
OPPA European Social Fund
Prague & EU: We invest in your future.

Querying Description Logics

Petr Křemen
petr.kremen@fel.cvut.cz

FEL ČVUT

112 / 158

Our plan

Conjunctive Queries

Evaluation of Conjunctive Queries in ALC

113 / 158

Conjunctive Queries

114 / 158

Query Types

Conjunctive (ABox) queries – queries asking for individual tuples
complying with a graph-like pattern.

Metaqueries – queries asking for individual/concept/role tuples.
There are several languages for metaqueries, e.g.
SPARQL-DL, OWL-SAIQL, etc.

Example

In SPARQL-DL, the query “Find all people together with their
type.” can be written as follows :

Type(?x , ?c),SubClassOf (?c ,Person)

115 / 158

Conjunctive (ABox) queries

Conjunctive (ABox) queries are analogous to database
SELECT-PROJECT-JOIN queries. A conjunctive query is in the
form

Q(?x1, . . . , ?xD)← t1, . . . tT ,

where each ti is either C (yk), or R(yk , yl). Each yi is either (i) an
individual from the ontology, or (ii) variable from a new set V
(variables will be differentiated from individuals by the prefix “?”)
and C denotes a concept and R denotes a role. Next, we need all
?xi to be present also in one of ti .

Example

“Find all mothers and their daughters having at least one brother.”
:

Q(?x , ?z) ← Woman(?x), hasChild(?x , ?y), hasChild(?x , ?z),

Man(?y),Woman(?z)

116 / 158

Conjunctive ABox Queries – Semantics

Conjunctive queries of the form Q() are called boolean – such
queries only test existence of a relational structure in each
model I of the ontology K.

Consider any interpretation I = (∆I , ·I). Evaluation η is a
function from the set of individuals and variables into ∆I that
coincides with I on individuals.

Then I |=η Q(), iff

η(yk) ∈ CI for each atom C (yk) from Q() and
〈η(yk), η(yl)〉 ∈ RI for each atom R(yk , yl) from Q()

Interpretatino I is a model of Q(), iff I |=η Q() for some η.

Next, K |= Q() (Q() is satisfiable in K) iff I |= Q() whenever
I |= K

117 / 158

Conjunctive ABox Queries – Variables

Queries without variables are not practically interesting. For
queries with variables we define semantics as follows. An
N-tuple 〈i1, . . . , in〉 is a solution to Q(?x1, . . . , ?xn) in theory
K, whenever K |= Q ′(), for a boolean query Q ′ obtained from
Q by replacing all occurences of ?x1 in all tk by an individual
i1, etc.

In conjunctive queries two types of variables can be defined:

distinguished occur in the query head as well as body, e.g.
?x , ?z in the previous example. These variables
are evaluated as domain elements that are
necessarily interpretations of some individual
from K. That individual is the binding to the
distinguished variable in the query result.

undistinguished occur only in the query body, e.g. ?y in the
previous example. Their can be interpretated as
any domain elements.

118 / 158

Conjunctive Queries – Examples

Example

Let’s have a theory K4 = (∅, {(∃R1 · C1)(i),R2(i , j),C2(j)}).

Does K |= Q1() hold for Q1()← R1(?x1, ?x2) ?

What are the solutions of the query Q2(?x1)← R1(?x1, ?x2)
for K ?

What are the solutions of the query
Q3(?x1, ?x2)← R1(?x1, ?x2) for K ?

119 / 158

Evaluation of Conjunctive
Queries in ALC

120 / 158

Satisfiability of ALC Boolean Queries

Satisfiability of the boolean query Q() having a tree shape can
be checked by means of the rolling-up technique.

Each query atom of the form R(yk , yl) can be replaced by the
term (∃R · X)(yk), if yl does not occur in any other query
atom. X equals to

(i) >, whenever yl is a variable,
(ii)Yl , whenever yl is an individual. Yl is a representative
concept of individual yl occuring neither in K nor in Q. For
each yl it is necessary to extend ABox of K with concept
assertion Yl(yl).

Each query atom of the form R(yk , yl) can be replaced by the
query atom (∃R · C)(yk), if yl occurs in the query in a single
query atom of the form C (yl).
Each two atoms C1(yk) and C2(yk) can be replaced by a single
query atom of the form (C1 u C2)(yk).

121 / 158

Satisfiability of ALC Boolean Queries (2)

. . . after rolling-up the query we obtain the query Q()′ ← C (y),
that is satisfied in K, iff Q() is satisfied in K:

If y is an individual, then Q ′() is satisfied, whenever
K |= C (y) (i.e. K ∪ {(¬C)(y)} is inconsistent)

If y is a variable, then Q ′() is satisfied, whenever
K ∪ {C v ⊥} is inconsistent. Why ?

Example

Consider a query Q4()← R1(?x1, ?x2),R2(?x1, ?x3),C2(?x3). This
query can be rolled-up into the query
Q ′

4 ← (∃R1 · > u ∃R2 · C2)(?x1). This query is satisfiable in K4, as
K4 ∪ {(∃R1 · > u ∃R2 · C2) v ⊥} is inconsistent.

122 / 158

Satisfiability of Boolean Queries in ALC (3)

... and what to do with arbitrary queries ?

Let’s consider just queries that form “connected component”
and contain for some variable yk at least two query atoms of
the form R1(y1, yk) and R2(y2, yk).

Question: Why it is enough to take just one connected
component?

Let’s make use of the tree model property of ALC. Each pair
of atoms R1(y1, yk) and R2(y2, yk) can be satisfied only if yk
is interpreted as a domain element, that is an interpretation of
an individual. Why (see next slide) ? It is enough to try to
replace each yk in our query with each individual occuring in
K.

For SHOIN and SROIQ there is no sound and complete
decision procedure for general boolean queries.

123 / 158

ALC Model Example

124 / 158

Queries with Distinguished Variables

Consider arbitrary query Q(?x1, . . . , ?xD). How to evaluate it ?

Naive way: Replace each distinguished variable xi by each
individual occuring in K. Solutions are those D-tuples
〈i1, . . . , iD〉, for which a boolean query created from Q by
replacing each xk with ik is satisfiable.

A bit more clever strategy: First, let’s replace just the first
variable x1 with each individual from K, resulting in Q2. If any
query atom without variables in Q2 is not a logical
consequence of K, then we do not need to test potential
bindings for other variables.

In this field many optimizations are available.

125 / 158

OPPA European Social Fund
Prague & EU: We invest in your future.

