Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Towards Description Logics

 ${\cal ALC}$ Language

Towards Description Logics

Let's review our knowledge about FOPL²

- What is a *term*, *axiom/formula*, *theory*, *model*, *universal closure*, *resolution*, *logical consequence* ?
- What is an open-world assumption (OWA)/closed-world assumption (CWA) ?
- What is the difference between a predicate (relation) and a predicate symbol ?
- What does it mean, when saying that FOPL is undecidable ?
- What does it mean, when saying that FOPL is monotonic ?
- What is the idea behind *Deduction Theorem, Soundness, Completeness* ?

²First Order Predicate Logic

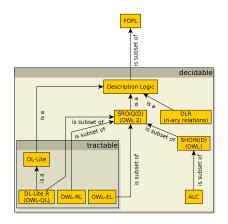
Isn't FOPL enough ?

- Why do we speak about modal logics, description logics, etc. ?
 - FOPL is undecidable many logical consequences cannot be verified in finite time.
 - We often do not need full expressiveness of FOL.
- Well, we have Prolog wide-spread and optimized implementation of FOPL, right ?
 - Prolog is not an implementation of FOPL OWA vs. CWA, negation as failure, problems in expressing disjunctive knowledge, etc.
- Well, relational databases are also not enough ?
 - RDBMS accept CWA and support just finite domains.
 - RDBMS are not flexible enough DB model change is complicated that adding/removing an axiom from an ontology.

- Semantic networks and Frames
 - Lack well defined (declarative) semantics
 - What is the semantiics of a "slot" in a frame (relation in semantic networks) ? The slot **must/might** be filled **once/multiple times** ?
- Conceptual graphs are beyond FOPL (thus undecidable).
- What are description logics (DLs)?
 - logic-based languages for modeling *terminological knowledge*, *incomplete knowledge*. Almost exclusively, DLs are decidable subsets of FOPL.
 - první jazyky vznikly jako snaha o formalizaci sémantických sítí a rámců. První implementace v 80's – systémy KL-ONE, KAON, Classic .

What are Description Logics ?

- family of logic-based languages for modeling terminological knowledge, incomplete knowledge.
 Almost exclusively, DLs are decidable subsets of FOPL.
- first languages emerged as an experiment of giving formal semantics to semantic networks and frames. First implementations in 80's – KL-ONE, KAON, Classic.
- 90's \mathcal{ALC}
- 2004 $\mathcal{SHOIN}(\mathcal{D})$ OWL
- 2009 SROIQ(D) OWL 2



${\cal ALC}$ Language

Concepts and Roles

Basic building blocks of DLs are :

 (atomic) concepts - representing (named) unary predicates / classes, e.g. Parent, or
 Person □ ∃hasChild · Person.
 (atomic) roles - represent (named) binary predicates / relations, e.g. hasChild
 individuals - represent ground terms / individuals, e.g. JOHN

- Theory K (in OWL refered as Ontology) of DLs consists of a TBOX T representing axioms generally valid in the domain, e.g. T = {Man ⊑ Person}
 ABOX A representing a particular relational structure (data), e.g. A = {Man(JOHN)}
- DLs differ in their expressive power (concept/role constructors, axiom types).

- as *ALC* is a subset of FOPL, let's define semantics analogously (and restrict interpretation function where applicable):
- Interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is an interpretation domain and $\cdot^{\mathcal{I}}$ is an interpretation function.
- Having atomic concept A, atomic role R and individual a, then

$$\begin{array}{c} A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \\ \mathsf{R}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \\ a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \end{array}$$

ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for interpretation $\mathcal I$:

	concept	$\mathit{concept}^\mathcal{I}$		description
	Т	$\Delta^{\mathcal{I}}$		(universal concept)
	\perp	Ø		(unsatisfiable concept)
	$\neg C$	$\Delta^\mathcal{I} \setminus C^\mathcal{I}$		(negation)
	$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$		(intersection)
	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$		(union)
	$\forall R \cdot C$	$\{a \mid \forall b ((a, b) \in$	$\in R^{\mathcal{I}} \Rightarrow b \in C^{\mathcal{I}})\}$	(universal restriction)
	$\exists R \cdot C$	$\{a \mid \exists b ((a, b) \in$	$\in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}}) \}$	(existential restriction)
	axiom	$\mathcal{I} \models axiom iff$	description	
TBOX	$C \sqsubseteq D$	$\mathcal{C}^\mathcal{I} \subseteq D^\mathcal{I}$	(inclusion)	
	$C \equiv D$	$C^{\mathcal{I}} = D^{\mathcal{I}}$	(equivalence)	
ABOX	(UNA = unique name assumption ³)			_
	axiom	$\mathcal{I} \models axiom \ iff$	description	
	<i>C</i> (<i>a</i>)	$a^\mathcal{I} \in C^\mathcal{I}$	(concept assertion)	
	R(a, b)	$(a^\mathcal{I}, b^\mathcal{I}) \in R^\mathcal{I}$	(role assertion)	

³two different individuals denote two different domain elements

For an arbitrary set S of axioms (resp. theory $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where $S = \mathcal{T} \cup \mathcal{A}$), then

- $\mathcal{I} \models S$ if $\mathcal{I} \models \alpha$ for all $\alpha \in S$ (\mathcal{I} is a model of S, resp. \mathcal{K})
- S ⊨ β if I ⊨ β whenever I ⊨ S (β is a logical consequence of S, resp. K)
- S is consistent, if S has at least one model

\mathcal{ALC} – Example

Example

Consider an information system for genealogical data. Information integration from various sources is crucial – databases, information systems with *different data models*. As an integration layer, let's use a description logic theory. Let's have atomic concepts *Person*, *Man*, *GrandParent* and atomic role *hasChild*.

- How to express a set of persons that have just men as their descendants, if any ?
 - Person $\sqcap \forall hasChild \cdot Man$
- How to define concept GrandParent ?
 - GrandParent \equiv Person $\sqcap \exists$ hasChild $\cdot \exists$ hasChild $\cdot \top$
- How does the previous axiom look like in FOPL ?

 $\forall x (GrandParent(x) \equiv (Person(x) \land \exists y (hasChild(x, y)) \land \exists z (hasChild(y, z))))$

Example

- Consider an ontology K₁ = ({GrandParent ≡ Person □ ∃hasChild · ∃hasChild · ⊤}, {GrandParent(JOHN)}), modelem K₁ může být např. interpretace I₁:
 - $\Delta^{\mathcal{I}_1} = Man^{\mathcal{I}_1} = Person^{\mathcal{I}_1} = \{John, Phillipe, Martin\}$
 - $hasChild^{I_1} = \{(John, Phillipe), (Phillipe, Martin)\}$
 - GrandParent $\mathcal{I}_1 = \{John\}$
 - $JOHN^{\mathcal{I}_1} = \{John\}$
- this model is finite and has the form of a tree with the root in the node *Jan* :

The last example revealed several important properties of DL models:

- TMP (tree model property), if every satisfiable concept⁴ C of the language has a model in the shape of a *rooted tree*.
- $\label{eq:FMP} \mbox{ (finite model property), if every consistent theory \mathcal{K} of the language has a finite model.}$

Both properties represent important characteristics of a DL that directly influence inferencing (see next lecture).

In particular (generalized) TMP is a characteristics that is shared by most DLs and significantly reduces their computational complexity.

⁴Concept is satisfiable, if at least one model interprets it as a non-empty set

Example

Example

primitive concept defined concept

- $Woman = Person \Box Female$
 - $Man = Person \Box \neg Woman$
- Mother \equiv Woman $\Box \exists$ has Child \cdot Person
 - Father = $Man \Box \exists hasChild \cdot Person$
 - Parent = Father || Mother
- $Grandmother = Mother \Box \exists hasChild \cdot Parent$
- $MotherWithoutDaughter \equiv Mother \sqcap \forall hasChild \cdot \neg Woman$
 - $Wife = Woman \Box \exists has Husband \cdot Man$

aboratory

Example – CWA \times OWA

