# AE4M33RZN, Fuzzy logic: Fuzzy relations

#### Radomír Černoch

radomir.cernoch@fel.cvut.cz

26/11/2012

Faculty of Electrical Engineering, CTU in Prague

# Plan of the lecture

#### Properties of fuzzy sets

Fuzzy implication and fuzzy properties Fuzzy set inclusion and crisp predicates Intermission: Probabilistic vs. fuzzy **Binary fuzzy relations** Quick revision of crisp relations **Fuzzyfication of crisp relations** Projection and cylindrical extension Composition of fuzzy relations Properties of fuzzy relations Properties of fuzzy composition Extensions Biblopgraphy



- Next week, there will be a short test (max 5 points).
- This week we are having the last theoretical lecture.

We already know fuzzy negation  $\neg$ , fuzzy conjunction  $\land$  and fuzzy

discjunction  $\overset{\circ}{\vee}$ . What about other operators?

We already know fuzzy negation  $\neg$ , fuzzy conjunction  $\land$  and fuzzy

discjunction  $\overset{\circ}{\vee}$ . What about other operators?

#### Definition

Fuzzy implication is any function

$$\stackrel{\circ}{\underset{\circ}{\rightarrow}}: [0,1]^2 \to [0,1] \tag{1}$$

which overlaps with the boolean implication on  $x, y \in \{0, 1\}$ :

$$(x \stackrel{\circ}{\underset{\circ}{\Rightarrow}} y) = (x \Rightarrow y).$$
 (2)

Despite the lack of a uniform definition of fuzzy implication, there is a useful class of implications:

#### Defintion

The *R-implication* (residuum, *"reziduovaná implikace"*) is a function obtained from a fuzzy T-norm:

$$\alpha \stackrel{R}{\underset{\circ}{\Rightarrow}} \beta = \sup\{\gamma \mid \alpha \land \gamma \leqslant \beta\}$$
(RI)

# R-implication: Examples (1)

Standard implication (Gödel) is derived from (RI) using the standard cojunction  $A_{S}$ :

$$\alpha \xrightarrow{\mathbb{R}}_{S} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leq \beta \\ \beta & \text{otherwise} \end{cases}$$

(3)



# R-implication: Examples (2)

*Łukasiewicz implication* is derived from (RI) using the Łukasiewicz cojunction  $\uparrow$ :

$$\alpha \stackrel{R}{\underset{L}{\cong}} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leq \beta \\ \mathbf{1} - \alpha + \beta & \text{otherwise} \end{cases}$$
(4)



# R-implication: Examples (3)

Algebraic implication (Gougen, Gaines) is derived from (RI) using the algebraic cojunction  $\bigwedge_{A}$ :

$$\alpha \stackrel{\mathbb{R}}{\underset{A}{\cong}} \beta = \begin{cases} \mathbf{1} & \text{if } \alpha \leq \beta \\ \frac{\beta}{\alpha} & \text{otherwise} \end{cases}$$

(5)



# **R-implication:** Properties

#### Theorem 209.

Let  $\mathop{\wedge}\limits_{\circ}$  be a continuous fuzzy conjunction. Then R-implication satisfies:

$$\alpha \stackrel{R}{\to} \beta = 1 \text{ iff } \alpha \leq \beta \tag{11}$$

$$\mathbf{1} \stackrel{\mathrm{R}}{\xrightarrow{\circ}} \beta = \beta \tag{12}$$

 $\alpha \stackrel{\mathbb{R}}{\underset{\circ}{\Rightarrow}} \beta$  is not increasing in  $\alpha$  and not decreasing in  $\beta$  (I3)

## **R-implication:** Properties

#### Proof of theorem 209.

Let's denote  $\{\gamma \mid \alpha \land \gamma \leq \beta\} = \gamma$ .

- Proving (13) uses monotonicity: Increasing  $\alpha$  can only shrink  $\gamma$  and increasing  $\beta$  can only enlarge  $\gamma$ .
- Proving (I2) is easy:  $\mathbf{1} \stackrel{R}{\rightarrow} \beta = \sup\{\gamma \mid \mathbf{1} \land \gamma \leq \beta\}$ . From definition of

$$\bigwedge_{\circ}$$
, we write  $\mathbf{1} \stackrel{\mathbb{R}}{\Rightarrow} \beta = \sup\{\gamma \mid \gamma \leq \beta\} = \beta$ .

## **R-implication:** Properties

#### Proof of theorem 209 (contd.).

- For (I1) one needs to check 2 cases:
  - If  $\alpha \leq \beta$ , then  $\mathbf{1} \in \gamma$ , because  $\alpha \wedge \mathbf{1} = \alpha \leq \beta$  and therefore the condition  $\alpha \wedge \gamma \leq \beta$  is true for all possible values of  $\gamma$ .
  - If  $\alpha > \beta$ , then  $\mathbf{1} \notin \gamma$ , because  $\alpha \wedge \mathbf{1} = \alpha > \beta$  and therefore the condition  $\alpha \wedge \gamma \leq \beta$  is false for  $\gamma = \mathbf{1}$ .

# S-implication

#### Defintion

The S-implication is a function obtained from a fuzzy disjunction  $\overset{\circ}{\vee}:$ 

$$\alpha \stackrel{s}{\underset{\circ}{\Rightarrow}} \beta = \frac{1}{s} \alpha \stackrel{\circ}{\lor} \beta \tag{SI}$$

# S-implication

#### Defintion

The *S*-implication is a function obtained from a fuzzy disjunction  $\breve{\lor}$ :

$$\alpha \stackrel{\mathrm{S}}{\Rightarrow} \beta = \operatorname{\overline{S}} \alpha \stackrel{\mathrm{o}}{\vee} \beta \tag{SI}$$

#### Example

Kleene-Dienes implication from  $\overset{S}{\lor}$ 

$$\alpha \stackrel{s}{\longrightarrow} \beta = \max(1 - \alpha, \beta) \tag{6}$$

### Generalized fuzzy inclusion

### Generalized fuzzy inclusion

Previously, we used the logical negation  $\neg_{\circ}$  to define the set complement, the conjunction  $\wedge_{\circ}$  to define the set intersection, etc. Can we use the implication  $\stackrel{\circ}{\rightarrow}$  to define the fuzzy inclusion?

## Generalized fuzzy inclusion

Previously, we used the logical negation  $\neg$  to define the set

complement, the conjunction  $\bigwedge$  to define the set intersection, etc.

Can we use the implication  $\stackrel{\circ}{\to}$  to define the fuzzy inclusion?

#### Definition

The generalized fuzzy inclusion  $\subseteq$  is a function that assigns a degree to

the the inclusion of set  $A \in \mathbb{F}(\Delta)$  in set  $B \in \mathbb{F}(\Delta)$ :

$$A \stackrel{\circ}{\underset{\circ}{\subseteq}} B = \inf\{A(x) \stackrel{\circ}{\underset{\circ}{\Rightarrow}} B(x) \mid x \in \Delta\}$$
(7)

# Generalized fuzzy inclusion: Example

#### Definition

The *fuzzy inclusion*  $\subseteq$  is a predicate (assigns a true/false value) which hold for two fuzzy sets  $A, B \in \mathbb{F}(\Delta)$  iff

 $\mu_A(\mathbf{x}) \leq \mu_B(\mathbf{x}) \text{ for all } \mathbf{x} \in \Delta.$ (8)

# In vertical representation, the definition has a straightforward equivalent:

$$\mu_{\mathbf{A}} \leqslant \mu_{\mathbf{B}} \tag{9}$$

In vertical representation, the definition has a straightforward equivalent:

$$\mu_{\mathbf{A}} \leqslant \mu_{\mathbf{B}} \tag{9}$$

In horizontal representation, there is a theorem:

Theorem 219.

Let  $A, B \in \mathbb{F}(\Delta)$  if and only if

$$\mathbb{R}_{A}(\alpha) \subseteq \mathbb{R}_{B}(\alpha)$$
 for all  $\alpha \in [0, 1]$ . (10)

#### Proof of theorem 219.

- ⇒ Assume  $A \subseteq B$  and  $x \in \mathbb{R}_A(\alpha)$  for some value  $\alpha$ . If  $\alpha \leq A(x)$ , then  $A(x) \leq B(x)$  (from the definition of  $A \subseteq B$ ) and therefore  $x \in \mathbb{R}_B(\alpha)$ and  $\mathbb{R}_A(\alpha) \subseteq \mathbb{R}_B(\alpha)$ .
- $\leftarrow \text{ Assume } \mathbb{R}_{A}(\alpha) \subseteq \mathbb{R}_{B}(\alpha). \text{ Firstly recall the horizontal-vertical translation formula: } \mu_{A}(x) = \sup\{\alpha \in [0, 1] \mid x \in \mathbb{R}_{A}(\alpha)\}. \text{ Since } \{\alpha \mid x \in \mathbb{R}_{A}(x)\} \subseteq \{\alpha \mid x \in \mathbb{R}_{B}(x)\}, \text{ the inequality } A(x) \leq \sup\{\alpha \mid x \in \mathbb{R}_{B}(x)\} \leq B(x) \text{ holds.}$

### Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

## Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

#### Cutworhiness

Let *P* be a predicate (returns true/false) over fuzzy sets. *P* is called *cutworthy* ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1, ..., A_n) \Rightarrow P(\mathbb{R}_{A_1}(\alpha), ..., \mathbb{R}_{A_n}(\alpha)) \text{ for all } \alpha \in [0, 1]$$
 (11)

## Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

#### Cutworhiness

Let *P* be a predicate (returns true/false) over fuzzy sets. *P* is called *cutworthy* ("řezově dědičná vlastnost") if the implication holds:

$$P(A_1, ..., A_n) \Rightarrow P(\mathbb{R}_{A_1}(\alpha), ..., \mathbb{R}_{A_n}(\alpha)) \text{ for all } \alpha \in [0, 1]$$
 (11)

There is a related notion: We define *P* as *cut-consistent* ("řezově konzistentní") using the same definition, but replacing  $\Rightarrow$  with  $\Leftrightarrow$ .

# **Cutworhiness: Examples**

• The theorem 219 can be stated as: "Set inclusion is cut-consistent."

#### **Brain teasers**

- Strong normality of A is defined as A(x) = 1 for some x ∈ Δ.
   ????
- Being crisp is
   ????

# **Cutworhiness: Examples**

• The theorem 219 can be stated as: "Set inclusion is cut-consistent."

#### **Brain teasers**

- Strong normality of A is defined as A(x) = 1 for some  $x \in \Delta$ . Strong normality is **cut-consistent**: A is strongly-normal iff every its cut is non-empty iff every cut strongly normal.
- Being crisp is

**cutworthy, but not cut-consistent:** Every cut is crisp by definition, therefore cutworthiness. But even **non-crisp sets** have crisp cuts, therefore the property is not not cut-consistent.





#### Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.

220 / 241 Basic fuzzy

# Google: "probability"



#### Sources: Life123, WhatWeKnowSoFar, Probability Problems.

221 / 241 Basic fuzzy

# Fuzzy vs. probability

• Vagueness vs. uncertainty.

### Fuzzy vs. probability

• Vagueness vs. uncertainty.

• Fuzzy logic is *functional*.

## **Crisp relations**

#### Definition

# A *binary crisp relation R* from *X* onto *Y* is a subset of the cartesian product *X* × *Y*:

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

## **Crisp relations**

#### Definition

# A *binary crisp relation R* from X onto Y is a subset of the cartesian product $X \times Y$ :

$$R \in \mathbb{P}(X \times Y) \tag{12}$$

#### Definition

The *inverse relation*  $R^{-1}$  to R is a relation from Y to X s.t.

$$R^{-1} = \{(y, x) \in Y \times X \mid (x, y) \in R\}$$
(13)

### **Crisp relations: Inverse**

#### Definition

Let *X*, *Y*, *Z* be sets. Then the *compound* of relations  $R \subseteq X \times Y$ ,  $S \subseteq Y \times Z$  is the relation

 $R \bigcirc S = \{(x, z) \in X \times Z \mid (x, y) \in R \text{ and } (y, z) \in S \text{ for some } y\}$  (14)

### **Crisp relations: Properties**

The *equality* relation on  $\Delta$  is  $E = \{(x, x) | x \in \Delta\}$ .

### **Crisp relations: Properties**

The *equality* relation on  $\Delta$  is  $E = \{(x, x) | x \in \Delta\}$ .

Then the relation  $\mathbf{R} \subseteq \Delta \times \Delta$  is called
| property | using logical connectives | using set axioms |
|----------|---------------------------|------------------|
|          |                           |                  |

| property  | using logical connectives | using set axioms |  |
|-----------|---------------------------|------------------|--|
| reflexive | $\forall x. (x, x) \in R$ | $E \subseteq R$  |  |

| property  | using logical connectives                 | using set axioms |
|-----------|-------------------------------------------|------------------|
| reflexive | $\forall x. (x, x) \in R$                 | $E \subseteq R$  |
| symmetric | $(x,y) \in R \Longrightarrow (y,x) \in R$ | $R=R^{-1}$       |

| property       | using logical connectives                         | using set axioms            |  |
|----------------|---------------------------------------------------|-----------------------------|--|
| reflexive      | $\forall x. (x, x) \in R$                         | $E \subseteq R$             |  |
| symmetric      | $(x,y) \in R \Longrightarrow (y,x) \in R$         | $R=R^{-1}$                  |  |
| anti-symmetric | $(x,y) \in R \land (y,z) \in R \Rightarrow y = z$ | $R \cap R^{-1} \subseteq E$ |  |

| property       | using logical connectives                                   | using set axioms            |  |
|----------------|-------------------------------------------------------------|-----------------------------|--|
| reflexive      | $\forall x. (x, x) \in R$                                   | $E \subseteq R$             |  |
| symmetric      | $(x,y) \in R \Rightarrow (y,x) \in R$                       | $R = R^{-1}$                |  |
| anti-symmetric | $(x,y) \in R \land (y,z) \in R \Rightarrow y = z$           | $R \cap R^{-1} \subseteq E$ |  |
| transitive     | $(x,y) \in R \land (y,z) \in R \Longrightarrow (x,z) \in R$ | $R \bigcirc R \subseteq R$  |  |

| property       | using logical connectives                                   | using set axioms            |
|----------------|-------------------------------------------------------------|-----------------------------|
| reflexive      | $\forall x. (x, x) \in R$                                   | $E \subseteq R$             |
| symmetric      | $(x,y) \in R \Longrightarrow (y,x) \in R$                   | $R=R^{-1}$                  |
| anti-symmetric | $(x,y) \in R \land (y,z) \in R \Rightarrow y = z$           | $R \cap R^{-1} \subseteq E$ |
| transitive     | $(x,y) \in R \land (y,z) \in R \Longrightarrow (x,z) \in R$ | $R \bigcirc R \subseteq R$  |
| partial order  | reflexive, transitive and anti-symme                        | etric                       |
| equivalence    | reflexive, transitive and symmetric                         |                             |

### **Fuzzy relations**

### Definition

# A *binary fuzzy relation R* from X onto Y is a fuzzy subset on the universe $X \times Y$ .

$$R \in \mathbb{F}(X \times Y) \tag{15}$$

#### Definition

The *fuzzy inverse* relation  $R^{-1} \in \mathbb{F}(Y \times X)$  to  $R \in \mathbb{F}(X \times Y)$ , s.t.

$$R(y, x) = R^{-1}(x, y)$$
 (16)

### Projection

#### Defintion

Let  $R \in \mathbb{F}(X \times Y)$  be a fuzzy binary relation. The *first* and second projection of *R* is

$$R^{(1)}(x) = \bigvee_{y \in Y}^{S} R(x, y)$$
(17)  
$$R^{(2)}(y) = \bigvee_{x \in X}^{S} R(x, y)$$
(18)

# **Projection: Example**

| R                     | <b>y</b> 1 | <b>y</b> <sub>2</sub> | $\boldsymbol{y}_3$ | <b>y</b> <sub>4</sub> | $\boldsymbol{y}_5$ | $y_6$ | $R^{(1)}(x)$ |
|-----------------------|------------|-----------------------|--------------------|-----------------------|--------------------|-------|--------------|
| <i>x</i> <sub>1</sub> | 0.1        | 0.2                   | 0.4                | 0.8                   | 1                  | 0.8   | ?            |
| x2                    | 0.2        | 0.4                   | 0.8                | 1                     | 0.8                | 0.6   | ?            |
| <b>x</b> <sub>3</sub> | 0.4        | 0.8                   | 1                  | 0.8                   | 0.4                | 0.2   | ?            |
| $R^{(2)}(y)$          | ?          | ?                     | ?                  | ?                     | ?                  | ?     |              |

### **Projection: Example**

| R                     | <b>y</b> 1 | <b>y</b> <sub>2</sub> | $\boldsymbol{y}_3$ | $\boldsymbol{y}_4$ | $\boldsymbol{y}_{5}$ | $y_6$ | $R^{(1)}(x)$ |
|-----------------------|------------|-----------------------|--------------------|--------------------|----------------------|-------|--------------|
| <i>x</i> <sub>1</sub> | 0.1        | 0.2                   | 0.4                | 0.8                | 1                    | 0.8   | 1            |
| x2                    | 0.2        | 0.4                   | 0.8                | 1                  | 0.8                  | 0.6   | 1            |
| <b>x</b> <sub>3</sub> | 0.4        | 0.8                   | 1                  | 0.8                | 0.4                  | 0.2   | 1            |
| $R^{(2)}(y)$          | 0.4        | 0.8                   | 1                  | 0.8                | 0.4                  | 0.2   |              |

Sometimes there is a *total projection* defined as  $R^{(T)} = \bigvee_{x \in X} \bigvee_{y \in Y} R(x, y)$ . But we already know this notion as Height(R).

# Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

# Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

#### Definition

Let  $A \in \mathbb{F}(X)$  and  $B \in \mathbb{F}(Y)$  be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x, y) = A(x) \underset{S}{\wedge} B(y)$$
(19)

# Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

#### Definition

Let  $A \in \mathbb{F}(X)$  and  $B \in \mathbb{F}(Y)$  be fuzzy sets. The *cylindrical extension* ("cylindrické rozšíření", "kartézský součin fuzzy množin") is defined as

$$A \times B(x, y) = A(x) \mathop{\wedge}_{\mathrm{S}} B(y)$$
(19)

#### **Brain teaser**

Why can't there be a relation Q bigger than  $A \times B$ , whose projections are  $Q^{(1)} = A$  and  $Q^{(2)} = B$ ?

# Cylindrical extension: Drawing

$$A(x) = \begin{cases} x - 1 & x \in [1, 2] \\ 3 - x & x \in [2, 3] \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} x - 3 & x \in [3, 4] \\ 5 - x & x \in [4, 5] \\ 0 & \text{otherwise} \end{cases}$$

# Composition of fuzzy relations

#### Definition

Let X, Y, Z be crisp sets.  $R \in \mathbb{F}(X \times Y)$ ,  $S \in \mathbb{F}(Y \times Z)$  and  $\wedge$  some fuzzy

conjunction. Then the  $\bigcirc$ -composition (" $\bigcirc$ -složená relace") is

$$R_{\bigcirc} S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \bigotimes_{\circ} S(y,z)$$
(20)

# Composition of fuzzy relations

#### Definition

Let X, Y, Z be crisp sets.  $R \in \mathbb{F}(X \times Y)$ ,  $S \in \mathbb{F}(Y \times Z)$  and  $\wedge$  some fuzzy

conjunction. Then the  $\_$ -composition (" $\_$ -složená relace") is

$$R \mathop{\otimes}_{\mathcal{O}} S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \mathop{\wedge}_{\mathcal{O}} S(y,z)$$
(20)

1. For infinite domains,  $\bigvee^s$  is computed using the sup instead of max.

# Composition of fuzzy relations

#### Definition

Let X, Y, Z be crisp sets.  $R \in \mathbb{F}(X \times Y)$ ,  $S \in \mathbb{F}(Y \times Z)$  and  $\bigwedge$  some fuzzy

conjunction. Then the  ${\baselinetwidth}$  -composition (" ${\baselinetwidth}$  -složená relace") is

$$R_{\bigcirc} S(x,z) = \bigvee_{y \in Y}^{S} R(x,y) \stackrel{\wedge}{_{\odot}} S(y,z)$$
(20)

- 1. For infinite domains,  $\bigvee^s$  is computed using the sup instead of max.
- Instead of the "for some y" in crisp relations, the disjunction "finds such a y" that maximizes the conjunction.

# Example of a fuzzy relation

$$R(x,y) = \begin{cases} x+y & x,y \in \left[0,\frac{1}{2}\right] \\ \text{o} & \text{otherwise} \end{cases} \qquad S(x,y) = \begin{cases} x \cdot y & x,y \in \left[0,1\right] \\ \text{o} & \text{otherwise} \end{cases}$$

#### Then the relation $\mathbf{R} \subseteq \Delta \times \Delta$ is called

property

using set axioms

| property  | using set axioms |
|-----------|------------------|
| reflexive | $E \subseteq R$  |

| property  | using set axioms |
|-----------|------------------|
| reflexive | $E \subseteq R$  |
| symmetric | $R = R^{-1}$     |

| property         | using set axioms            |
|------------------|-----------------------------|
| reflexive        | $E \subseteq R$             |
| symmetric        | $R=R^{-1}$                  |
| ◦-anti-symmetric | $R \cap R^{-1} \subseteq E$ |

| property                            | using set axioms            |
|-------------------------------------|-----------------------------|
| reflexive                           | $E \subseteq R$             |
| symmetric                           | $R=R^{-1}$                  |
| <ul> <li>-anti-symmetric</li> </ul> | $R \cap R^{-1} \subseteq E$ |
| o-transitive                        | $R \bigcirc R \subseteq R$  |

| property                        | using set axioms                           |
|---------------------------------|--------------------------------------------|
| reflexive                       | $E \subseteq R$                            |
| symmetric                       | $R = R^{-1}$                               |
| o-anti-symmetric                | $R \bigcap_{\circ} R^{-1} \subseteq E$     |
| o-transitive                    | $R \bigcirc R \subseteq R$                 |
| ◦-partial order                 | reflexive, -transitive and -anti-symmetric |
| <ul> <li>equivalence</li> </ul> | reflexive, -transitive and -symmetric      |

If the universe  $\Delta$  is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal ?.
- Symmetricity: Cells symmetric over the main diagonal ?.
- Anti-symmetricity: Cells symmetric over the main diagonal ?.
  - For S- and A-anti-symmetricity, ?.
  - For L-anti-symmetricity, ?.
- Transitivity: More difficult (see example on the next slide).

If the universe  $\Delta$  is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- **Reflexivity:** Cells on the main diagonal are 1.
- Symmetricity: Cells symmetric over the main diagonal are equal.
- Anti-symmetricity: Cells symmetric over the main diagonal have conjunction equal to zero.
  - For S- and A-anti-symmetricity, one of the elements must be zero.
  - For L-anti-symmetricity, their sum must be less or equal to 1.
- Transitivity: More difficult (see example on the next slide).

### Example on fuzzy relation properties

#### Let $\Delta = \{A, B, C, D\}$ and $R \in \mathbb{F}(\Delta \times \Delta)$ .

| R | A | В   | С   | D   |
|---|---|-----|-----|-----|
| Α |   | 0.5 |     | 0.1 |
| В |   |     | 0.2 |     |
| С |   |     |     |     |
| D |   | 0.2 |     |     |

Fill the missing cells in the table to make R

- a) S-equivalence
- b) A-equivalence

#### Theorem 264.

# Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

### Theorem 264.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R_{\bigcirc} E = R, \ E_{\bigcirc} R = R \tag{21}$$

$$(R \bigcirc S)^{-1} = S^{-1} \bigcirc R^{-1}$$
(22)

$$R_{\bigcirc}(S_{\bigcirc}T) = (R_{\bigcirc}S)_{\bigcirc}T$$
(23)

$$(R \bigcap^{S} S)_{\bigcirc} T = (R_{\bigcirc} T)_{\bigcirc} (S_{\bigcirc} T)$$
(24)

$$R_{\bigcirc}(S\bigcap^{S}T) = (R_{\bigcirc}S)_{\bigcirc}(R_{\bigcirc}T)$$
(25)

#### Theorem 264.

Let *R*, *S* and *T* be relations (defined over sets that "make sense") The following equations hold:

$$R_{\bigcirc} E = R, \ E_{\bigcirc} R = R \tag{21}$$

$$(R \bigcirc S)^{-1} = S^{-1} \bigcirc R^{-1}$$
(22)

$$R_{\bigcirc}(S_{\bigcirc}T) = (R_{\bigcirc}S)_{\bigcirc}T$$
(23)

$$(R \bigcap^{S} S)_{\bigcirc} T = (R_{\bigcirc} T)_{\bigcirc} (S_{\bigcirc} T)$$
(24)

$$R_{\bigcirc}(S \bigcap^{S} T) = (R_{\bigcirc}S)_{\bigcirc}(R_{\bigcirc}T)$$
(25)

(21) describes the *identity element*, (22) the *inverse of composition*,(23) is the *asociativity*, (24) and (25) the *right-* and *left-distributivity*.

### Proof of 264.

### Proving (21) and (22) is trivial.

$${}^{'}R_{\bigcirc}(S_{\bigcirc}T)^{''}(x,w) = \bigvee_{y}^{S} R(x,y)_{\Diamond}^{''}S_{\bigcirc}T^{''}(y,w)$$
(26)  
$$= \bigvee_{y}^{S} R(x,y)_{\Diamond}^{\wedge} \left(\bigvee_{z}^{S} S(y,z)_{\Diamond}^{\wedge}T(z,w)\right)$$
(27)  
$$= \bigvee_{y}^{S} \bigvee_{z}^{S} R(x,y)_{\Diamond}^{\wedge}S(y,z)_{\Diamond}^{\wedge}T(z,w)$$
(28)  
$$= \bigvee_{z}^{S} \bigvee_{y}^{S} R(x,y)_{\Diamond}^{\wedge}S(y,z)_{\Diamond}^{\wedge}T(z,w)$$
(29)

Z

### Proof of 264 (contd.).

$$=\bigvee_{z}^{S}\bigvee_{y}^{S}R(x,y)\bigwedge_{\circ}S(y,z)\bigwedge_{\circ}T(z,w)$$
(30)

$$=\bigvee_{z}^{s}\left(\bigvee_{y}^{s}R(x,y)\wedge_{\circ}S(y,z)\right)\wedge_{\circ}T(z,w)$$
(31)

$$=\bigvee_{z}^{S} "R_{\bigcirc} S"(x,z) \wedge T(z,w)$$
(32)

$$= "R \odot S \odot T"(x, w)$$
(33)

Proof of (24) and (25) is similar (uses the distributivity law), only shorter. See [Navara and Olšák, 2001] for details.

238 / 241 Basic fuzzy

# Extensions: Sometimes it is useful to consider...

• ...a *ε-reflective* relation

 $R(x,x) \ge \varepsilon \tag{34}$ 

## Extensions: Sometimes it is useful to consider...

• ...a *ε-reflective* relation

$$R(x,x) \ge \varepsilon \tag{34}$$

• ...a weakly reflexive relation

 $R(x, y) \leq R(x, x)$  and  $R(y, x) \leq R(x, x)$  for all x, y (35)

# Extensions: Sometimes it is useful to consider...

...a ε-reflective relation

$$R(x,x) \ge \varepsilon \tag{34}$$

• ...a weakly reflexive relation

 $R(x,y) \leq R(x,x)$  and  $R(y,x) \leq R(x,x)$  for all x,y (35)

- Relation is 1-reflective iff reflexive.
- If a relation is reflexive, then it is weakly reflexive.
## Extensions: Sometimes it is useful to consider...

• ...a non-involutive negation by refusing (N2)

$$\neg \neg \alpha \neq \alpha$$

and adopting a weaker axiom

$$\neg \neg \circ = 1 \text{ and } \neg \neg 1 = 0$$
 (N0)

Example

Gödel negation

$$\mathbf{G}^{\alpha} = \begin{cases} \mathbf{1} & \alpha = \mathbf{0} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

(36)

240 / 241 Basic fuzzy



## Navara, M. and Olšák, P. (2001). Základy fuzzy množin. Nakladatelství ČVUT.