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pAgenda

� Bayesian networks

− fundamental tasks,

� inference and its complexity

− straightforward enumeration

∗ easy to understand but inefficient – computes joint probabilities,

∗ descends to the level of atomic events,

∗ acceleration by variable elimination,

− limitations × efficiency of algorithms,

− exact × approximate algorithms,

− particular “fast” algorithms

∗ belief propagation,

∗ junction tree,

∗ arc reversal,

∗ Gibbs sampling.
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pBayesian networks – fundamental tasks

� inference – reasoning, deduction

− from observed events assumes on probability of other events,

− observations (E – a set of evidence variables, e – a particular event),

− target variables (Q – a set of query variables, Q – a particular query variable),

− Pr(Q|e), resp. Pr(Q ∈ Q|e) to be found,

− network is known (both graph and CPTs),

� learning network parameters from data

− network structure (graph) is given,

− “only” quantitative parameters (CPTs) to be optimized,

� learning network structure from data

− propose an optimal network structure

∗ which edges of the complete graph shall be employed?,

− too many arcs → complicated model,

− too few arcs → inaccurate model.
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pProbabilistic network – inference by enumeration

� Let us observe the following events:

− no barking heard,

− the door light is on.

� What is the prob of family being out?

− searching for Pr(fo|lo,¬hb).

� Will observation influence the target event?

− light on supports departure hypothesis,

− no barking suggests dog inside,

− the dog is in house when it is

∗ rather healthy,

∗ the family is at home.
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pProbabilistic network – inference by enumeration

� inference by enumeration

− conditional probs calculated by summing the elements of joint probability table,

� how to find the joint probabilities (the table is not given)?

− BN definition suggests:

Pr(FO,BP,DO,LO,HB) =

= Pr(FO)Pr(BP )Pr(DO|FO,BP )Pr(LO|FO)Pr(HB|DO)

� answer to the question?

− conditional probability definition suggests:

Pr(fo|lo,¬hb) = Pr(fo,lo,¬hb)
Pr(lo,¬hb)

− by joint prob marginalization we get:

Pr(fo, lo,¬hb) =
∑

BP,DO Pr(fo,BP,DO, lo,¬hb)
Pr(fo, lo,¬hb) = Pr(fo, bp, do, lo,¬hb) + Pr(fo, bp,¬do, lo,¬hb)+
+Pr(fo,¬bp, do, lo,¬hb)+Pr(fo,¬bp,¬do, lo,¬hb) = .15× .01× .99× .6× .3+ .15×
.01× .01× .6× .99 + .15× .99× .9× .6× .3 + .15× .99× .1× .6× .99 = .033

Pr(lo,¬hb) = Pr(fo, lo,¬hb) + Pr(¬fo, lo,¬hb) = .066
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pProbabilistic network – inference by enumeration

− after substitution:

Pr(fo|lo,¬hb) = Pr(fo,lo,¬hb)
Pr(lo,¬hb) = .033

.066 = 0.5

− posterior probability Pr(fo|lo,¬hb) is higher then the prior Pr(fo) = 0.15.

� can we assume on complexity?

− instead of 25 − 1=31 probs (either conditional or joint) 10 is needed only,

− however, joint probs are enumerated to answer the query

∗ it is easy to show that inference remains a NP problem,

− to simply move summations right-to-left makes a difference, but not a principal one

∗ see the evaluation tree on the next slide,

Pr(fo, lo,¬hb) =
∑
BP,DO

Pr(fo,BP,DO, lo,¬hb) =

= Pr(fo)
∑
BP

Pr(BP )
∑
DO

Pr(DO|fo,BP )Pr(lo|fo)Pr(¬hb|DO)

− inference by enumeration is an intelligible, but unfortunately inefficient procedure,

− solution: minimize recomputations, special network types or approximate inference.
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pInference by enumeration – evaluation tree

� Complexity: time O(n2d), memory O(n)

− n . . . the number of variables, e . . . the number of evidence variables, d=n-e,

� resource of inefficiency: recomputations (Pr(lo|fo)× Pr(¬hb|DO) for each BP value)

− variable ordering makes a difference – Pr(lo|fo) shall be moved forward.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – straightforward improvements

� variable elimination procedure

1. pre-computes factors to remove the inefficiency shown in the previous slide

− factors serve for recycling the earlier computed intermediate results,

− some variables are eliminated by summing them out,

∑
P f1 × · · · × fk = f1 × · · · × fi ×

∑
P fi+1 × · · · × fk = f1 × · · · × fi × fP̄ ,

assumes that f1, . . . , fi do not depend on P ,

when multiplying factors, the pointwise product is computed

f1(x1, ..., xj, y1, ..., yk)× f2(y1, ..., yk, z1, ..., zl) = f (x1, ..., xj, y1, ..., yk, z1, ..., zl)

eventual enumeration over P1 variable, which takes all (two) possible values

fP̄1
(P2, ..., Pk) =

∑
P1
f1(P1, P2, ..., Pk),

− execution efficiency is influenced by the variable ordering when computing,

(finding the best order is NP-complete problem, can be optimized heuristically too),

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – straightforward improvements

� variable elimination procedure

2. does not consider variables irrelevant to the query

− all the leaves that are neither query nor evidence variable,

− the rule can be applied recursively.

� example: Pr(lo|do)

− what is prob that the door light is shining if the dog

is in the garden?

− we will enumerate Pr(LO, do), since:

Pr(lo|do) = Pr(lo,do)
Pr(do) = Pr(lo,do)

Pr(lo,do)+Pr(¬lo,do)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – variable elimination

� HB is irrelevant to the particular query, why?∑
HB Pr(HB|do) = 1

Pr(LO, do) =
∑

FO,BP,HB

Pr(FO)Pr(BP )Pr(do|FO,BP )Pr(LO|FO)Pr(HB|do) =

=
∑
HB

Pr(HB|do)
∑
FO

Pr(FO)Pr(LO|FO)
∑
BP

Pr(BP )Pr(do|FO,BP )

� after omitting the first invariant, factorization may take place

Pr(LO, do) =
∑
FO

Pr(FO)Pr(LO|FO)
∑
BP

Pr(BP )Pr(do|FO,BP ) =

=
∑
FO

Pr(FO)Pr(LO|FO)fBP (do|FO) =
∑
FO

fBP,do(FO)Pr(LO|FO) =

= fFO,BP ,do(LO)

� having the last factor (a table of two elements), one can read

Pr(lo|do) =
fFO,BP ,do(lo)

fFO,BP ,do(lo)+fFO,BP ,do(¬lo) = 0.0941
0.0941+0.3017 = 0.0941

0.3958 = 0.24
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pVariable elimination – factor computations

� factors are enumerated from CPTs by summing out variables

− sum out BP: CPT (DO) & CPT (BP )→ fBP (do|FO)

− reformulate into: CPT (FO) & fBP (do|FO)→ fBP,do(FO)

− sum out FO: fBP,do(FO) & CPT (LO)→ fFO,BP ,do(LO)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference by enumeration – comparison of the number of operations

� let us take the last example

− namely the total number of sums and products in Pr(LO, do),

− (the final Pr(lo|do) enumaretion is identical for all procedures),

� näıve enumeration, no evaluation tree

− 4 products (5 vars) ×24 (# atomic events on unevidenced variables) + 24 − 1 sums,

− in total 79 operations,

� using evaluation tree and a proper reordering of variables

− in total 33 operations,

� with variable elimination on top of that

− in total 14 operations (6 in Tab1, 2 in Tab2, 6 in Tab3).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pInference in networks without undirected cycles

� polytree (singly connected network, directed graph without undirected cycles),

� belief propagation or polytree algorithm – J. Pearl

− exact algorithm,

− time complexity proportional with network diameter

∗ and thus polynomial with the number of variables at worst,

∗ and linear wrt the number of network parameters (CPTs).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

A4M33RZN



pBelief propagation

� local evidence in V node changes Pr(V ) to Pr∗(V ), network needs to be updated,

� each evidence node sends a message about the evidence to its children and parents,

� every node updates its belief in all of its possible values based on the neighbor messages and

further sends this evidence to its neighbors,

� two reasoning types can be distinguished

− causal (π)

evidence is propagated from ancestor nodes,

− diagnostic (λ)

evidence is propagated from descendant nodes,

� object-oriented method

− nodes = objects, edges = communication channels,

− time stamps on variable (node) states needed

(an iteration index must be concerned).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – causal evidence message passing

� Aim: find prob, that light is on in the trivial network on the left

− neither Pr(lo) (nor ¬Pr(lo)) can be computed from local

data purely,

− Pr(lo) = Pr(lo|fo)× Pr(fo) + Pr(lo|¬fo)× Pr(¬fo),

� FO node must pass a message to LO: πFOLO (FO) = Pr(FO)

− provided FO is not an evidence node, it sends its prior prob

− πFOLO (fo) = Pr(fo), πFOLO (¬fo) = Pr(¬fo),

− Pr(lo) = Pr(lo|fo)πFOLO (fo) + Pr(lo|¬fo)πFOLO (¬fo)
− Pr(lo) = .6× .15 + .05× .85 = .1325

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – causal evidence message passing

� Aim: find prob, that light is on in the trivial network on the left

− neither Pr(lo) (nor ¬Pr(lo)) computable from local data

purely,

− Pr(lo) = Pr(lo|fo)× Pr(fo) + Pr(lo|¬fo)× Pr(¬fo),

� FO node must pass a message to LO: πFOLO (FO) = Pr(FO)

− knowing that family left the house, FO node sends

πFOLO (fo) = Pr∗(fo) = 1, πFOLO (¬fo) = Pr∗(¬fo) = 0

− Pr∗(lo) = Pr(lo|fo) = .6

− Pr∗(¬lo) = Pr(¬lo|fo) = .4

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

A4M33RZN



pBelief propagation – diagnostic evidence message passing

� Aim: find prob that family is out in the trivial net on the left

� let us take the situation when the child node is not observed

− neither Pr(fo) (nor ¬Pr(fo)) is a function of Pr(lo),

− LO passes λFOLO (FO) = 1 (invariant in further computations).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – diagnostic evidence message passing

� Aim: find prob that family left the house in the trivial net on the left

� provided that Pr∗(lo) = 1 is given

− we search for Pr∗(fo) = Pr(fo|lo),

− from Bayes theorem Pr(fo|lo) = Pr(lo|fo)Pr(fo)
Pr(lo)

− two values are actually needed: Pr(lo|fo) and Pr(lo)

− however, Pr(lo) is unknown (only Pr∗(lo) = 1)

− LO passes λFOLO (fo) = Pr(lo|fo) and λFOLO (¬fo) = Pr(lo|¬fo)
− and makes use of normalization Pr∗(fo) + Pr∗(¬fo) = 1

Pr∗(fo) = αλFOLO (fo)Pr(fo) = α× .6× .15 = .09α

Pr∗(¬fo) = αλFOLO (¬fo)Pr(¬fo) = α× .05× .85 = .0425α

Pr∗(fo) + Pr∗(¬fo) = 1→ .09α + .0425α = 1

α = 1/.1325 ∼= 7.55

− it can be inferred that α = 1
Pr(lo)

− Pr∗(fo) = 0.68, Pr∗(¬fo) = 0.32

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – combined propagation

� Aim: find prob that the dog is out knowing it barks,

� child is observed, parent is unobserved,

� finding Pr∗(DO) asks both for causal and diagnostic inference

πFODO(fo) = Pr(fo), πFODO(¬fo) = Pr(¬fo)
λDOHB(do) = Pr(hb|do), λDOHB(¬do) = Pr(hb|¬do)

Pr∗(do) = αλDOHB(do)[Pr(do|fo)πFODO(fo)+

+ Pr(do|¬fo)πFODO(¬fo)] =

= .7α[.9× .15 + .3× .85] = α× .7× .39 = .273α

Pr∗(¬do) = analogically = 6.1× 10−3α

α ∼= 3.58, Pr∗(do) ∼= .98, Pr∗(¬do) ∼= .02

� if we generalize

− Pr∗(DO) = Pr(DO|Evidence) = α× π(DO)× λ(DO)

− α – normalization constant,

− π(DO) – compound causal parameter,

− λ(DO) – compound diagnostic parameter.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – combined propagation

� the evidence set with respect to Vi: E = E+(Vi) ∪E−(Vi)

− causal (E+(Vi)) and diagnostic (E−(Vi)) observations,

− polytree → it holds E+(Vi) ⊥⊥ E−(Vi)|Vi,
− the only path connecting a causal and a diagnostic node

leads through Vi.

� this separation can be used when computing probs Pr∗(Vi)

Pr∗(Vi) = Pr(Vi|E) = Pr(Vi|E+(Vi), E
−(Vi)) =

= α′ × Pr(E+(Vi), E
−(Vi)|Vi)× Pr(Vi) =

= α′ × Pr(E−(Vi)|Vi)× Pr(E+(Vi)|Vi)× Pr(Vi) =

= α× Pr(E−(Vi)|Vi)× Pr(Vi|E+(Vi)) =

= α× λ(Vi)× π(Vi) = bel(Vi)

� compound causal π(Vi) and diagnostic λ(Vi) parameter

π(Vi) =
∑

Vp1,...,Vpn

Pr(Vi|Vp1, . . . , Vpn)
n∏
j=1

π
Vpj

Vi
(Vpj) λ(Vi) =

m∏
j=1

λVi
Vcj

(Vi)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – combined propagation

� Let us search for Pr∗(FO) again: Pr∗(fo) = Pr(fo|lo,¬hb) a Pr∗(¬fo) = Pr(¬fo|lo,¬hb)

− Pr∗(FO) = α× λ(FO)× π(FO) = α× λFOLO (FO)× λFODO(FO)× Pr(FO),

� λ messages from evidence nodes:

− simple, follows from earlier examples,

− light on – Pr∗(lo) = 1

∗ λFOLO (fo) = Pr(lo|fo) = 0.6,

∗ λFOLO (¬fo) = Pr(lo|¬fo) = 0.05,

− no barking heard – Pr∗(hb) = 0,

∗ λDOHB(do) = Pr(¬hb|do) = 0.3,

∗ λDOHB(¬do) = Pr(¬hb|¬do) = 0.99,

� π message from BP node carries the priors:

− πBPDO(bp) = 0.01, πBPDO(¬bp) = 0.99,

� it is more difficult to quantify λFODO(FO).

− it equals Pr∗(DO|FO).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – combined propagation

� In general, Vi sends messages as follows

− πVi
Vcj

(Vi) = απ(Vi)
∏k 6=j

k=1...m λ
Vck
Vi

(Vi),

− λ
Vpj

Vi
(Vpj) =

∑
vi
λ(Vi)

∑
Vp1,...,Vpn

Pr(Vi|Vp1, . . . , Vpn)
∏k 6=j

k=1...n π
Vk
Vi

(Vk),

� DO node passes to FO node

λFODO(fo) = λDOHB(do)
[
Pr(do|fo, bp)πBPDO(bp) + Pr(do|fo,¬bp)πBPDO(¬bp)

]
+ λDOHB(¬do)

[
Pr(¬do|fo, bp)πBPDO(bp) + Pr(¬do|fo,¬bp)πBPDO(¬bp)

]
=

= .3(.99× .01 + .9× .99) + .99(.01× .01 + .1× .99) = .27 + .098 = 0.368

λFODO(¬fo) = λDOHB(do)
[
Pr(do|¬fo, bp)πBPDO(bp) + Pr(do|¬fo,¬bp)πBPDO(¬bp)

]
+ λDOHB(¬do)

[
Pr(¬do|¬fo, bp)πBPDO(bp) + Pr(¬do|¬fo,¬bp)πBPDO(¬bp)

]
=

= .3(.97× .01 + .3× .99) + .99(.03× .7 + .1× .99) ∼= .092 + .686 = 0.778

� next, Pr∗(FO) can be computed

Pr∗(fo) = α× λFOLO (fo)× λFODO(fo)× Pr(fo) =

= α× .6× .368× .15 = .033α

Pr∗(¬fo) = α× λFOLO (¬fo)× λFODO(¬fo)× Pr(¬fo) =

= α× .05× .778× .85 = .033α

� Pr∗(fo) + Pr∗(¬fo) = 1→ α = 1
.066 = 15.15→ Pr∗(fo) = Pr∗(¬fo) = 0.5

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pBelief propagation – summary

� Initialization step

− each observed node sends its causal and diagnostic parameters

∗ π is either 0 or 1, λ carries conditional node probs (both according to observations),

− each unobserved root passes its causal π equal to its prior prob distribution,

− each unobserved leaf passes its diagnostic λ = 1.

� Iteration steps

− carried out until any change occurs,

− each node Vi which:

∗ received the causal π
Vpj

Vi
(Vpj) of all parents

⇒ computes its compound π(Vi),

∗ received the diagnostic λVi
Vcj

(Vi) of all its children

⇒ computes its compound λ(Vi),

∗ knows its compound π(Vi) and received diagnostic λVi
Vcj

of all its children excepted Vc

⇒ passes πVi
Vc

(Vi) to Vc child,

∗ knows its compound λ(Vi) and received causal π
Vpj

Vi
(Vpj) of all its parents excepted Vp

⇒ passes its λ
Vp

Vi
(Vp) to Vp parent.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pOther inference algorithms

� Clique or junction tree – Lauritzen & Spigelhalter

− apparently the most commonly used method for exact inference in general DAGs,

− complexity is exponential in the size of the largest clique in transformed undirected graph,

− applicable namely in sparse networks,

� arc reversal – R. D. Shachter

− another exact inference method for general DAGs,

� stochastic sampling

− approximate inference method for general DAGs,

− instead of exact distribution Pr(Q|e) makes its estimation by stochastic simulation,

− although it does not have lower than NP complexity in general, time may be obtained at

the expense of accuracy,

− particular algorithms

∗ rejection sampling – Henrion,

∗ likelihood weighting – Fung & Chang,

∗ Gibbs sampling – Geman & Geman, Pearl.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pJunction tree algorithm

1. Moralization

� connect nodes that have a common child with an undirected edge,

� make all edges in the graph undirected,

2. triangulation

� extend the existing graph to be triangulated,

� each of its cycles of four or more nodes has a chord

(an edge joining two nodes that are not adjacent in the cycle),

3. triangulated = decomposable (chordal) = a junction tree exists,

4. junction tree construction

� clique nodes = cliques of triangulated graph,

� cliques Ci in graph G can be ordered such that “running intersection property” holds

∀i = 2 . . . K ∃1 ≤ j < i Ci ∩

(
i−1⋃
k=1

Ck

)
⊆ Cj

� the connected graph has one edge less than the number of its nodes = tree,

� tree is completed by separator nodes = intersections of adjacent cliques.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pJunction tree algorithm – examples

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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pCalculations in junction trees – examples

� stems from joint probability factorization along the triangulated graph

PrG = PrC1
PrC2

PrC2∩C1
. . .

P rCK

PrCK∩(C1∪C2∪...CK−1)

� product of all the junction tree nodes is at any moment and constantly equal to PrG,

� FAMILY example

Pr(FO,LO,BP,DO,HB) =
Pr(FO,BP,DO)× Pr(FO,LO)× Pr(DO,HB)

Pr(FO)× Pr(DO)

− the node annotation probability tables are computed from the original network:

∗ Pr(FO,BP,DO) = Pr(FO)× Pr(BP )× Pr(DO|FO,BP ),

∗ Pr(DO) =
∑

FO,BP Pr(FO,BP,DO),

∗ Pr(DO,HB) = Pr(DO)× Pr(HB|DO), . . .
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pCalculations in junction trees

� the JT algorithm uses belief propagation to pass messages through the graph,

� enumerate Pr(fo|lo,¬hb):

1. {FO} node annotation is moved into {FO,BP,DO} node,

2. Pr∗(lo) = 1→ compute Pr(FO|lo) from Pr(FO,LO) and propagate it into {FO},

3. multiply probs in {FO,BP,DO} and {FO}, utilize BP,DO ⊥⊥ LO|FO relationship

Pr(BP,DO|FO)× Pr(FO|lo) = Pr(FO,BP,DO|lo),

4. multiply probs in {DO} and {DO,HB} nodes: Pr(DO,HB)
Pr(DO) = Pr(HB|DO),
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pCalculations in junction trees

5. knowing Pr(FO,BP,DO|lo), Pr(DO|lo) is computed and passed into {DO} node,

6. {FO,BP,DO} annotation is updated: Pr(FO,BP,DO|lo)
Pr(DO|lo) = Pr(FO,BP |DO, lo),

7. multiply probs in {DO} and {DO,HB} nodes, make use of LO ⊥⊥ HB|DO property

Pr(DO|lo)× Pr(HB|DO) = Pr(DO,HB|lo),

8. Pr∗(lo) = 1→ from Pr(DO,HB|lo) compute Pr(DO|lo,¬hb) and pass it into {DO},

9. multiply probs in {FO,BP,DO} and {DO} nodes, make use of FO,BP ⊥⊥ HB|DO property

Pr(FO,BP |DO, lo)× Pr(DO|lo,¬hb) = Pr(FO,BP,DO|lo,¬hb),

10. through marginalization of {FO,BP,DO} node we obtain Pr(FO|lo,¬hb).
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pArc reversal algorithm

� transform the original Bayesian network into a different one,

� the represented joint distribution either does not change or it is marginal wrt original one,

� the transformed network must include the query and evidence nodes (Q and E),

� the target marginal distribution Pr(Q|E) is available directly in the final transformed network,

� algorithm has 2 steps

1. node elimination – a node makes a tail (initial vertex) of no edge (its output degree is 0),

2. arc reversal – if there is an edge from a parent to its child and there is no alternative

directed path between them, a transformation that does not change the joint distribution

can be made – the arc is reversed, its incident nodes mutually inherit their parents.
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pArc reversal algorithm

� each arc reversal from Pk → Pl to Pl → Pk is accompanied by CPT recomputations,

� let us start with CPT of the new parent node

(the old− and new+ graph need to be used concurrently):

Pr(Pl|parents+(Pl)) =
∑
∀p∈Pk

Pr(Pk = p|parents−(Pk))× Pr(Pl|parents−(Pl) \ Pk, Pk = p)

− the paths leading through the former parent Pk replaced by an edge,

− the new edge sums the information flows for all the possible Pk values,

� next, let us derive CPT for the new child:

Pr(Pk|parents+(Pk)) =
Pr(Pk|parents−(Pk))× Pr(Pl|parents−(Pl))

Pr(Pl|parents+(Pl))

− in the trivial case parents−(Pk) = parents+(Pl) = ∅ the recomputation formula reduces

on Bayes theorem.
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pArc reversal algorithm – example

� let us consider a particular arc reversal from DO → HB to HB → DO, it holds:

Pr(HB|FO,BP ) =
∑

p∈{do,¬do}

Pr(DO = p|FO,BP )× Pr(HB|DO = p)

Pr(DO|FO,DO,HB) =
Pr(DO|FO,BP )× Pr(HB|DO)

Pr(HB|FO,BP )

FO BP HB Pr(HB|FO,BP)

T T T .99× .7 + .01× .01 = .6931

T F T .9× .7 + .1× .01 = .631

F T T .97× .7 + .03× .01 = .6793

F F T .3× .7 + .7× .01 = .217

FO BP HB DO Pr(DO|FO,BP,HB)

T T T T .99× .7/.6931 = .9999

T F T T .9× .7/.631 = .9984

. . .

F T F T .97× .3/.3207 = .9074

F F F T .3× .3/.783 = .1149
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pApproximate inference by stochastic sampling

� a general Monte-Carlo method, samples from the joint prob distribution,

� estimates the target conditional probability (query) from a sample set,

� the joint prob distribution is not explicitly given, its factorization is available only (network),

� the most straightforward is direct forward sampling

1. topologically sort the network nodes

− for every edge it holds that parent comes before its children in the ordering,

2. instantiate variables along the topological ordering

− take Pr(Pj|parents(Pj)), randomly sample Pj,

3. repeat step 2 for all the samples (the sample size M is given a priori),

� from samples to probabilities?

− Pr(q|e) ≈ N(q,e)
N(e)

− samples that contradict evidence not used,

− forward sampling gets inefficient if Pr(e) is small,

� rejection sampling brings a slight improvement

− rejects partially generated samples as soon as they violate the evidence event e,

− sample generation often stops early.
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pRejection sampling – example

� FAMILY example, estimate Pr(fo|lo,¬hb)
1. topologically sort the network nodes

− e.g., 〈FO,BP, LO,DO,HB〉 (or 〈BP,FO,DO,HB,LO〉, etc.)

2. instantiate variables along the topological ordering

− Pr(FO)→ ¬fo, Pr(BP )→ ¬bp,

Pr(LO|¬fo)→ lo, Pr(DO|¬fo,¬bp)→ ¬do, Pr(HB|¬do)→ ¬hb
− sample agrees with the evidence e = lo ∧ ¬hb, no rejection needed,

3. generate 1000 samples, repeat step 2,

� let N(fo, lo,¬hb) is 491 (the number of samples

with the given values of three variables under con-

sideration),

� in rejection sampling N(e) necessarily equals M ,

− Pr(fo|lo,¬hb) ≈ N(q,e)
N(e) = 491

1000 = 0.491
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pLikelihood weighting

� Likelihood weighting is a sampling method that avoids necessity to reject samples

− the values of E are fixed, the rest of variables is sampled only,

− however, not all events are equally probable, samples need to be weighted,

− the weight equals the likelihood of the event given the evidence,

� ∀ samples pm = {P1 = pm1 , . . . , Pn = pmn }, m ∈ {1, . . . ,M}
1. wm ← 1 (initialize the sample weight)

2. ∀j ∈ {1, . . . , n} (instantiate variables along the topological ordering)

− if Pj ∈ E then take pmj from e and wm ← wm × Pr(Pj|parents(Pj)),

− otherwise randomly sample pmj from Pr(Pj|parents(Pj)),

� from samples to probabilities?

− evidence holds in all samples (by definition),

− weighted averaging is applied to find Pr(Q = Pi|e)

Pr(pi|e) ≈
∑M

m=1w
mδ(pmi , pi)∑M

m=1w
m

δ(i, j) =

{
1 for i = j

0 for i 6= j

� nevertheless, samples may have very low weights

− it can also turn out inefficient in large networks with evidences occuring late in the ordering.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

A4M33RZN



pLikelihood weighting – example

� let us approximate Pr(fo|lo,¬hb) (its exact value computed earlier is 0.5),

p1 p2 p3 . . .

FO F F T

BP F F F

LO T T T
DO F T T

HB F F F

w .0495 .015 .18

FO1: Pr(fo) = .15→ ¬fo sampled

BP 1: Pr(bp) = .01→ ¬bp sampled

LO1: evidence → lo ∧ w1 = Pr(lo|¬fo) = .05

DO1: Pr(do|¬fo,¬bp) = .3→ ¬do sampled

HB1: evidence → ¬hb ∧ w1 = .05× Pr(¬hb|¬do) = .0495

FO2: Pr(fo) = .15→ ¬fo sampled

BP 2: Pr(bp) = .01→ ¬bp sampled

LO2: evidence → lo ∧ w1 = Pr(lo|¬fo) = .05

DO2: Pr(do|¬fo,¬bp) = .3→ do sampled

HB2: evidence → ¬hb ∧ w2 = .05× Pr(¬hb|do) = .015

� a very rough estimate having 3 samples only

Pr(fo|lo,¬hb) ≈ .18

.0495 + .015 + .18
= .74
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pGibbs sampling

� a Markov chain method – the next state depends purely on the current state

− generates dependent samples!

− as it is a Monte-Carlo method as well → MCMC,

� efficient sampling method namely when some of BN variable states are known

− it again samples nonevidence variables only, the samples never rejected,

� sampling process – samples pm = {P1 = pm1 , . . . , Pn = pmn }, m ∈ {1, . . . ,M}

1. fix states of all observed variables from E (in all samples),

2. the other variables initialized in p0 randomly,

3. generate pm from pm−1 (∀Pi 6∈ E)

− pm1 ← Pr(P1|pm−1
2 , . . . , pm−1

n ),

− pm2 ← Pr(P2|pm1 , pm−1
3 , . . . , pm−1

n ),

− . . . ,

− pmn ← Pr(Pn|pm1 , . . . , pmn−1),

4. repeat step 3 for m ∈ {1, . . . ,M}.
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pGibbs sampling

� probs Pr(Pi|P1, . . . , Pi−1, Pi+1, . . . , Pn) = Pr(Pi|P \ Pi) not explicitly given . . .

− to enumerate them, only their BN neighborhood needs to be known

Pr(Pi|P \ Pi) ∝ Pr(Pi|parents(Pi))
∏

∀Pj ,Pi∈parents(Pj)

Pr(Pj|parents(Pj))

− the neighborhood is called Markov blanket (MB),

− MB covers the node, its parents, its children and their parents,

− MB(Pi) is the minimum set of nodes that d-separates Pi from the rest of the network.

� from samples to probabilities?

− evidence holds in all samples (by definition),

− averaging ∀m is applied to find Pr(Q|e)

Pr(pi|e) ≈
∑M

m=1 δ(p
m
i , pi)

M
δ(i, j) =

{
1 for i = j

0 for i 6= j
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pGibbs sampling – example

� let us approximate Pr(fo|lo,¬hb) (its exact value computed earlier is 0.5),

p0 p1 p2 . . .

FO T F F
BP T F F
LO T T T
DO F F F

HB F F F

p0: random init of unevidenced variables

FO1: Pr∗(fo) ∝ Pr(fo)× Pr(lo|fo)× Pr(¬do|fo, bp)
Pr∗(¬fo) ∝ Pr(¬fo)× Pr(lo|¬fo)× Pr(¬do|¬fo, bp)
Pr∗(fo) ∝ .15× .6× .01 = 9× 10−4 → ×α1

FO = .41

Pr∗(¬fo) ∝ .85× .05× .03 = 1.275× 10−3 → ×α1
FO = .59

α1
FO = 1

Pr∗(fo)+Pr∗(¬fo) = 460

BP 1: Pr∗(bp) ∝ Pr(bp)× Pr(¬do|¬fo, bp) = .01× .03 = .0003

Pr∗(¬bp) ∝ Pr(¬bp)× Pr(¬do|¬fo,¬bp) = .99× .7 = 0.693

α1
BP = 1

Pr∗(bp)+Pr∗(¬bp) = 1.44→ Pr∗(bp) = 4× 10−4

DO1: by analogy, |MB(DO)| = 5

FO2: BP value was switched, substitution is Pr(DO|FO,¬bp)
Pr∗(fo) = .21 Pr∗(¬fo) = .79

BP 2: the same probs as is sample 1
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pGibbs sampling – example

� BN Matlab Toolbox, aproximation of Pr(fo|lo,¬hb),

� gibbs sampling inf engine, three independent runs with 100 samples.
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pSummary

� independence and conditional independence ramarkably simplify prob model

− still, BN inference remains generally NP-hard wrt the number of network variables,

− inference complexity grows with the number of network edges

∗ näıve Bayes model – linear complexity,

∗ general complexity estimate from the size of maximal clique of triangulated graph,

− inference complexity can be reduced by constraining model structure

∗ special network types (singly connected), e.g. trees – one parent only,

− inference time can be shorten when exact answer is not required

∗ approximate inference, typically (but not only) stochastic sampling.
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pRecommended reading, lecture resources

� Russell, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part V)

− probabilistic reasoning (chapter 14 or 15, depends on the edition),

− online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,

� Jiroušek: Metody reprezentace a zpracováńı znalost́ı v umělé inteligenci.

− bayesovské śıtě (kapitola 6), metoda postupných modifikaćı śıtě,

− http://staff.utia.cas.cz/vomlel/r.pdf,

� Šingliar: Pearl’s algorithm.

− a message passing algorithm for exact inference in polytree BBNs,

− http://www.cs.pitt.edu/ tomas/cs3750/pearl.ppt.
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