

OPPA European Social Fund Prague \& EU: We invest in your future.

AE4M33RZN, Fuzzy logic: Fuzzy relations

Radomír Černoch

radomir.cernoch@fel.cvut.cz

Faculty of Electrical Engineering, CTU in Prague
26/11/2012

Organizational:

- Next week, there will be a short test (max 5 points).
- This week we are having the last theoretical lecture.

Fuzzy implication

We already know fuzzy negation ᄀ, fuzzy conjunction \wedge and fuzzy discjunction $\stackrel{\circ}{\vee}$. What about other operators?
Definition
Fuzzy implication is any function

$$
\begin{equation*}
\stackrel{\circ}{\Rightarrow}:[0,1]^{2} \rightarrow[0,1] \tag{1}
\end{equation*}
$$

which overlaps with the boolean implication on $x, y \in\{\mathbf{0}, \mathbf{1}\}$:

$$
\begin{equation*}
(x \underset{0}{\circ} y)=(x \Rightarrow y) . \tag{2}
\end{equation*}
$$

Residue implication

Despite the lack of a uniform definition of fuzzy implication, there is a useful class of implications:
Defintion
The R-implication (residuum, „reziduovaná implikace") is a function obtained from a fuzzy T-norm:

$$
\begin{equation*}
\alpha \underset{\circ}{\mathrm{R}} \beta=\sup \left\{\gamma \mid \alpha \wedge_{o} \gamma \leqslant \beta\right\} \tag{RI}
\end{equation*}
$$

R-implication: Examples (1)

Standard implication (Gödel) is derived from (RI) using the standard cojunction $\hat{\mathrm{S}}$:

$$
\alpha \underset{\mathrm{s}}{\stackrel{\mathrm{R}}{\Rightarrow}} \beta= \begin{cases}1 & \text { if } \alpha \leqslant \beta \tag{3}\\ \beta & \text { otherwise }\end{cases}
$$

R-implication: Examples (2)

£ukasiewicz implication is derived from (RI) using the Łukasiewicz cojunction $\stackrel{\wedge}{\mathrm{L}}$:

R-implication: Examples (3)

Algebraic implication (Gougen, Gaines) is derived from (RI) using the algebraic cojunction \hat{A} :

$$
\alpha \underset{\mathrm{A}}{\stackrel{\mathrm{R}}{\Rightarrow}} \beta= \begin{cases}1 & \text { if } \alpha \leqslant \beta \tag{5}\\ \frac{\beta}{\alpha} & \text { otherwise }\end{cases}
$$

R-implication: Properties

Theorem 207.
Let \wedge be a continuous fuzzy conjunction. Then R-implication satisfies:

$$
\begin{align*}
& \alpha \stackrel{\mathrm{R}}{\Rightarrow} \beta=1 \text { iff } \alpha \leqslant \beta \tag{11}\\
& 1 \stackrel{\mathrm{R}}{\Rightarrow} \beta=\beta \tag{12}\\
& \alpha \stackrel{\mathrm{R}}{\stackrel{\mathrm{O}}{\circ}} \beta \text { is not increasing in } \alpha \text { and not decreasing in } \beta \tag{13}
\end{align*}
$$

R-implication: Properties

Proof of theorem 207.

Let's denote $\{\gamma \mid \alpha \wedge \gamma \leqslant \beta\}=\gamma$.

- Proving (13) uses monotonicity: Increasing α can only shrink γ and increasing β can only enlarge γ.
- Proving (12) is easy: $1 \stackrel{R}{\Rightarrow} \beta=\sup \left\{\left.\gamma\right|_{1} \wedge \gamma \leqslant \beta\right\}$. From definition of \wedge, we write $\mathrm{I} \stackrel{\mathrm{R}}{\Rightarrow} \beta=\sup \{\gamma \mid \gamma \leqslant \beta\}=\beta$.

R-implication: Properties

Proof of theorem 207 (contd.).

- For (I1) one needs to check 2 cases:
- If $\alpha \leqslant \beta$, then $\mathbf{1} \in \gamma$, because $\alpha \wedge_{\mathrm{o}} \mathbf{1}=\alpha \leqslant \beta$ and therefore the condition $\alpha \wedge_{o} \gamma \leqslant \beta$ is true for all possible values of γ.
- If $\alpha>\beta$, then $1 \notin \gamma$, because $\alpha \wedge_{\mathrm{o}} \mathbf{1}=\alpha>\beta$ and therefore the condition $\alpha \wedge_{\circ} \gamma \leqslant \beta$ is false for $\gamma=\mathbf{1}$.

S-implication

Defintion

The S-implication is a function obtained from a fuzzy disjunction $\stackrel{\circ}{\vee}$:

$$
\begin{equation*}
\alpha \stackrel{\mathrm{s}}{\Rightarrow} \beta=\frac{\mathrm{s}}{\mathrm{~s}} \alpha \stackrel{\circ}{\vee} \beta \tag{SI}
\end{equation*}
$$

Example

Kleene-Dienes implication from $\stackrel{\text { S }}{ }$

$$
\begin{equation*}
\alpha \stackrel{\mathrm{s}}{\Rightarrow} \beta=\max (1-\alpha, \beta) \tag{6}
\end{equation*}
$$

Generalized fuzzy inclusion

Previously, we used the logical negation \neg to define the set complement, the conjunction \wedge_{ρ} to define the set intersection, etc.

Can we use the implication $\underset{0}{\circ}$ to define the the fuzzy inclusion?

Definition

The generalized fuzzy inclusion $\stackrel{\circ}{\square}$ is a function that assigns a degree to the the inclusion of set $A \in \mathbb{F}(\Delta)$ in set $B \in \mathbb{F}(\Delta)$:

$$
\begin{equation*}
A \stackrel{\circ}{\subseteq} B=\inf \{A(x) \underset{\circ}{\circ} B(x) \mid x \in \Delta\} \tag{7}
\end{equation*}
$$

Generalized fuzzy inclusion: Example

Fuzzy inclusion (non-generalized)

Definition

The fuzzy inclusion \subseteq is a predicate (assigns a true/false value) which hold for two fuzzy sets $A, B \in \mathbb{F}(\Delta)$ iff

$$
\begin{equation*}
\mu_{A}(x) \leqslant \mu_{B}(x) \text { for all } x \in \Delta . \tag{8}
\end{equation*}
$$

Fuzzy inclusion (non-generalized)

In vertical representation, the definition has a straightforward equivalent:

$$
\begin{equation*}
\mu_{A} \leqslant \mu_{B} \tag{9}
\end{equation*}
$$

In horizontal representation, there is a theorem:
Theorem 214.
Let $A, B \in \mathbb{F}(\Delta)$ if and only if

$$
\begin{equation*}
\mathrm{R}_{A}(\alpha) \subseteq \mathrm{R}_{B}(\alpha) \text { for all } \alpha \in[0,1] . \tag{10}
\end{equation*}
$$

Fuzzy inclusion (non-generalized)

Proof of theorem 214.

\Rightarrow Assume $A \subseteq B$ and $x \in R_{A}(\alpha)$ for some value α. If $\alpha \leqslant A(x)$, then $A(x) \leqslant B(x)$ (from the definition of $A \subseteq B$) and therefore $x \in R_{B}(\alpha)$ and $\mathrm{R}_{A}(\alpha) \subseteq \mathrm{R}_{B}(\alpha)$.
\Leftarrow Assume $\mathrm{R}_{A}(\alpha) \subseteq \mathrm{R}_{B}(\alpha)$. Firstly recall the horizontal-vertical translation formula: $\mu_{A}(x)=\sup \left\{\alpha \in[0,1] \mid x \in R_{A}(\alpha)\right\}$. Since $\left\{\alpha \mid x \in R_{A}(x)\right\} \subseteq\left\{\alpha \mid x \in R_{B}(x)\right\}$, the inequality $A(x) \leqslant \sup \left\{\alpha \mid x \in R_{B}(x)\right\} \leqslant B(x)$ holds.

Cutworhiness

We ended up with 2 equal definitions of set inclusion: using vertical and horizontal representation. Can we generalize this?

Cutworhiness

Let P be a predicate (returns true/false) over fuzzy sets. P is called cutworthy („řezově dědičná vlastnost") if the implication holds:

$$
\begin{equation*}
P\left(A_{1}, \ldots, A_{n}\right) \Rightarrow P\left(\mathrm{R}_{A_{1}}(\alpha), \ldots, \mathrm{R}_{A_{n}}(\alpha)\right) \text { for all } \alpha \in[0,1] \tag{11}
\end{equation*}
$$

There is a related notion: We define P as cut-consistent („řezově konzistentní") using the same definition, but replacing \Rightarrow with \Leftrightarrow.

Cutworhiness: Examples

- The theorem 214 can be stated as: "Set inclusion is cut-consistent."

Brain teasers

- Strong normality of A is defined as $A(x)=1$ for some $x \in \Delta$.
:ұuәıs!suoo-ұno s!

- Being crisp is

Google: "fuzzy"

Sources: M. Taylor's Weblog, M. Taylor's Weblog, Eddie's Trick Shop.

Google: "probability"

Sources: Life123, WhatWeKnowSoFar, Probability Problems.

Fuzzy vs. probability

- Vagueness vs. uncertainty.
- Fuzzy logic is functional.

Crisp relations

Definition

A binary crisp relation R from X onto Y is a subset of the cartesian product $X \times Y$:

$$
\begin{equation*}
R \in \mathbb{P}(X \times Y) \tag{12}
\end{equation*}
$$

Definition

The inverse relation R^{-1} to R is a relation from Y to X s.t.

$$
\begin{equation*}
R^{-1}=\{(y, x) \in Y \times X \mid(x, y) \in R\} \tag{13}
\end{equation*}
$$

Crisp relations: Inverse

Definition

Let X, Y, Z be sets. Then the compound of relations $R \subseteq X \times Y, S \subseteq Y \times Z$ is the relation

$$
\begin{equation*}
R \bigcirc S=\{(x, z) \in X \times Z \mid(x, y) \in R \text { and }(y, z) \in S \text { for some } y\} \tag{14}
\end{equation*}
$$

Crisp relations: Properties

The equality relation on Δ is $E=\{(x, x) \mid x \in \Delta\}$.

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using logical connectives	using set axioms
reflexive	$\forall x .(x, x) \in R$	$E \subseteq R$
symmetric	$(x, y) \in R \Rightarrow(y, x) \in R$	$R=R^{-1}$
anti-symmetric	$(x, y) \in R \wedge(y, z) \in R \Rightarrow y=z$	$R \cap R^{-1} \subseteq E$
transitive	$(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$	$R \bigcirc R \subseteq R$
partial order	reflexive, transitive and anti-symmetric	
equivalence	reflexive, transitive and symmetric	

Fuzzy relations

Definition

A binary fuzzy relation R from X onto Y is a fuzzy subset on the universe $X \times Y$.

$$
\begin{equation*}
R \in \mathbb{F}(X \times Y) \tag{15}
\end{equation*}
$$

Definition
The fuzzy inverse relation $R^{-1} \in \mathbb{F}(Y \times X)$ to $R \in \mathbb{F}(X \times Y)$, s.t.

$$
\begin{equation*}
R(y, x)=R^{-1}(x, y) \tag{16}
\end{equation*}
$$

Projection

Defintion

Let $R \in \mathbb{F}(X \times Y)$ be a fuzzy binary relation. The first and second projection of R is

$$
\begin{align*}
& R^{(1)}(x)=\bigvee_{y \in Y}^{s} R(x, y) \tag{17}\\
& R^{(2)}(y)=\bigvee_{x \in X}^{s} R(x, y) \tag{18}
\end{align*}
$$

Projection: Example

R	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	$R^{(1)}(x)$
x_{1}	0.1	0.2	0.4	0.8	1	0.8	τ
x_{2}	0.2	0.4	0.8	1	0.8	0.6	τ
x_{3}	0.4	0.8	1	0.8	0.4	0.2	τ
$R^{(2)}(y)$	$\mp \circ 0$	8.0	τ	8.0	$\mp \circ 0$	$\tau^{\circ} 0$	

Sometimes there is a total projection defined as $R^{(T)}=\bigvee_{x \in X} \bigvee_{y \in Y} R(x, y)$. But we already know this notion as -(y) $ч$ ¢̊! !

Cylindrical extension

Can we reconstruct a fuzzy relation from its projections? There is an unique largest relation with prescribed projections:

Definition

Let $A \in \mathbb{F}(X)$ and $B \in \mathbb{F}(Y)$ be fuzzy sets. The cylindrical extension („cylindrické rozšíření", „kartézský součin fuzzy množin") is defined as

$$
\begin{equation*}
A \times B(x, y)=A(x) \wedge_{\mathrm{S}} B(y) \tag{19}
\end{equation*}
$$

Brain teaser

Why can't there be a relation Q bigger than $A \times B$, whose projections are $Q^{(1)}=A$ and $Q^{(2)}=B$?

Cylindrical extension: Drawing

$$
A(x)= \begin{cases}x-1 & x \in[1,2] \\ 3-x & x \in[2,3] \\ 0 & \text { otherwise }\end{cases}
$$

$$
B(x)= \begin{cases}x-3 & x \in[3,4] \\ 5-x & x \in[4,5] \\ 0 & \text { otherwise }\end{cases}
$$

Composition of fuzzy relations

Definition

Let X, Y, Z be crisp sets. $R \in \mathbb{F}(X \times Y), S \in \mathbb{F}(Y \times Z)$ and \wedge_{o} some fuzzy conjunction. Then the \bigcirc-composition („○-složená relace") is

$$
\begin{equation*}
R \bigcirc S(x, z)=\bigvee_{y \in Y}^{s} R(x, y) \wedge S(y, z) \tag{20}
\end{equation*}
$$

1. For infinite domains, \bigvee^{s} is computed using the sup instead of max.
2. Instead of the " for some y " in crisp relations, the disjunction "finds such a y " that maximizes the conjunction.

Example of a fuzzy relation

$$
R(x, y)= \begin{cases}x+y & x, y \in\left[0, \frac{1}{2}\right] \\ 0 & \text { otherwise }\end{cases}
$$

$$
S(x, y)= \begin{cases}x \cdot y & x, y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Properties of fuzzy relations

Then the relation $R \subseteq \Delta \times \Delta$ is called

property	using set axioms
reflexive	$E \subseteq R$
symmetric	$R=R^{-1}$
o-anti-symmetric	$R \bigcap_{\circ} R^{-1} \subseteq E$
o-transitive	$R \bigcirc_{\circ} R \subseteq R$
o-partial order	reflexive, o-transitive and o-anti-symmetric
o-equivalence	reflexive, o-transitive and o-symmetric

Properties in a finite domain

If the universe Δ is finite, the relation can be written as a matrix. Their properties are reflected in the relation's matrix:

- Reflexivity: Cells on the main diagonal \quad әде
- Symmetricity: Cells symmetric over the main diagonal ןenbə әце.
- Anti-symmetricity: Cells symmetric over the main diagonal

- For S- and A-anti-symmetricity, oıəz әq łsnu sұuәшәןә әчł Łо әио*

- Transitivity: More difficult (see example on the next slide).

Example on fuzzy relation properties

Let $\Delta=\{A, B, C, D\}$ and $R \in \mathbb{F}(\Delta \times \Delta)$.

R	A	B	C	D
A		0.5		0.1
B			0.2	
C				
D		0.2		

Fill the missing cells in the table to make R
a) S-equivalence
b) A-equivalence

Theorem 234.

Let R, S and T be relations (defined over sets that "make sense") The following equations hold:

$$
\begin{gather*}
R \bigcirc E=R, E \bigcirc R=R \tag{21}\\
(R \bigcirc S)^{-1}=S^{-1} \bigcirc R^{-1} \tag{22}\\
R \bigcirc(S \bigcirc T)=(R \bigcirc S) \bigcirc T \tag{23}\\
(R \cap S) \bigcirc T=(R \bigcirc T) \bigcirc(S \bigcirc T) \tag{24}\\
R \bigcirc(S \bigcap T)=(R \bigcirc S) \bigcirc(R \bigcirc T) \tag{25}
\end{gather*}
$$

(21) describes the identity element, (22) the inverse of composition, (23) is the asociativity, (24) and (25) the right- and left-distributivity.

Proof of 234.

Proving (21) and (22) is trivial.

$$
\begin{align*}
" R \bigcirc(S \bigcirc T) "(x, w) & =\bigvee_{y}^{s} R(x, y) \wedge_{\circ} " S \bigcirc T^{\prime \prime}(y, w) \tag{26}\\
& =\bigvee_{y}^{s} R(x, y) \wedge_{\circ}\left(\bigvee_{z}^{s} S(y, z) \wedge_{\circ} T(z, w)\right) \tag{27}\\
& =\bigvee_{y}^{s} \bigvee_{z}^{s} R(x, y) \wedge_{\circ} S(y, z) \wedge_{\circ} T(z, w) \tag{28}\\
& =\bigvee_{z}^{s} \bigvee_{y}^{s} R(x, y) \wedge S(y, z) \wedge_{\circ} T(z, w) \tag{29}
\end{align*}
$$

Proof of 234 (contd.).

$$
\begin{align*}
& =\bigvee_{z}^{S} \bigvee_{y}^{S} R(x, y) \wedge_{o} S(y, z) \wedge_{o} T(z, w) \tag{30}\\
& =\bigvee_{z}^{s}\left(\bigvee_{y}^{s} R(x, y) \wedge S(y, z)\right) \wedge_{\circ} T(z, w) \tag{31}\\
& =\bigvee_{z}^{s} " R \bigcirc S^{\prime \prime}(x, z) \wedge_{\circ} T(z, w) \tag{32}\\
& =" R \bigcirc S \bigcirc T^{\prime \prime}(x, w) \tag{33}
\end{align*}
$$

Proof of (24) and (25) is similar (uses the distributivity law), only shorter. See [Navara and Olšák, 2001] for details.

Extensions: Sometimes it is useful to consider...

- ...a ε-reflective relation

$$
\begin{equation*}
R(x, x) \geqslant \varepsilon \tag{34}
\end{equation*}
$$

- ...a weakly reflexive relation

$$
\begin{equation*}
R(x, y) \leqslant R(x, x) \text { and } R(y, x) \leqslant R(x, x) \text { for all } x, y \tag{35}
\end{equation*}
$$

- Relation is 1-reflective iff reflexive.
- If a relation is reflexive, then it is weakly reflexive.

Extensions: Sometimes it is useful to consider...

- ...a non-involutive negation by refusing (N2)

$$
\neg \neg \alpha \neq \alpha
$$

and adopting a weaker axiom

$$
\begin{equation*}
\neg \neg 0=1 \text { and } \neg \neg 1=0 \tag{No}
\end{equation*}
$$

Example

Gödel negation

$$
\underset{\mathrm{G}}{ } \mathrm{\neg}^{2}= \begin{cases}1 & \alpha=\mathrm{o} \tag{36}\\ \mathrm{o} & \text { otherwise }\end{cases}
$$

Bibliography

围 Navara, M. and Olšák, P. (2001).
Základy fuzzy množin.
Nakladatelství ČVUT.

OPPA European Social Fund Prague \& EU: We invest in your future.

