \mathrm{VI}: \quad \mathrm{PAH} \Rightarrow \mathrm{VI} \alpha=50 \%, \mathrm{VI} \Rightarrow \mathrm{PAH} \alpha=70 \%$
(PAH \& VI concurrently 7times, PAH 14times, VI 10times)
PAH, MAS: $\mathrm{PAH} \Rightarrow$ MAS $36 \%, \mathrm{MAS} \Rightarrow$ PAH 100%
(PAH \& MAS concurrently 5times, PAH 14times, MAS 5times)
L_{3}
PAH, $\mathrm{VI}, \mathrm{MAS}: ~ P A H ~ \& ~ V I \Rightarrow$ MAS $57 \%, \mathrm{PAH} \& \mathrm{MAS} \Rightarrow \mathrm{VI} 80 \%, \mathrm{VI} \&$ MAS \Rightarrow PAH 100% (PAH nor VI cannot make an antecedent, test MAS only) MAS \Rightarrow PAH \& VI 80\%
L_{4}
PAH, VI, MAS, AU: PAH \& VI \& MAS \Rightarrow AU 100\%, PAH \& VI \& AU \Rightarrow MAS 57%, PAH \& MAS \& $\mathrm{AU} \Rightarrow \mathrm{VI} 100 \%$, VI \& MAS \& AU \Rightarrow PAH 100% (the antecedents PAH \& VI, PAH \& AU, VI \& AU without testing) PAH \& MAS \Rightarrow VI \& AU 80\%, VI \& MAS \Rightarrow PAH \& AU 100\%, MAS \& AU \Rightarrow PAH \& VI 100\%
(the antecedents PAH, VI a AU without testing) MAS \Rightarrow PAH \& VI \& AU 80\%

Four-fold table, quantifiers for the relation between Ant and Suc

- 4-fold table (4FT),
$-a, b, c, d \rightarrow$ the numbers of transactions meeting conditions.

4FT	Suc	\neg Suc	\sum
Ant	a	b	$\mathrm{~b}=\mathrm{a}+\mathrm{b}$
\neg Ant	c	d	$\mathrm{s}=\mathrm{c}+\mathrm{d}$
\sum	$\mathrm{k}=\mathrm{a}+\mathrm{c}$	$\mathrm{l}=\mathrm{b}+\mathrm{d}$	$\mathrm{n}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

- Confidence is not the only/always best quantifier
- its implicative nature is misleading for frequent succedents,
- independent itemsets can show a high confidence,
- 4-fold table example $(\mathrm{s}=45 \%, \alpha=90 \%$, Ant and Suc independent):

450	50	500
450	50	500
900	100	1000

Alternative quantifiers

- Confidence can be replaced by an arbitrary 4 ft function in the AR-Gen step:
- lift (above-average) how many times more often Ant and Suc occur together than expected under independence assumption
* lift=an/rk
- leverage the difference in the real Ant and Suc co-occurrence and the co-occurrence expected under independence assumption
* leverage $=1 / \mathrm{n}(\mathrm{a}-\mathrm{rk} / \mathrm{n})$
- conviction measures the effect of the right-hand-side of the rule not being true
* conviction=rl/bn
$\left.\begin{array}{cc|cc|cc|c}450 & 50 & 500 & 10 & 1 & 11 & 450 \\ 450 & 50 & 500\end{array} \quad \begin{array}{ccc}90 & 899 & 989\end{array}\right)$

Association rules - summary

- One of the basic descriptive data mining procedures
- identify frequent co-occurrences of events in data,
- detecting hidden dependencies, subgroup discovery, knowledge discovery.
- Practical applications
- not only market basket analysis!!!
- generally applicable to any attribute-valued data
* medicine, industrial measurements, temporal and spatial data,,
- the necessary preprocessing step - binarization
* dichotomization ((gradual) division into two sharply different categories),
* for continuous features discretization,
* coding could also be concerned (minizes the number of items, human understandability usually decreases),
* example: temperature in Celsius degrees
- discretization: $\{(-\infty, 0\rangle \equiv$ low, $(0,15\rangle \equiv$ medium, $(15, \infty) \equiv$ high $\}$,
- dichotomization: $\left\{i_{1} \equiv \mathrm{t}=\right.$ low, $i_{2} \equiv \mathrm{t}=$ medium, $i_{3} \equiv \mathrm{t}=$ high $\}$,
- Demo
- census data, relations between social factors and salary.

Recommended reading, lecture resources

:: Reading

- Agrawal, Srikant: Fast Algorithms for Mining Association Rules.
- the article that introduced the task and proposed APRIORI algorithm,
- http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf,
- Borgelt: Frequent Pattern Mining.
- slides, a detailed course, including a formal notation,
- http://www.borgelt.net/teach/fpm/slides.html,
- Hájek, Havránek: Mechanizing Hypothesis Formation.
- a pioneering theory from 1966, decades before Agrawal,
- http://www.cs.cas.cz/hajek/guhabook/.

