
AE4M33RZN, Fuzzy logic:
Fuzzy relations

Radomír Černoch
radomir.cernoch@fel.cvut.cz

26/11/2012

Faculty of Electrical Engineering, CTU in Prague

201 / 241 Basic fuzzy



Plan of the lecture

Properties of fuzzy sets
Fuzzy implication and fuzzy properties
Fuzzy set inclusion and crisp predicates

Intermission: Probabilistic vs. fuzzy

Binary fuzzy relations
Quick revision of crisp relations
Fuzzyfication of crisp relations
Projection and cylindrical extension
Composition of fuzzy relations
Properties of fuzzy relations
Properties of fuzzy composition

Extensions
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Organizational:

• Next week, there will be a short test (max 5 points).

• This week we are having the last theoretical lecture.
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Fuzzy implication

We already know fuzzy negation¬∘ , fuzzy conjunction∧∘ and fuzzy

discjunction
∘∨. What about other operators?

Definition

Fuzzy implication is any function

∘⇒∘ ∶ [0, 1]2 → [0, 1] (1)

which overlaps with the boolean implication on x, y ∈ {0, 1}:

(x ∘⇒∘ y) = (x⇒ y) . (2)
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Residue implication

Despite the lack of a uniform definition of fuzzy implication, there is a
useful class of implications:

Defintion

The R-implication (residuum, „reziduovaná implikace“) is a function
obtained from a fuzzy T-norm:

𝛼 ⇒∘ 𝛽 = sup{𝛾 | 𝛼∧∘ 𝛾 ≤ 𝛽} (RI)
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R-implication: Examples (1)

Standard implication (Gödel) is
derived from (RI) using the
standard cojunction∧


: 𝛼 ⇒


𝛽 =

⎧⎪
⎨⎪⎩

1 if 𝛼 ≤ 𝛽
𝛽 otherwise

(3)
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R-implication: Examples (2)

Łukasiewicz implication is
derived from (RI) using the
Łukasiewicz cojunction∧


: 𝛼 ⇒


𝛽 =

⎧⎪
⎨⎪⎩

1 if 𝛼 ≤ 𝛽
1 − 𝛼 + 𝛽 otherwise

(4)
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R-implication: Examples (3)

Algebraic implication (Gougen,
Gaines) is derived from (RI) using
the algebraic cojunction∧


: 𝛼 ⇒


𝛽 =

⎧⎪
⎨⎪⎩

1 if 𝛼 ≤ 𝛽
𝛽
𝛼 otherwise

(5)
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R-implication: Properties

Theorem 209.

Let∧∘ be a continuous fuzzy conjunction. Then R-implication satisfies:

𝛼 ⇒∘ 𝛽 = 1 iff 𝛼 ≤ 𝛽 (I1)

1
⇒∘ 𝛽 = 𝛽 (I2)

𝛼 ⇒∘ 𝛽 is not increasing in 𝛼 and not decreasing in 𝛽 (I3)
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R-implication: Properties

Proof of theorem 209.

Let's denote {𝛾 | 𝛼∧∘ 𝛾 ≤ 𝛽} = 𝛾.

• Proving (I3) uses monotonicity: Increasing 𝛼 can only shrink 𝛾 and
increasing 𝛽 can only enlarge 𝛾.

• Proving (I2) is easy: 1
⇒∘ 𝛽 = sup{𝛾 | 1∧∘ 𝛾 ≤ 𝛽}. From definition of

∧∘ , we write 1
⇒∘ 𝛽 = sup{𝛾 | 𝛾 ≤ 𝛽} = 𝛽.
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R-implication: Properties

Proof of theorem 209 (contd.).

• For (I1) one needs to check 2 cases:
• If 𝛼 ≤ 𝛽, then 1 ∈ 𝛾, because 𝛼∧∘ 1 = 𝛼 ≤ 𝛽 and therefore the

condition 𝛼∧∘ 𝛾 ≤ 𝛽 is true for all possible values of 𝛾.
• If 𝛼 > 𝛽, then 1 ∉ 𝛾, because 𝛼∧∘ 1 = 𝛼 > 𝛽 and therefore the

condition 𝛼∧∘ 𝛾 ≤ 𝛽 is false for 𝛾 = 1.

211 / 241 Basic fuzzy



S-implication

Defintion

The S-implication is a function obtained from a fuzzy disjunction
∘∨:

𝛼 ⇒∘ 𝛽 = ¬

𝛼 ∘∨ 𝛽 (SI)

Example

Kleene-Dienes implication from
∨

𝛼 ⇒

𝛽 = max(1 − 𝛼, 𝛽) (6)
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Generalized fuzzy inclusion

Previously, we used the logical negation¬∘ to define the set

complement, the conjunction∧∘ to define the set intersection, etc.

Can we use the implication
∘⇒∘ to define the the fuzzy inclusion?

Definition

The generalized fuzzy inclusion
∘⊆∘ is a function that assigns a degree to

the the inclusion of set A ∈ 𝔽(Δ) in set B ∈ 𝔽(Δ):

A
∘⊆∘ B = inf{A(x) ∘⇒∘ B(x) | x ∈ Δ} (7)
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Generalized fuzzy inclusion: Example
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Fuzzy inclusion (non-generalized)

Definition

The fuzzy inclusion⊆ is a predicate (assigns a true/false value) which
hold for two fuzzy sets A, B ∈ 𝔽(Δ) iff

𝜇A(x) ≤ 𝜇B(x) for all x ∈ Δ . (8)
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Fuzzy inclusion (non-generalized)

In vertical representation, the definition has a straightforward
equivalent:

𝜇A ≤ 𝜇B (9)

In horizontal representation, there is a theorem:

Theorem 219.

Let A, B ∈ 𝔽(Δ) if and only if

𝚁A(𝛼) ⊆ 𝚁B(𝛼) for all 𝛼 ∈ [0, 1] . (10)
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Fuzzy inclusion (non-generalized)

Proof of theorem 219.

⇒ Assume A⊆ B and x ∈ 𝚁A(𝛼) for some value 𝛼. If 𝛼 ≤ A(x), then
A(x) ≤ B(x) (from the definition of A⊆ B) and therefore x ∈ 𝚁B(𝛼)
and 𝚁A(𝛼) ⊆ 𝚁B(𝛼).

⇐ Assume 𝚁A(𝛼) ⊆ 𝚁B(𝛼). Firstly recall the horizontal-vertical
translation formula: 𝜇A(x) = sup{𝛼 ∈ [0, 1] | x ∈ 𝚁A(𝛼)}. Since
{𝛼 | x ∈ 𝚁A(x)} ⊆{𝛼 | x ∈ 𝚁B(x)}, the inequality
A(x) ≤ sup{𝛼 | x ∈ 𝚁B(x)} ≤ B(x) holds.
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Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical
and horizontal representation. Can we generalize this?

Cutworhiness

Let P be a predicate (returns true/false) over fuzzy sets. P is called
cutworthy („řezově dědičná vlastnost“) if the implication holds:

P(A1, ...,An) ⇒ P(𝚁A1
(𝛼), ..., 𝚁An

(𝛼)) for all 𝛼 ∈ [0, 1] (11)

There is a related notion: We define P as cut-consistent („řezově
konzistentní“) using the same definition, but replacing⇒ with⇔.
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Cutworhiness: Examples

• The theorem 219 can be stated as: “Set inclusion is
cut-consistent.”

Brain teasers

• Strong normality of A is defined as A(x) = 1 for some x ∈ Δ.
? ? ? ?

• Being crisp is
? ? ? ?
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Cutworhiness: Examples

• The theorem 219 can be stated as: “Set inclusion is
cut-consistent.”

Brain teasers

• Strong normality of A is defined as A(x) = 1 for some x ∈ Δ.
Strong normality is cut-consistent: A is strongly-normal iff every
its cut is non-empty iff every cut strongly normal.

• Being crisp is
cutworthy, but not cut-consistent: Every cut is crisp by definition,
therefore cutworthiness. But even non-crisp sets have crisp cuts,
therefore the property is not not cut-consistent.
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Google: “fuzzy”

Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.
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http://patternizer.wordpress.com/2010/06/03/2716/
http://urtechfriend-paperpresentations5.blogspot.cz/p/neural-networks-fuzzy-logic.html
http://www.eddiestrickshop.com/


Google: “probability”

Sources: Life123, WhatWeKnowSoFar, Probability Problems.
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http://www.life123.com/parenting/education/probability-statistics/probability-problems.shtml
http://www.whatweknowsofar.com/2009/05/probability-logo/
http://whstech.com/stuo/math/index.html


Fuzzy vs. probability

• Vagueness vs. uncertainty.

• Fuzzy logic is functional.
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Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian
product X × Y:

R ∈ ℙ(X × Y) (12)

Definition

The inverse relation R-1 to R is a relation from Y to X s.t.

R-1 = {(y, x) ∈ Y × X | (x, y) ∈ R} (13)
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Crisp relations: Inverse

Definition

Let X,Y, Z be sets. Then the compound of relations R⊆X× Y, S⊆Y× Z
is the relation

R○ S = {(x, z) ∈ X × Z | (x, y) ∈ R and (y, z) ∈ S for some y} (14)
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Crisp relations: Properties

The equality relation onΔ is E = {(x, x) | x ∈ Δ}.

Then the relation R⊆Δ × Δ is called

property using logical connectives using set axioms

reflexive ∀x. (x, x) ∈ R E⊆ R
symmetric (x, y) ∈ R⇒(y, x) ∈ R R = R-1

anti-symmetric (x, y) ∈ R∧(y, z) ∈ R⇒ y = z R∩ R-1 ⊆ E
transitive (x, y) ∈ R∧(y, z) ∈ R⇒(x, z) ∈ R R○ R⊆ R
partial order reflexive, transitive and anti-symmetric
equivalence reflexive, transitive and symmetric
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Fuzzy relations

Definition

A binary fuzzy relation R from X onto Y is a fuzzy subset on the
universe X × Y.

R ∈ 𝔽(X × Y) (15)

Definition

The fuzzy inverse relation R-1 ∈ 𝔽(Y × X) to R ∈ 𝔽(X × Y), s.t.

R(y, x) = R-1(x, y) (16)
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Projection

Defintion

Let R ∈ 𝔽(X × Y) be a fuzzy binary relation. The first and second
projection of R is

R(1)(x) =
S


y∈Y

R(x, y) (17)

R(2)(y) =
S


x∈X

R(x, y) (18)
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Projection: Example

R y1 y2 y3 y4 y5 y6 R(1)(x)
x1 0.1 0.2 0.4 0.8 1 0.8 ?
x2 0.2 0.4 0.8 1 0.8 0.6 ?
x3 0.4 0.8 1 0.8 0.4 0.2 ?

R(2)(y) ? ? ? ? ? ?

Sometimes there is a total projection defined as
R(T) = ⋁

x∈X
⋁

y∈Y R(x, y). But we already know this notion as ?
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Projection: Example

R y1 y2 y3 y4 y5 y6 R(1)(x)
x1 0.1 0.2 0.4 0.8 1 0.8 1
x2 0.2 0.4 0.8 1 0.8 0.6 1
x3 0.4 0.8 1 0.8 0.4 0.2 1

R(2)(y) 0.4 0.8 1 0.8 0.4 0.2

Sometimes there is a total projection defined as
R(T) = ⋁

x∈X
⋁

y∈Y R(x, y). But we already know this notion as

Height(R).
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Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an
unique largest relation with prescribed projections:

Definition

Let A ∈ 𝔽(X) and B ∈ 𝔽(Y) be fuzzy sets. The cylindrical extension
(„cylindrické rozšíření“, „kartézský součin fuzzy množin“) is defined as

A × B(x, y) = A(x) ∧

B(y) (19)

Brain teaser

Why can't there be a relation Q bigger than A × B, whose projections
are Q(1) = A and Q(2) = B?
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Cylindrical extension: Drawing

A(x) =

⎧⎪⎪
⎨⎪⎪⎩

x − 1 x ∈ [1, 2]
3 − x x ∈ [2, 3]
0 otherwise

B(x) =

⎧⎪⎪
⎨⎪⎪⎩

x − 3 x ∈ [3, 4]
5 − x x ∈ [4, 5]
0 otherwise
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Composition of fuzzy relations

Definition

Let X,Y, Z be crisp sets. R ∈ 𝔽(X × Y), S ∈ 𝔽(Y × Z) and∧∘ some fuzzy

conjunction. Then the ○∘ -composition („○∘ -složená relace“) is

R○∘ S(x, z) =
S


y∈Y

R(x, y) ∧∘ S(y, z) (20)

1. For infinite domains,⋁S is computed using the sup instead of
max.

2. Instead of the “ for some y” in crisp relations, the disjunction
“finds such a y” that maximizes the conjunction.
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Example of a fuzzy relation

R(x, y) =
⎧⎪
⎨⎪⎩

x + y x, y ∈ 0, 1

2


0 otherwise
S(x, y) =

⎧⎪
⎨⎪⎩

x ⋅ y x, y ∈ [0, 1]
0 otherwise
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Properties of fuzzy relations

Then the relation R⊆Δ × Δ is called

property using set axioms

reflexive E⊆ R
symmetric R = R-1

∘-anti-symmetric R∩∘ R
-1 ⊆ E

∘-transitive R○∘ R⊆ R

∘-partial order reflexive, ∘-transitive and ∘-anti-symmetric
∘-equivalence reflexive, ∘-transitive and ∘-symmetric
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Properties in a finite domain

If the universeΔ is finite, the relation can be written as a matrix. Their
properties are reflected in the relation's matrix:

• Reflexivity: Cells on the main diagonal ?.

• Symmetricity: Cells symmetric over the main diagonal ?.

• Anti-symmetricity: Cells symmetric over the main diagonal ?.

• For S- andA-anti-symmetricity, ?.

• For L-anti-symmetricity, ?.

• Transitivity: More difficult (see example on the next slide).

234 / 241 Basic fuzzy



Properties in a finite domain

If the universeΔ is finite, the relation can be written as a matrix. Their
properties are reflected in the relation's matrix:

• Reflexivity: Cells on the main diagonal are 1.

• Symmetricity: Cells symmetric over the main diagonal are equal.

• Anti-symmetricity: Cells symmetric over the main diagonal have
conjunction equal to zero.

• For S- andA-anti-symmetricity, one of the elements must be zero.

• For L-anti-symmetricity, their sum must be less or equal to 1.

• Transitivity: More difficult (see example on the next slide).
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Example on fuzzy relation properties

LetΔ = {A, B, C,D} and R ∈ 𝔽(Δ × Δ).

R A B C D

A 0.5 0.1
B 0.2
C
D 0.2

Fill the missing cells in the table to make R

a) S-equivalence
b) A-equivalence
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Theorem 264.

Let R, S and T be relations (defined over sets that “make sense”) The
following equations hold:

R○∘ E = R, E○∘ R = R (21)

(R○∘ S)
-1 = S-1 ○∘ R

-1 (22)

R○∘ (S○∘ T) = (R○∘ S)○∘ T (23)

(R

 S)○∘ T = (R○∘ T)○∘ (S○∘ T) (24)

R○∘ (S

 T) = (R○∘ S)○∘ (R○∘ T) (25)

(21) describes the identity element, (22) the inverse of composition,
(23) is the asociativity, (24) and (25) the right- and left-distributivity.
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Proof of 264.

Proving (21) and (22) is trivial.

"R○∘ (S○∘ T)"(x,w) =
S


y

R(x, y) ∧∘ "S○∘ T"(y,w) (26)

=
S


y

R(x, y) ∧∘

⎛
⎜
⎜
⎝

S


z

S(y, z) ∧∘ T(z,w)
⎞
⎟
⎟
⎠

(27)

=
S


y

S


z

R(x, y) ∧∘ S(y, z) ∧∘ T(z,w) (28)

=
S


z

S


y

R(x, y) ∧∘ S(y, z) ∧∘ T(z,w) (29)
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Proof of 264 (contd.).

=
S


z

S


y

R(x, y) ∧∘ S(y, z) ∧∘ T(z,w) (30)

=
S


z

⎛
⎜
⎜
⎝

S


y

R(x, y) ∧∘ S(y, z)
⎞
⎟
⎟
⎠
∧∘ T(z,w) (31)

=
S


z

"R○∘ S"(x, z) ∧∘ T(z,w) (32)

= "R○∘ S○∘ T"(x,w) (33)

Proof of (24) and (25) is similar (uses the distributivity law), only
shorter. See [Navara and Olšák, 2001] for details.
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Extensions: Sometimes it is useful to consider...

• ...a 𝜀-reflective relation

R(x, x) ≥ 𝜀 (34)

• ...aweakly reflexive relation

R(x, y) ≤ R(x, x) and R(y, x) ≤ R(x, x) for all x, y (35)

• Relation is 1-reflective iff reflexive.

• If a relation is reflexive, then it is weakly reflexive.
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Extensions: Sometimes it is useful to consider...

• ...a non-involutive negation by refusing (N2)

¬∘ ¬∘ 𝛼 ≠ 𝛼

and adopting a weaker axiom

¬∘ ¬∘ 0 = 1 and ¬∘ ¬∘ 1 = 0 (N0)

Example

Gödel negation

¬

𝛼 =

⎧⎪
⎨⎪⎩

1 𝛼 = 0

0 otherwise
(36)
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